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Abstract: The short term optimization and control of energy networks is of great interest for
Energy Industries because of the technical, economical and environmental benefits which could
be gained from an appropriate management. However, models of such complicated systems
are strongly non linear due to the energy propagation modeling and suffer from important
uncertainties. Furthermore, some of the control variables are binary ones (on/off status of
production units) and some of them are real ones (amount of energy to be produced). In this
article, the goal is to encompass the whole technological string ”production - distribution -
consumption” by defining a suitable hierarchical predictive control strategy. In a first step, a
global predictive control law is defined to compute the global amount of energy to be produced
by each production site. In the second stage, this energy is dispatched between the production
units of each site by a local predictive law. Due to the complexity of the system, an exact
solution of the on line optimization problems to be solved in the predictive control strategy is
untractable, and metaheuristic optimization methods are used. The global law is computed by
a Particle Swarm Optimization (PSO) method whereas the local law is computed by ant colony
and genetic algorithm. Numerical results exhibit more than satisfactory results and prove the
viability of the approach.
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1. INTRODUCTION

The short term optimal scheduling and control of power
systems has emerged as a crucial point. Indeed, energy
markets have become more and more competitive. Produc-
ers and network managers have to drive their power sys-
tems, which are more and more complicated, to fulfill con-
sumers’ power demands with the lowest global costs. Pro-
ducers are also made to be aware of environmental issues
by environmental laws. They are compelled to reduce their
rate of polluting emissions. Thus, technical, economical
and environmental constraints have to be simultaneously
dealt with. The optimization problem stated from this
multi field area can hardly be solved as it is a mixed non
linear programming problem, made of numerous variables.
The optimal control of district heating networks, for which
propagation delays cannot be neglected and mechanical
and thermal losses have nonlinear expressions, picks up all
these harsh difficulties.

In most studies, consumers’ demands are considered as
given and perfectly known data; see Benonysson et al.
(1995), Zhao et al. (1998) and Ravn and Ryggard (1994).
In this case the minimization of operational costs is an
ideal reference trajectory for the district heating system,
but is not robust against load prediction errors. In Palsson
(1993) and Nielsen and Madsen (2002), a closed loop
control strategy is depicted for district heating networks
with one thermal power production point and leads to

very coherent behaviours: as heat losses in the distribution
network increase with the supply temperature, the optimal
strategy is to keep this temperature as low as possible
while satisfying consumers’ demands. However, in the gen-
eral case, this control approach may fail as supply tempera-
ture is difficult to compute. This difficulty occurs for multi
supply point networks, time varying operational costs or
networks with heat storage tanks. For these cases, it may
be economically interesting to locally produce more power
than required to reduce global costs. The supply temper-
ature may be temporary higher than supposed to achieve
better global efficiencies. Furthermore, the combinatorial
complexity is never taken into account by considering each
production site as a single global production unit, instead
of considering each individual unit in the system.

In this paper a new approach is presented, based on
predictive control principle depicted in Clarke et al. (1987)
and Maciejowski (2002). This approach aims to be quite
versatile and could be apply to various kinds of district
networks. It aims also to be robust against load prediction
errors and model uncertainties. The idea is to compute a
suitable hierarchical predictive control stratgey. In a first
step (section 2), a global predictive control law is defined
to compute the global amount of energy to be produced
by each production site. In the second stage (section 3),
this energy is dispatched between the production units of
each site by a local predictive law. Due to the complexity
of the system, an exact solution of the on line optimization
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problems to be solved in the predictive control strategy is
untracatble, and metaheuristic optimization methods are
used. The global law is computed by a Particle Swarm
Optimization (PSO) method whereas the local law is
computed by ant colony and genetic algorithm. Numerical
results exhibit more than satisfactory results and prove
the viability of the approach.

