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Abstract: The optimal swing up of a single inverted pendulum (SIP) on a cart is presented, where the 
indirect method is used to obtain the feedforward command in the swing up mode and the LQR controller 
beside the high gain observer is used to stabilize the system in the stabilizing mode. After extracting the 
optimality conditions for a dynamic system in general formulation, the necessary conditions for 
optimality are derived for a SIP using the fundamental theorem of the calculus of variations (FTCV) 
which leads to a two-point boundary value problem (TPBVP). This problem is solved for obtaining the 
optimal values of states and control. To demonstrate the applicability of proposed method, after 
simulation study, a single pendulum setup is constructed and experimental realization is presented. In 
order to complete the swing up maneuver, LQR controller is designed to stabilize the system, and the 
high gain observer is applied to estimate the link angular velocity. Finally, a comparison between 
experimental and simulation results is presented and the efficiency of proposed method to reduce the 
used effort is illustrated.   
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

1. INTRODUCTION 

Inverted pendulums are nonlinear, unstable and under-
actuated electromechanical systems widely used in linear and 
nonlinear control education and research. Generally, the 
control of inverted pendulums can be divided into two 
aspects. In the first aspect, swinging up the link or links from 
hanging position to upright state is considered. The second 
aspect is stabilizing the link or links in upright position, while 
the cart must also be homed to a reference position. For 
stabilization problem, there are numerous control techniques 
such as feedback linearization (Chen et al., 2004), adaptive 
control and fuzzy learning control (Duka et al., 2007), 
sliding-mode approach (Tsai et al., 2010), LQR controller 
(Kumar et al., 2013),  mixed H2/H∞ PID controller (Duy at 
al., 2014), fuzzy fractional order sliding mode controller 
(Bouarroudj et al., 2015), feedback linearization method for 
tracking control of constrained double inverted pendulum 
(Lari et al., 2015) and many other control algorithms. Besides 
the stabilization aspect, the swing up problem has gained 
increasing attention during the recent past. All the research 
works dealing with the swing up problem, can be divided into 
two categories: Non-optimal swing up and optimal swing up.  

As the non-optimal swing up, different methods such as 
energy based method (Astorm et al., 2000; Chatterjee et al., 
2002), smooth controllers (Astorm et al., 2008), fuzzy control 
(Wu at al., 2011), sliding mode control (Park et al., 2009; 
Wang, 2012), passivity-based control (Icaza, 2011), 
inversion-based method (Graichen et al., 2007; Gluck et al., 
2013), event-Based Control (Durand et al., 2013), integral 
back-stepping sliding mode control (Adhikary et al., 2013) 

and many other methods have been performed by different 
researchers up to now. Unlike the non-optimal methods, in 
the optimal swing up a given objective function must also be 
minimized. The approaches used to solve the optimal control 
problems (OCP) are broadly classified as either indirect or 
direct method.  

In the direct method, which is known as the “first discretize, 
then optimize” approach, at first, dynamic variables (states 
and controls) are discretized to obtain a parameter 
optimization problem. Then this problem is solved using 
different methods such as genetic algorithm, particle swarm 
optimization, and sequential quadratic programming 
approach. While, the indirect method is known as the “first 
optimize, then discretize” approach. In the indirect method, 
the optimality conditions are derived using the fundamental 
theorem of the calculus of variations which leads to a 
TPBVP. Then, discretization is used to solve the obtained 
TPBVP. So the indirect method results in the accurate 
solution of OCP, whereas by the direct method, an 
approximate solution is achieved (Nikoobin et al., 2013; 
Nikoobin et al., 2017). Most of the previous works dealing 
with optimal swing up are on the base of the direct method. 
Genetic algorithm tuned bang-bang controller (Zhao et al., 
2003), linear and nonlinear programming (Cruz et al., 2013; 
Kahvecioglu et al., 2009), iterative impulsive control (Wang 
et al., 2004) and ant colony optimization method (Ast et al., 
2009) have been reported for the optimal swing up of the 
inverted pendulum. A suboptimal nonlinear control law based 
on passivity analysis and dynamic programming has been 
presented for the Pendubot and rotary pendulum by (Oliver et 
al., 2012) in which switch control law is not required. Indirect 
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method has also been applied to solve the optimal swing up 
problem, but this method is often used for solving the time 
optimal control of SIP without experimental validation (Xu et 
al., 2001; Chernousko et al., 2007; Mason et al., 2008; 
Paoletti et al., 2011; Merakeb et al., 2013). The main 
challenge of an indirect solution of optimal control problem 
is finding the proper initial guess for the solution. Different 
methods such as homotopy continuation method (Hermant, 
2011, Nikoobin et al., 2017) have been proposed to overcome 
this problem. In this paper, the solution of the inversion based 
method is used as the initial guess of the optimal control 
method, and the problem is solved easily.  