2. GLOBAL PARTICLE SWARM OPTIMIZATION
BASED PREDICTIVE CONTROL LAW

2.1 District heating networks modeling

A district heating network is depicted in figure 1. It is
a part of a more general district heating network which
has been reported in Sandou et al. (2004). It is made of
two main subnetworks which are interconnected with the
help of two valves. The main components which have to
be modeled are the producers, the energy supply network
made of pipes, pumps and nodes, and consumers.
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Fig. 1. District heating network benchmark

Producers A production site s is globally modeled by
a characteristic, identified from technical data. At this
stage, the different production units of the site are not
individually considered. For hour n, production costs can
be derived from produced thermal power Qs

n:

cs
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s
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where λ is a weighting factor penalizing the control incre-
ments, and globally models the dynamics of production
units. Coefficients as

i are technical data which are usually
identified from experiments by a least square method.

The thermal power given to the primary or distribution
network is related to network temperatures by:

Qs
n = cp · m · (Ts − Tr) (2)

where m[kg.s−1] is the mass flow in the energy supply
network, Ts(K) the supply temperature, Tr(K) the return

temperature in primary network and cp[J.kg−1.K−1] the
specific heat of water.
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Fig. 2. Notations for pipes modeling

Energy supply network The energy supply network is
concerned with pipes, valves, nodes and pumps. Notations
for pipe modeling are given in figure 2.

Mechanical losses in pipes can be expressed by:

Hout = Hin − Zp · m2
p (3)

with mp[kg.s−1] the mass flow in pipe, Hin (resp. Hout) [m]
the pressure at the beginning (resp. the end) of the pipe,
and Zp(m.kg−2.s2) the friction coefficient. For a valve, this
coefficient becomes Zp/d, where d is the opening degree of
the valve (from 0 for a closed valve to 1 for an open one)
which is a control input of the system.

The thermal energy propagation in pipes can then be
modeled by a partial differential equation:

∂T

∂t
(x, t) +

mp(t)

πρR2
p

∂T

∂x
(x, t) +

2µp

cpρRp
(T (x, t) − T0) = 0 (4)

To counterbalance mechanical losses in pipes, pumps are
installed in the network leading to an increase in pressure:

∆H = b2(m
ω0

ω
)2 + b1m

ω0

ω
+ b0 (5)

with m[kg.s−1] is the mass flow through the pump,
ω[rad.s−1] its rotation speed and ω0 its nominal rotation
speed. Coefficients bi are obtained from technical data.

Finally, nodes in the network are easily modeled using
mass flow balance equations and energy balance equations.

Consumers Secondary networks of consumers are con-
nected to the primary network by way of heat exchangers.
Notations are those of figure 3.
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Fig. 3. Notations for consumers modeling
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The following equation is the classical equation for a
counter flow heat exchanger with S[m2] the surface of the
heat exchanger, and e[W.K−1.m−2] its efficiency:

Qc = eS
(Th,in − Tc,out) − (Th,out − Tc,in)

ln(Th,in − Tc,out) − ln(Th,out − Tc,in)
(6)

Assuming no thermal energy loss between primary and sec-
ondary networks, the thermal power given by the primary
network can be also expressed by:

Qc = cpmh(Th,in − Th,out) (7)

Qc = cpmc(Tc,out − Tc,in) (8)

Assuming that mc and Tc,out are given, and that mass flow
mh is determined by the opening degree of the valve, then
Tc,in, Qc and Th,out can be computed from Th,in. Qc is
an increasing function of mh: the maximal thermal power
which can be given to a consumer is obtained for mh = ms.
Consequently, the given power is finally expressed by:

Qc = min(Qdem, Qmax) (9)

where Qdem is the heat demand of the consumer, and Qmax

is the maximum power that can be given by the primary
network. Qmax is computed by solving the system made
of 6, 7 and 8, in the particular case mh = ms.