In this paper, the general dynamic system is considered. On 
the base of the indirect method, the necessary conditions for 
optimality are derived from the FTCV. The obtained 
equations establish a TPBVP solved by the bvp4c command 
in MATLAB. In order to verify the method, a single 
pendulum setup is constructed and experimental 
implementation for both optimal and inversion-based method 
(Graichen et al., 2007) is presented. In order to complete the 
swing up maneuver, a stabilization controller is also required 
to stabilize the link in upright position. To this end, the LQR 
state feedback controller is designed to stabilize the system 
besides the high gain observer to estimate the link angular 
velocity. The paper is outlined as follows: the next section 
describes the dynamic equations and optimality conditions 
for a general dynamic system. Optimality conditions of a SIP 
are derived in Section 3. Section 4 addresses the simulation 
results for SIP. Finally, in Section 5, the experimental 
validation is presented. 

2. NECESSARY CONDITIONs FOR OPTIMALITY 

The general dynamic equation of a mechanical system can be 
described as 

( ) ( , ) ( ) ,  D q q b q q h q τ   (1) 

where nRq  is the vector of joint positions, nRq is the 

vector of joint velocities, n nR D  is the inertia matrix, 

( , ) nRb q q  is the centripetal, Coriolis and friction forces, 

( ) nRh q  describes the gravity effects and τ nR  represents 

the force vector. By defining the state vector as: 
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Equation (1) can be rewritten in state space form as 
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where  
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Optimal swing up of an inverted pendulum is an optimization 
problem which can be stated in the form of the optimal 

control problem. The goal is to swing up the pendulum from 
the hanging down to the standing up position in which a 
predefined objective function must be minimized. So, the 
optimal control problem for a dynamic system can be stated 
as follows (Hull, 1998): Find the continuous admissible 
control history 0: , m

ft t R     τ  generating the 

corresponding state trajectory 0: , n
ft t R   x  which 

minimizes the cost function 

0

( , ) ( , , )
ft

f f
t

J t L t dt  x x τ , (6) 

subject to the system dynamics 

( , )x f x τ , (7) 

the given initial condition 

0 0( )t x x , (8) 

and the prescribed final conditions 

( )f ft x x . (9) 

Here, nRx  is the state vector, mRτ  is the control vector, 

  is an acceptable region in mR , 0t  and ft  are initial and 

final time, 0x  and fx  are predefined initial and final state, 

respectively. L and   are scalar continuously differentiable 

functions in which L is the integrand of the cost function and 
  is the final state penalty term. By introducing the costate 

vector nRλ , the Hamiltonian function of the system can be 
defined as follows 

TH L  λ f . (10) 

According to the FTCV, for the optimal trajectory ( )* tx and 

( ),* tτ  there is a non-zero costate vector *( )tλ  such that the 

following conditions along the optimal solution must be 
satisfied (Hull, 1998) 
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where the symbol (*) denotes the extremals of ( )tx  and ( )tλ . 