2.2 Receding horizon based control of district heating
networks

Open loop and optimization Consider a district heat-
ing network, with S production sites, V valves and C
consumers. For simplicity, rotation speeds of pumps are
supposed to be constant. The open loop control law of the
whole system can be computed from the solution of the
optimization problem:

min

S∑

n=1

K∑

k=1

cs
prod(Q

s
n, Qs

n−1)

{Qs
n, dv

n},
n ∈ {1, . . . , N}
s ∈ {1, . . . , S},
v ∈ {1, . . . , V }

subject to physical constraints of (2), (3), (4), (5), (9)

(10)

where, Qs
n is the thermal power produced by site s during

time interval n and dv
n is the opening degree of valve v

during time interval n. N is the total number of considered
time intervals.

Constraints are also the satisfaction of technical con-
straints (pressures and mass flows in the energy sup-
ply network) and the fulfilling of consumers demands
Qc

dem,n, c ∈ {1, . . . , C}. To compute these constraints, one
has to simulate the whole network. From the modeling
details presented in the previous section, this implies the
numerical solution of non linear algebraic systems of equa-
tions for the mass flow and pressure computation and the
simulation of systems of partial differential equations for
the thermal energy propagation part.

Finally, the solution of this problem is hard to be solved
with a classical deterministic method. A PSO method is
then chosen as a solution algorithm.

Closed loop control The open loop computed by the
solution of (10) cannot be directly applied to the real
system. Indeed, consumers demands Qc

dem,n are not known
in advance, but only predicted. To get a robust behavior
of the system, one has to control the system in a closed
loop framework. The real control inputs are the supply
temperatures of producers. These values are bounded
due to physical limitations of steam boilers. Further,
consumers take power from the energy supply network if
temperatures are sufficiently high (if not, the consumer
demand is not fulfilled, but the behavior of the energy
supply network remains correct). An important remark is
that whatever the control strategy is employed, due to
these physical limitations, all temperatures in the network
remain in the acceptable range. In conclusion there is no
instability danger for the control law, and the receding
horizon strategy can be applied, even if a stochastic
optimization problem is used without global optimality
guarantee.

2.3 Classical PSO algorithm

Particle swarm Optimization (PSO) was firstly introduced
by Kennedy and Eberhart Kennedy and Eberhart (1995).
This optimization method is inspired by the social behav-
ior of bird flocking or fish schooling. Consider the following
optimization problem:

minx∈χf(x) (11)

P particles are moving in the search space. Each of them
has its own velocity, and is able to remember where it
has found its best performance. Each particle has some
”friends”. The following notations are used:

• xp
k (resp. vp

k): position (resp. velocity) of particle p at
iteration k;

• bp
k = argmin(f(xp

k−1), f(bp
k−1)) : best position found

by particle p until iteration k;
• V (xp

k) ⊂ {1, . . . , P} : set of ”friend particles” of
particle p at iteration k;

• gp
k = argmin(f(xj

k), j ∈ V (xp
k)) : best position found

by the friend particles of particle p until iteration k.

The particles move in the search space according to the
transition rule:

vp
k+1 = w × vp

k + c1 ⊗ (bp
k − xp

k) + c2 ⊗ (gp
k − xp

k)
xp

k+1 = xp
k + vp

k+1
(12)

where w is the inertia factor, ⊗ denotes the element wise
multiplication of vectors and c1 (resp. c2) is a random
vector whose length is the number of optimization vari-
ables, and whose components are in the range [0, c̄1] (resp.
[0, c̄2]).

The construction of the transition rule 12 is represented
in figure 4.

The choice of parameters is very important to ensure the
satisfying convergence of the algorithm. Important results
have been reported on the topic; see for instance Shi and
Eberhart (1998), Eberhart ans Shi (2000). Is beyond
the scope of the present study to present the exhaustive
description of tuning strategies (the Automatic Control
community being less enthusiastic about metaheuristics
details). Standard values, which are given in Kennedy and
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Fig. 4. Geometric representation of the transition rule

Clerc (2006) will be used: swarm size P = 10+
√

n, where
n is the number of optimization variables, w = 1

2·ln(2)
,

c̄1 = c̄2 = 0.5 + ln(2)

Several topologies exist for the design of the set of friend
particles. For a comprehensive study of this topic, see
Kennedy (1999). In particular, if these sets do not depend
on k, neighborhoods are said to be ”social”. This choice is
the simplest for the implementation of the algorithm and
so a social neighborhood will be used in this paper.