By substituting (4) into (10) and by defining
TT T

1 2
   λ λ λ , 

the necessary condition (11) can be rewritten as follows 
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Equations (12) and (13) represents 4n equations dealing with 
states and costates respectively, and (14) leads to n equations 
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dealing with control τ . According to Pontryagin minimum 
principle, the constraint on control signal can be applied as 
follows (Korayem et al., 2009) 
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where U  and U    are the lower and upper limit of the 
control and τ  is the solution of the algebraic equation (14). 
Also for the swing up problem, there are 4n fixed boundary 
conditions as follows 

       0 0 0 0, , , .f f f ft t t t   q q q q q q q q     (16) 

By substituting the control value τ  obtained from (14) into 
(12) and (13), a set of the 4n ordinary differential equation is 
obtained which besides the 4n boundary conditions (16), 
forms a TPBVP. Finally, the derived TPBVP is solved to 
obtain 2n states and 2n costates. In the next section, the 
optimality conditions for a SIP are derived in details. 

3. DERIVING THE EQUATIONS FOR SIP 

In this section, a schematic model of SIP similar to 
experimental setup presented in section 5 is considered. This 
model consists of a link, cart, belt and one pulley. The cart is 
actuated by a motor through a belt, and the link is free to 
rotate in a vertical plane as shown in Fig. 1. 

 
Fig. 1. Schematic model of SIP. 

The dynamic equations of the system can be obtained using 
the Euler-Lagrange method. To this end, by selecting x and 
  as the generalized coordinates, their corresponding 
generalized forces become  

1 22
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where T is the motor torque, r  is the pulley radius, 
, ,r l cc c c and b are the damping coefficient of the right pulley, 

left pulley, cart and joint of the link, respectively. By defining 
the parameter u as the force exerted on the cart through the 
belt, and parameter c  as the total damping coefficient, the 
first generalized force is simplified as 1Q u cx   .  

It is assumed that the total torque produced by motor is 
transferred to the cart through belt, and by neglecting the 
pulleys mass and inertia, the kinetic and potential energies 
are obtained as follow 
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(18) 

where M  is the cart mass, m is the link mass, I is the moment 
of inertia of link about its center of mass and a is the center 
of mass of the link. Using the Euler-Lagrange equations, the 
dynamic equation for the SIP can be derived as follows 
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By defining the state vector as 

  TT

1 2 3 4 ,x x x x x x     x   (20) 

and using Eqs. (2)-(5), dynamic equation (19) can be 
rewritten in state space form as below 
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where 
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In the next step, the proper objective function must be 
chosen. The commonly used objective functions for optimal 
control problem are minimum time, minimum effort and 
minimum energy. In this paper, swinging up the link from 
pendant mode to inverted state, with minimum effort which 
leads to a smooth trajectory have been considered, so the 
performance objective is chosen as 

2

0
0.5 .

ft
J u dt   (22) 

Now, by defining the costate vector as 

 T1 2 3 4   λ  and dynamic equations in state space 

form as  T11 12 21 22f f f fF , the Hamiltonian function 

can be determined using Eqs. (10), (21) and (22) as follows 

2
1 11 2 12 3 21 4 220.5 ,H u f f f f                                   (23) 

After that, equation (11) is used to derive the equations 
dealing with optimality conditions. Differentiating the 
Hamiltonian function with respect to the costates, leads to the 
dynamic equations in state space form given in (21).  The 
costate equations are obtained by differentiating the 
Hamiltonian with respect to the states as follows 
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Then, the optimal control law is obtained from (14) by 
differentiating the Hamiltonian function with respect to 
control u. So, one can write 

 2
3 4 2

1

1
cos .u I ma ma x

A
            (25)

Finally, substituting      (25) into (21) and (24) leads to eight 
nonlinear ordinary differential equations in terms of states 
and costates. These equations with the following eight 
boundary conditions 

1 2 3 4

1 2 3 4

(0) 0, (0) 0,  (0) 0,  (0) 0,  

( ) 0, ( ) , ( ) 0,  ( ) 0,f f f f

x x x x

x t x t x t x t
   

   
 (26) 

construct a two-point boundary value problem. This problem 
can be solved using the bvp4c command in MATLAB®. 

4. SIMULATION RESULTS 

Here, using the equations derived in the previous section, the 
optimal swing up problem is solved for SIP. In order to 
compare the obtained results with a non-optimal method, the 
inversion-based feedforward control proposed recently by 
(Graichen et al., 2007) is also presented. In order to show the 
efficiency of the method, the obtained results of optimal 
swing up are compared with those obtained by the inversion-
based method.  

The SIP is considered as shown in Fig. 1. All required 
parameters are given in Table 1. The swing up problem is 
solved according to boundary conditions (26) within the time 
interval [0 ], 1.3f ft t t s  .  

For the inversion-based solution of swing up problem 
(Graichen et al., 2007), the equations of motion are 
decomposed into two dynamics: input-output dynamics and 
internal dynamics. In this case by considering the cart 
acceleration as input to the system, u x  , the model of the 
single pendulum given in Eq. (19) can be rewritten as  

 

 

 1
22 12 2 2 ,

x u

D D u b h 



   




 (27) 

Table 1. Mechanical parameters of the single pendulum. 

Parameters Values Unit 

Cart mass  M =1.02 Kg  

Link mass m=0.49 Kg  

Center of mass of link a=0.20 m 

Moment of inertia of link I=0.0056 kg.m2 

Cart viscous friction 
coefficient 

c=21.0653 N.sec/m 

link viscous friction 
coefficient 

b=0.009 N.m.sec/rad 

Pulley radius  r=0.01745 m 
 

where the first equation represents the input–output 
dynamics, and the second one forms the internal dynamic. 
According to the inversion-based feedforward control 
proposed by Graichen, the following function is constructed 
using the cosine series  

 2

1 2
1

1
cos cos ,i

if f

i tt
x p p p

t t




   
         

   
  (28)

where 1p and 2p  are free parameters. This function satisfies 

the four boundary conditions dealing with the cart trajectory 
given in (26). By substituting (28) into (27), the internal 
dynamic besides the four remained boundary conditions 
dealing with the link trajectory, constructs a TPBVP which 
can be solved to obtain the internal dynamic trajectory ( )t  

and the free parameters as 1 20.1473, 0.1537p p    .  

For optimal swing up, the TPBVP consists of (21), (24),      
(25) and (26) are solved to obtain the cart and link trajectory 
as well as the optimal control history applied to the cart.  

The angular position and velocity of link for both optimal and 
inversion-based swing up are shown in Fig. 2 and Fig. 3, 
respectively. As shown in Fig. 2 the link starts from its 
natural stable hanging position to its unstable upright inverted 
position. The linear position and velocity of cart are shown in 
Fig. 4 and Fig. 5. The cart displacement is a significant factor 
in experimental setup. For the larger cart displacement, the 
longer rail is required. As it can be seen from Fig. 4 the cart 
displacement for inversion-based method is 0.53m and for 
optimal method is 0.36m. So, the cart displacement for 
optimal swing up has reduced approximately 32% in 
comparison with inversion-based method 
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Fig. 2. Angular position of link. 

 

Fig. 3. Angular velocity of link. 

 

Fig. 4. Linear position of cart. 

 

Fig. 5. Linear velocity of cart. 

 

Fig. 6. Applied force to the cart. 

Fig. 6 shows the applied force to the cart. Using (22), the 
performance index is calculated for optimal and inversion-
based method as follows 

1.3 2

0

1.3 2

0

0.5 370.26,  

0.5 261.77.

inversion

optimal

J u dt

J u dt

 

 


  

(29)

So, the performance index for optimal swing up has reduced 
approximately 30 percent in comparison with inversion-based 
method. The experimental validation for this system is 
presented in section 5.  