2.4 Numerical results

The receding horizon based control law has been applied
for the control of the district heating benchmark depicted
in figure 1. Tests have been performed for a total time
horizon of 24 or 48 hours, with a sampling time of one
hour. The prediction horizon for the optimization problem
is N = 12 hours. Thus, as the benchmark represented in
figure 1 has 2 producers and 2 valves, the optimization
problem is made of 12×(2+2) = 48 optimization variables,
which are the global production of both production sites
and the opening degrees of valves. The solution of the
optimization problem is performed in 120 seconds on a
Pentium IV, 2.5 GHz with Matlab 2007, for 50 iterations
of the PSO algorithm.

Robustness of the closed loop structure To validate the
control law, a worst case experiment has been performed.
It is assumed that all consumer demands are always
underestimated by a factor of 10%. This represents a worst
case experiment as in the real world, load error predictions
can partially compensate each other. Tests of the proposed
approach have shown that consumers demands are always
fulfilled, by using the receding horizon control structure.

Economical benefit of the receding horizon strategy In
the district heating network (figure 1), producer 1 is a
cogeneration site. Cogeneration refers to the simultaneous
production of electric and thermal powers, leading to high
global efficiencies. Briefly speaking, the main goal of the
producer is to satisfy the thermal power demand. But he
has the opportunity to use the exhaust fumes to produce
and to sold electric power. Finally, for the thermal power
point of view, the higher the price of sold electricity, the
lower the thermal power production costs. The simulation

Producer 1 Producer 2
Electricity price 24h 48h 24h 48h

40E/MWh 535 947 537 1016
0E/MWh 541 963 492 950

Fig. 5. Numerical Results: total production (in MWh)of
producers for different configurations

has been performed for different electricity prices, and
corresponding total productions over the whole horizon
(24 or 48 hours) are given in figure 5.

The price 40E/MWh corresponds approximately to the
price in France from November 1st to March 31st, whereas
the null price corresponds to the price from April 1st to
October 31st.

Results show that the higher the price, the higher the
production of the cogeneration site. The control law uses
the interconnection valves to make the extra amount
of power to pass from subnetwork 1 to subnetwork 2.
Although obvious, the possibility is not used in classical
district heating networks: controls laws only use local
information, and the interconnections are often viewed as
safety means, and are rarely used. The receding horizon
law is able to take into account the whole technological
string ”production - distribution - consumption” and the
whole system through the solution of the optimization
problem 10. The solution of this problem is made tractable
by the use of a stochastic approximated optimization
method.

Note that in the future, the price of sold electricity may
depend on the electricity market. In such a situation,
production costs would be predicted, and the closed loop
structure is also a good trend to get a robust behavior
against cost uncertainties.

3. LOCAL ANT COLONY AND GENETIC
ALGORITHM BASED PREDICTIVE CONTROL LAW

The global predictive control law compute ”optimal”
global values for the amounts of energy Qs

n to be produced
by each production site. However, this global value has to
be dispatched between the different production units of the
site. This problem refers to the so called Unit Commitment
problem. The aim of the section is to develop a predictive
control law for each decentralised production site.