5. EXPERIMENTAL VALIDATION 

5.1 Experimental setup description  

The swing up maneuver is experimentally realized with the 
single pendulum in Fig. 7 corresponding to the model 
parameters in Table 1. The cart is actuated via a motor, 
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driven by a lenze 940 series servo driver, connected to a PC 
through a network cable. The cart position is measured by a 
1024 ppr Autonics incremental rotary encoder. By using a 
ball bearing, the link is pivoted to the cart such that it can 
rotate freely in a vertical plane. Its angle is measured by a 
2048 ppr Autonics incremental rotary encoder. Also, the 
controller is implemented by the MATLAB software on a 
2.69GHz PC with sampling time 10 KHz. 

The interconnections of different parts of SIP system are 
shown in Fig. 8. The measured cart position and link angle 
are sent to the controller through Advantech PCI-1710HG 
I/O board. The motor driver is adjusted in velocity mode. 
This velocity signal is sent to the driver via I/O interface as 
the command input. Driver tries to eliminate the presence 
error between the cart velocity and the velocity command 
input via its internal PI controller.  

 

Fig. 7. Experimental setup of the single pendulum on a cart. 

 

Fig. 8. Schematic architecture of SIP setup. 

5.2 Control system design  

The control strategy of the SIP system is composed of the 
swing up control, mode switching and stabilizing control. For 
the first step, a feedforward controller obtained of the indirect 
solution of optimal control problem presented in section 4 is 
used to swing up the pendulum with minimum effort. In order 

to show the efficiency of proposed method, the results of 
optimal swing up are compared with the result of the 
inversion-based method. Since only the open-loop 
feedforward control is used for swing up mode, it is required 
to have an accurate model of the pendulum. To this end, for 
parameters estimation, different sine functions as the applied 
force on the cart are exerted on both the pendulum 
experimental setup and the pendulum dynamic equation 
given in (21) to obtain the cart position and link angular 
position as the outputs. By minimizing the error between the 
experimental setup output and the dynamic equation output, 
the estimated parameters of the pendulum given in Table 1 
are obtained.    

Since the motor driver is set to velocity mode, so the cart 
velocity will be the feedforward command in the swing up 
maneuver. This signal which must be sent to the motor driver 
is computed offline and stored in a lookup table. The used 
servo motor has a large velocity bandwidth, so it tracks the 
pre-calculated feedforward velocity command accurately.  
For the inversion based method, the first derivative of cart 
position (27) gives the cart velocity, and for the optimal 
swing up method, after solving the TPBVP obtained in 
section 3, the cart velocity can be computed as shown in Fig 
3.  

After swing up phase, an extra stabilization controller is 
needed to grab the link and hold it upright. The stabilization 
controller is addressed in the following subsection.  

5.3 Controller and observer design 

Just as the link reaches the neighborhood of the inverted 
status, the controller is switched from open-loop feedforward 
control to the closed loop feedback control. Here the linear 
quadratic regulator (LQR) is used to regulate the system 
about the upright equilibrium point. This method has been 
used to stabilize the inverted pendulum systems frequently 
(Kumar et al., 2013). Since the motor driver works in velocity 
mode, so the SIP input changes from force to cart 
acceleration. In order to design the linear state-feedback 
controller, a linearized model of SIP equations is required. To 
this end, after rewriting the SIP equation (19), with cart 
acceleration as input, the dynamic equations of cart and link 
are decoupled as 

2

,
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(30)

Then, the linearized model about the unstable equilibrium 
point can be derives as follows 
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where 
T

x x     x   denotes the state vector and 

 Ty x   denotes the output vector. Now, one can write 

the structure of linear state feedback controller as 

TT
1 2 3 4 ,u k k k k x x         k x  (32)

which minimizes the performance index  

T T

0
,J u u dt


    x Qx R (33)

where R and Q are symmetric and R>0, Q  0. Here by 
choosing R=0.1 and Q=diag(9,9,3,3), the controller gain 
using the lqr command in MATLAB® can be calculated as 
kT= [ -9.48  -14.14   66.63   11.81].  

In the experimental setup, all the state variables are not 
available. In fact, only two encoders are used to measure the 
cart position, x, and the pendulum angle, θ. In the other word, 
the cart velocity and the pendulum angular velocity are not 
immediately available for the controller law. Here, a high 
gain state observer is designed to estimate the required states. 
This observer is simple in design and provides an accurate 
estimation of all the states in both swing up and stabilization 
phases. Consider the following system 

  ,
,

 



y Ay g w,u

w cy


 (34)

where  ,A c  is observable, the observer equation is 

   ˆ ˆ ˆ, ,   y Ay g w u H w cy  (35)

where for robustness the gain H  must be large enough 
(Vasiljevic et al., 2006). By using acceleration signal as 
input, the dynamics equations of cart and link decoupled 
from each other as seen in (31). So, two observers can be 
designed to estimate the cart velocity and pendulum angular 
velocity, separately. On the other hand, via the done tests, it 
is clearly seen that the motor tracks the velocity command 
input accurately, so the cart velocity can be obtained by 
integrating of controller output. Therefore the observer 
design procedure is reduced to estimate only the link angular 
velocity. Using (31), the dynamic equation of link can be 
written as below  
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 (36)

This equation is in the form of the (34), therefore by using 
(35), the observer equation can be defined as follow 
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where the observer gain H is tuned as follows 

1

1 2
2
2

,  2,  3,  0.005.
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The parameters 1 , 2  and   are obtained by trial and error. 

The pole placement approach could have been used, based on 
the reduced order dynamics given in (36). Figure 9 shows the 
observer performance. There are some mismatches in 
transient that can be also due to the observer tuning. 

The final step to complete the control system design is 
selecting a proper criterion to switch from swing up 
controller to stabilization controller. These conditions are 
considered as follows: 

0.5 ,

2.5 / sec.

rad

rad








 (39)

In the following, experimental tests are performed in two 
steps. At first step, the pendulum stabilization is done, and 
then swing up maneuver is presented.  

5.4 Pendulum stabilization 

This test is performed to verify the performance of the state 
feedback controller and observer. In this experiment, the link 
is started from the inverted position and the controller 
stabilizes it. To investigate the observer performance, the link 
angular velocity obtained by differentiating the link angular 
position after pre and post filtering besides the estimated link 
angular velocity by the observer are shown in Fig. 9. As it 
can be seen, the observer is able to estimate the angular 
velocity of the link as well.  
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Fig. 9. Differentiated angular position and estimated angular 
velocity.  
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The position and velocity of cart and link are shown in Fig. 
10 - Fig. 13. It is observed from Fig. 10, the deviation of 

0.01 m  is maintained after 3.5 seconds. As it can be seen 
from Fig. 12, the link is held in upright position with 

0.02 rad  deviation after 3 seconds. 

 

Fig. 10. Cart position in upright position. 

 

Fig. 11. Cart velocity in upright position. 

 

Fig. 12. Link angle in upright position. 

 

Fig. 13. Link velocity in upright position. 

5.5 Pendulum swing up and stabilization  

In this part, the cart velocities obtained in section 4 with 
optimal control method and inversion based method are used 
to swing up the pendulum. As the link reaches the 
neighborhood of the inverted status, the controller is switched 
from open-loop feedforward control to the closed loop 
feedback control. After swinging up mode, the observer and 
controller tuned in the previous test are used to stabilize the 
pendulum. The switching time between two controllers for 
the inversion-based method is obtained to be 0.96s and for 
the optimal method is obtained to be 0.9s. 

The snapshots of the optimal swing up maneuver in twenty 
sequences with time step 0.065 sec are shown in Fig. 14. At 
first frame, the link and cart are at the reference point, and in 
the last frame, the link reaches upright position and the cart 
returns to its initial position. The simulation and experimental 
results of inversion-based swing up and optimal swing up are 
shown in Fig. 15 and Fig. 16 respectively. The switching time 
in which feedforward controller switches to stabilizing 
controller is also shown in these figures. As it can be seen 
from these figures, the experimental results are very close to 
the simulation results. 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

 

Fig. 14. Snapshots of the optimal swing up maneuver. 