3.1 Open loop control and Unit Commitment

Unit Commitment is a classical large scale mixed inte-
ger problem in power systems, which aims to compute
the optimal scheduling of several production units while
satisfying consumer demand and technical constraints:

min
{uk

n,Qk
n}

m+N−1∑

n=m

(
K∑

k=1

(
ck
prod(Q

k
n, uk

n)

+ck
on/off(uk

n, uk
n−1)

))

. (13)

N is the length of time horizon, K the number of produc-
tion units, uk

n (resp. Qk
n) the on/off status (resp. produced

power) of production unit k during time interval n. Pro-
duction costs and start up and shut down costs are defined
by:
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





ck
prod(Q

k
n, uk

n) = αk
1Qk

n + αk
0uk

n

ck
on/off (uk

n, uk
n−1) =

(
ck
onuk

n(1 − uk
n−1)

+ck
offuk

n−1(1 − uk
n)

)
. (14)

Integer variables are on/off status of production units (uk
n),

and real variables are produced powers (Qk
n). Coefficient

αk
i , ck

on and ck
off are technical data. The usual restriction

comes from:

• capacity constraints

Qk
minu

k
n ≤ Qk

n ≤ Qk
maxu

k
n,

∀n ∈ {m, . . . , m + N − 1} , ∀k ∈ {1, . . . , K} ,
(15)

• distribution network demand satisfaction (remember
that those values are computed by the PSO global
predictive law of section 2)

K∑

k=1

Qk
n ≥ Q̂dem

n , ∀n ∈ {m, . . . , m + N − 1} , (16)

• time up and time down constraints

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• ramp constraints
∣
∣Qk

n − Qk
n−1

∣
∣ ≤ ∆Qk,

∀n ∈ {m, . . . , m + N − 1} , ∀k ∈ {1, . . . , K} .
(18)

Discrete dynamics on the system are expressed through
logical equations (17) and continuous dynamics are stated
as power increment limitations (18).

3.2 Closed loop control

For optimisation, the distribution network demand (com-
puted by the PSO global law) is supposed to be perfectly
known over the whole time horizon: the computation of
the optimal scheduling is a reference trajectory for integer
and real control inputs. However, prediction errors of the
consumer load may lead to prediction errors on the dis-
tribution network demand and so to a possible deficient
behavior. Thus, a closed loop control is also required for
the production sites: the problem refers to the control of a
hybrid system. As in section 2 for the computation of the
distribution network demand, a convenient way to extend
optimisation results in a closed loop framework is the
receding horizon. The idea is still to compute the optimal
scheduling on time interval [m, m + N − 1], considering

predicted distribution network demand Q̂dem
n (in fact, Qs

n
computed by the global control law). The first values
of integer scheduling (on/off status of production units)
are applied to the system. Simultaneously, real variables
(amounts of produced energy) are slightly updated so as
to fulfill, if possible, the real demand at time m, Qdem

m .
Production unit local regulations are assumed to be per-
fect: if production unit k has produced Qk

m−1 during time
interval m−1, it can produce, if still switched on, whatever
power in the range [max(Qk

m−1−∆Qk, Qk
min), min(Qk

m−1+

∆Qk, Qk
max] during time interval m. The scheduling algo-

rithm will now be detailed.

3.3 Optimization procedure

Optimization methods analysis and proposition of a well
suited algorithm Numerous methods have been applied
to solve Unit Commitment and related problems such
as facility location. They are listed for instance in Sen
and Kothari (1998) and are here briefly depicted. Exact
solution methods (exhaustive enumeration, Branch and
Bound Chen and Wang (1993), dynamic programming
Ouyang and Shahidehpour (1991)) have been tested.
These methods suffer from combinatorial complexity: an
efficient approximated method is required. Deterministic
approximated methods can be used (priority lists in Senjyu
et al. (2004)). But, due to numerous constraints, they
are often strongly suboptimal. Constraints are explicitly
considered using Lagrangian relaxation Zhai and Guan,
(2002). Coupling constraints are relaxed, and the problem
is divided into several optimisation problems (one per
production unit). However, no guarantee can be given on
the actual optimality. Further, an iterative procedure has
to be performed: solution of the optimisation problems
and updating of Lagrange multipliers. The update can
be made with genetic algorithms Chen et al. (2000)
or subgradient methods Dotzauer et al. (1999). For
large scale cases, metaheuristics are interesting methods:
simulated annealing in Yin Wa Wong (1998), tabu search
in Rajan and Mohan (2004) and genetic algorithms in
Swarup and Yamashiro (2002). No guarantee can be given
on the actual optimality of the solution, but an often
suitable solution with low computation times can be found.
One of the problems of these methods is the handling
of constraints. The algorithm ”moves” randomly in the
search space, and so, there is no guarantee that the final
solution is in the feasible set. This is particularly the case
for Unit Commitment, as the feasible set is much smaller
than the search space.

Considering these arguments, ant colony appears to be an
efficient way to solve this kind of problems, as it is able to
find near optimal solutions with an explicit handling of all
constraints. Indeed, ant colony is a constructive stochastic
algorithm and solutions are explicitly built as feasible ones.
From this initial population of ”medium quality solutions”
quickly computed by ant colony, a feasibility criterion
is defined. Genetic algorithm is then used to intensively
explore the search space, with an implicit management of
problem constraints. Indeed, due to a positive feedback in
the ant colony algorithm formulation, it may converge to
a local minimum. An intensive exploration of the search
space is thus required to circumvent this issue, and genetic
algorithm, which is an efficient stochastic algorithm for
unconstrained problems is used. Note that the algorithm
supposes that real variables are quickly computed: the
developed cooperative algorithm is also hybridized with
an exact solution algorithm for real variables. Finally,
this method allows simultaneously using the interesting
properties of ant colony (explicitly handling of constraints)
and of genetic algorithm (deep exploration of the search
space, and so high quality of the solution). The general
synopsis of the method is depicted on figure 6.

Ant colony optimization for the Unit Commitment Ant
colony optimization was firstly introduced by Marco
Dorigo Dorigo et al. (1996) and Dorigi and Gambardella
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Fig. 6. Cooperative algorithm synopsis.

(1997). It is based on the way ants are looking for food
(see figure 7).

Fig. 7. Ants looking for food.

Suppose, that ants have managed to find food. Each
particular ant does not know where to go. It only chooses
its path depending on the pheromone trail which has
been laid on the ground by previous ants. If the path
of pheromone is broken because of an obstacle, first ants
randomly choose their path. But, the ants which have
chosen the shortest path will arrive first: the trail of
pheromone in the shortest path is increasing faster than
in the longest path. The positive feedback structure makes
all ants finally choose the shortest path at the end of the
experience.

The Unit Commitment problem can be formulated as a
graph exploration problem as shown in figure 8, as in
previous work Sandou et al. (2004).

Fig. 8. Graph structure for Unit Commitment

The nodes of the graph represent all the possible states
of production system, for all time intervals: (u1

n, . . . , uK
n ).

The aim is to go from one of the possible states at time
m, to one of the possible states at time m + N − 1, while
satisfying all the constraints and minimizing global costs
defined in equation (13). For each edge (u1

n, . . . , uK
n ) →

(u1
n+1, . . . , u

K
n+1) of the graph, start-up and shut-down

costs are added. Production costs are also associated to
nodes.

During iteration t of the algorithm, F ants walk on this
graph. If an ant f has reached state i = (u1

n, . . . , uK
n ),

the probability that it chooses the next state j =
(u1

n+1, . . . , u
K
n+1) is defined by the probabilistic law:

p
(f)
i (j) =

ηα
ijτij(t)

β

∑

m∈Jf (i)

ηα
imτim(t)β

. (19)

• τij(t) is the pheromone trail on edge i = (u1
n, . . . , uK

n ) →
j = (u1

n+1, . . . , u
K
n+1) during iteration t. Its value

depends on the results of previous ants.
• ηij is the attractiveness. It refers to the ” local choice

”. When next node has to be chosen, the best local
candidate is the node for which the gap between the
maximum produced power and the predicted demand
is the smallest. It is not sure that this is the best
”global” choice, as the security margin is quite low.
For more details, see previous work Sandou et al.
(2004).