 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     69 

 

     

 

By measuring the motor current and multiplying it by the 
motor torque constant, the torque produced by the motor can 
be calculated. Dividing the obtained torque by radius of the 
pulley gives the applied force to the cart. The force exerted 
on the cart obtained of simulation and experimental results 
for inversion based swing up and optimal swing up beside the 
switching time are shown in Fig. 17 and Fig. 18, respectively. 

 

Fig. 15. Link angle for inversion-based swing up. 

 

Fig. 16. Link angle for optimal swing up. 

In order to compare the objective function arising from the 
two different swing up methods, the following performance 
index can be defined.  

2 1.3
2

0

0.5  ,t
m

k
J i dt

r
   
    (40)

where tk  is motor torque constant which is equal to 

0.8 .N m A , r is the radius of the pulley and mi  is measured 

current. Since the measured current is often a noisy signal, 

the swing up test is done for eight times. The performance 
indices obtained of optimal swing up and inversion based 
swing up for eight tests are listed in the first and second 
column of Table 2. Table 2 shows that the values of the 
performance index for all eight tests are reduced by using the 
optimal swing up strategy. The mean value of the first 
column is 304.8 and the mean value of the second column is 
361.5. The results are summarized in Table 3. From the 
experimental results, the performance index for optimal 
swing up has reduced approximately 15.6 percent in 
comparison with the inversion-based method. For the 
inversion-based method, the error percent between the 
experimental and simulation is 2.4% and for the optimal 
method, this error is 14% which shows the greater sensitivity 
of the proposed method in comparison with inversion-based 
one. As a future work the robust optimal trajectory planning 
approach (Boscariol et al., 2016) can improve the robustness 
of the proposed method.  

 

Fig. 17. Experimental and simulated force for inversion-
based swing up. 

 

Fig. 18. Experimental and simulated force for optimal swing 
up. 
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Table 3 indicates a greater sensibility of the proposed control 
approach than of the inversion-based one; the experimental 
validation shows that the performances are degraded of 14% 
compared to 2.4% performance degradation for the inversion-
based method. The work can be improved by a robustness 
analysis of the control solution. 

Table 2. Performance indices obtained from conducted. 
Experiments. 

Optimal method 
Inversion based 

method 

310.45 370.09 

311.04 369.05 

305.80 360.69 

302.01 360.63 

304.13 361.44 

304.03 359.45 

300.85 356.15 

300.57 354.47 

Table 3. The reduction and error percent of conducted 
experiments. 

Performance 
index 

Inversion 
based 

method 

Optimal 
method 

Reduction 
percent 

experimental 361.5 304.8 15.6% 

simulation 370.3 261.8 29.3% 

Error percent 2.4% 14%  

6. CONCLUSION 

In this paper, swing up of SIP with minimum effort is 
considered. To this end, the optimal swing up is formulated 
as the optimal control problem. To solve it the indirect 
approach based on FTCV is used that leads to a TPBVP 
solved numerically with the MATLAB function bvp4c. From 
the simulation results for the SIP, approximately 30% 
reduction in the used effort is observed in comparison with 
the inversion-based method. In order to verify the method 
experimentally, an experimental SIP is constructed. However, 
the experimental realization of swing up needs the 
stabilization of the SIP in the upright position. To this end, 
the LQR state feedback controller is designed to stabilize the 
system besides the high gain observer to estimate the link 
angular velocity. In the complete swing up maneuver, the 
feedforward control is used to steer the pendulum from 
pendant position to the neighborhood of upright position, and 
the designed LQR regulator is used to hold the pendulum in 
the inverted state. Finally, the swing up maneuver is 
performed several times, and the performance index is 
obtained by measuring the motor current in each test. It is 
shown that the performance index of optimal swing up in 
comparison with inversion based swing up is reduced 29.3% 
in simulation and 15.6% in experiments.    
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