• α and β are weighting factors.
• Jf (i) is the feasible set. This feasible set contains a

priori all 2K states. But, those states which do not
satisfy time up and time down constraints, and those
states which do not satisfy consumers’ demands, are
to be removed. Note that, even if produced powers are
not known yet, it is possible to check the possibility
of consumer’s demand satisfaction with the equation:

K∑

k=1









Qk
min(1 − uk

n)+
(

min

(
Qk

max,
Qk

n + ∆Qk

))

uk
n



uk
n+1





≥ Q̂dem
n+1.

(20)

Jf (i) sets are recursively constructed for each ant, and
lead to the guarantee of the feasibility of solutions. Indeed,
these sets have to be recursively constructed, as it is
neccesary to know the number od time interval each units
have been shitched on or off for the satisfaction of time up
and time down constraints.

After the ant has completed its path, it is possible to eval-
uate the solution by solving the real optimisation problem
defined in equation (13), with fixed binary variables. Due
to the positive feedback of the algorithm the past mistakes
have to be forgotten to avoid premature convergence. This
is done by the pheromone evaporation. The pheromone
trail is updated:

τij(t + 1) = (1 − ρ)τij(t) + ∆τij(t) (21)

ρ is the evaporation coefficient. This coefficient is viewed as
an analogy with natural evaporation. ∆τij is the updating
coefficient, depending on the results of ants in iteration t.
An elitism algorithm is used: only the best ant is allowed
to lay some pheromone on each edge it has used. The
ant evaluation supposes the computation of real variables,
which will now be depicted.

Computation of real variables Binary variables are com-
puted by ant colony. For each feasible sequence uk

n the cor-
responding real variables Qk

n are computed as the solution
of:
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arg min
{Qk

n}
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)
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1Qk

nuk
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)

(22)

As there are no temporally coupling constraints anymore
(they have been guaranteed by the constructive ant colony
algorithm), the problem can be divided into N successive
optimisation problems:

min
{Qk

n,k=1,...,K}

(
K∑

k=1

αk
1Qk

nuk
n

)

subject to







K∑

k=1

Qk
n ≥ Q̂dem

n

Qk
minu

k
n ≤ Qk

n

Qk
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(
Qk

min(1 − uk
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min(Qk
max, Q

k
n−1 + ∆Qk)

)
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n−1

)

︸ ︷︷ ︸

=Qk
max

(n)

uk
n

(23)

Without loss of generality, consider that α1
1 ≤ α2

1 ≤
. . . ≤ αK

1 . Then, the optimal solution of problem (22)
is to produce as much as possible with low-cost units,
while satisfying capacity constraints. Then, the following
recursive algorithm is performed:





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(24)

Feasibility criterion To compute a feasibility criterion
one has just to know a feasible solution. If the cost of this
feasible known solution is cf , the feasibility criterion can
be:

min{
uk

n, Qk
n

}

n = 1, · · · , N

k = 1, . . . , K


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B
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n, Qk

n

})






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(25)

where one can distinguish:

• ǫ is a small positive real,
• h

({
uk

n, Qk
n

})
is a penalty function for non feasible

solutions
{
uk

n, Qk
n

}
,

• B
({

uk
n, Qk

n

})
is a boolean function with value 1 for

non feasible solutions and 0 for feasible ones.

With this criterion, all infeasible solutions will have a
higher cost than the cost of the feasible known solution.
For feasible solutions, the penalty is null, and the initial
cost function is just considered. Finally, any unconstrained
optimisation algorithm can be used to solve the problem,
the constraints being implicitly taken into account. In this
study, the known feasible solution is the best solution
found by ant colony optimization.

Knowledge based genetic algorithm A knowledge based
genetic algorithm, similar to the one developed in current
work Sandou et al. (2008) is used. The general flow chart
of a genetic algorithm is called up in figure 9.

Fig. 9. Flow chart of a genetic algorithm

The main idea is to make a population of potential so-
lutions evolves to create new solutions by using stochas-
tic (or ”genetic”) operators. In this cooperative method,
the initial population is made of all feasible solutions
computed by ant colony optimization. Classical operators
are crossing-over operator and mutation operator. For
the crossing over operation, two potential solutions are
randomly chosen in the population. They randomly merge
their variables (or ”genes”) to create two new solutions.
The mutation operation is the random selection of a poten-
tial solution and of one of its genes. This gene is changed to
another. The aim of this operator is to keep the population
genetic diversity.

The selection operator is an operator which aims to
choose a new population from parents and children. This
operation is made using the roulette wheel selection. After
having computed the fitness value of each individual in the
population, the probability of selection is proportional to
the quality of individuals.

As already explained, the ”optimal” scheduling of the
production site is computed from values computed by the
global PSO law Q̂dem

n = Qs
n on time interval [m, m+N−1].

The first values of integer scheduling uk
m are applied to the

system. Real variables are updated at time m, when real
value Qdem

m is known, using the equation (24) considering

Qdem
m instead of Q̂dem

n . These values are given to the
scheduling procedure at time m+1, for instance for the
satisfaction of ramp constraints.
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Unit Qmin Qmax ∆Q α0 α1 con coff

(MW) (MW) (MW)

1 10 40 10 25 2.6 10 2
2 10 40 10 25 7.9 10 2
3 10 40 10 25 13.1 10 2
4 10 40 10 25 18.3 10 2

Table 1. Characteristics of the benchmark ex-
ample

Case study To test the algorithm, a ”four unit” academic
case is considered for producers 1 and 2. The charac-
teristics of this case are given in table 1. A worst case
is considered: the distibution network demand, which is
computed by the global PSO predictive law is considered
to be always underestimated. For the aim of testing the
local law, the prediction error is a random value in the
range [−5%, 0%]. The time horizon is N = 24 hours. The
distribution network has a daily oscillation because the
consumers’ demands has also its global shape. Thus, the
dynamic of the system is about 24 hours and the time
horizon has to be greater: a high value has to be given to
N . The simulation is performed on a 4 day total horizon.
Results, obtained with Matlab 6.5 on a PIV 2GHz, are
given on figure 10.

Fig. 10. Simulation results

Results show that the production is very close to the
real demand, except for some peaks which have been
underestimated. The optimization of the 96 binary vari-
able problem is performed in just 25 seconds with the
developed ant colony/genetic algorithm method. Due to
the computation of successive economical near optimal
solutions and real time slight updates, global costs are very
close to global optimal costs. More precisely, a comparison
has been performed with classical MILP solver, with a
”Branch and Bound” method. It shows that the devel-
oped metaheuristic optimisation algorithm can compute a
sub-optimal solution with a mean slight increase of 0.4%
compared with the optimal solution. Furthermore, the
MILP solver is very sensitive to the problem characteristics
such as start up and shut down costs, leading to varying
computation times going from 10 seconds to 10 hours.
Finally, the algorithm has been tested for 10-unit case,
leading to satisfying results with 10 minutes computation
times, and for which MILP solver is untractable.

4. CONCLUSIONS

In this paper, metaheuristic optimization methods have
been used to define a hierarchical predictive law for the
control of district heating networks. The idea is to compute

a global law, aiming at defining global values of energy to
be produced by each production site. A local law computes
the classical Unit Commitment for each production site.
District heating networks are concerned with numerous bi-
nary variables, partial differential equations and nonlinear
algebraic equations. Due to the complexity of the corre-
sponding optimization problems which have to be solved,
the use of classical deterministic solvers is untractable. In
this paper a Particle Swarm Optimization method is used
for the global law and a cooperative method (ant colony
and genetic algorithm) is used for the local law. Numerical
results prove the viability of the approach.
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