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Abstract: In this paper, a new state adaptive optimal nonlinear control is presented for the
realization of the trajectory tracking of nonlinear affine-in control systems with unknown internal
dynamics and disturbances. This proposed optimal controller which is developed in four steps
is on the basis of a L2 norm prescribed to minimize the trajectory tracking error between the
desired state reference and its state feedback, and a time-delay estimation technique used for
the estimation of the nonlinear unknown internal dynamics and disturbances. Because of the
application of the time-delay estimation technique, the entire proposed controller has both the
adaptive and optimal characteristics. With the systems state feedback, the proposed controller
which doesn’t require any knowledge of nonlinear internal dynamics and disturbances ensures
the state trajectory tracking. Finally, to validate and demonstrate the performance of this
proposed method, a satellite numerical example with comparisons to classical Proportional-
Integral-Derivative Controller is used to illustrate the proposed controller performance and
effectiveness.
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1. INTRODUCTION

The trajectory tracking control of nonlinear systems under
state or output feedback have been the topics of consid-
erable interests, and are now established hot fields during
last recent years (Dinh et al. (2012); Zargarzadeh et al.
(2012)). The design of the proposed trajectory tracking
control which can realize one side the stabilization or
trajectory tracking of a pre-defined trajectory reference of
a nonlinear systems, but also the other side to realize the
minimization of a prescribed performance index is difficult,
even when the considered nonlinear system dynamics are
completely known and without disturbance. And the work
is more limited and challenging when the considered non-
linear systems are with unknown internal dynamics and
disturbances.

Traditionally, the optimal control of linear systems which
is accompanied by quadratic cost functions can be realized

by resolving the well-known Riccati Equation (RE). To
extend the linear optimal control to nonlinear systems, the
State Dependent Riccati Equation (SDRE) was proposed
in (Shamma et Cloutier (2003)) under strict constraints
and required full knowledge of the controlled system dy-
namics. For the optimal control of nonlinear systems which
is in contrast to linear systems, with partially unknown
internal dynamics are not adequately addressed, since
the Hamilton-Jacobi-Bellman (HJB) equation which don’t
have a closed-form solution is required (Zargarzadeh et
al. (2012)). These problems becomes more challenging
when the nonlinear systems internal dynamics becomes
completely uncertain (Dinh et al. (2012); Vrabie et Lewis
(2009)), and becomes the study scopes of present paper.

For known dynamic nonlinear systems to solve HJB equa-
tions, Riccati Equation (RE), and Algebraic Riccati Equa-
tion, are more difficult and complicated with comparison
to linear systems to solve their corresponding HJB, RE, or
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ARE. And the resolution becomes impractical when their
system dynamics present uncertain or unknown dynam-
ics. Recently, online adaptive approximation-based opti-
mal control which refers to an online approximator based
Adaptive Critic Designs is proposed in (Vrabie et Lewis
(2009)). While in (Zargarzadeh et al. (2012)), an optimal
adaptive control is proposed for Multi-Input Multi-Output
nonlinear systems in strict feedback form with uncertain
internal dynamics but without disturbances. The optimal
adaptive feedback scheme is introduced for the affine non-
linear systems to estimate the solution of HJB equation
online which becomes the optimal feedback control input
for the uncertain closed-loop nonlinear system.

Recently, many various nonlinear systems and methods
are discussed in adaptive control world(Tao and Koko-
tovic (1996)). Nonlinear systems in form of strick feedback
in a variety of ways and their stability is studied using
the normal Backstepping scheme without any optimality
mechanism. The introduction of an inverse optimal control
for a strict feedback systems which is composed of an
associated cost function based control law is considered in
(Li and Krstic (1997)). While in many cases where their
systems dynamics are unknown or sometimes with distur-
bances, the control of unknown strick feedback systems
need to use the adaptive neural-network based schemes
to approximate their uncertain dynamics (Zhang et al.
(2011); Zargarzadeh et al. (2012); Kim et YOO (2014)).
And similarly, a direct dynamic programming (DDP) ap-
proach is developed for the nearly optimal tracking control
of affine nonlinear systems whose internal dynamics are
estimated by an online approximator.

Thus in our previous works, a composed adaptive con-
troller which is based on a recursive model free stabiliza-
tion sub-controller (RMFSSC) and a recursive uncertain
dynamic compensation sub-controller (RUDCSC) is pro-
posed for nonlinear systems in (Wang et al. (2013)). The
first sub-controller of RMFSSC is a recursive model free
controller which is developed and based on the theory
of Piecewise-Continuous Systems. These PCS are a par-
ticular class of hybrid systems with autonomous switch-
ings and controlled impulses (Koncar and Vasseur (2003);
Wang et al. (2010, 2012, 2013)). With the application of
this referred PCS theory, piecewise-continuous controllers
were firstly developed, enabling sampled trajectory track-
ing of linear systems with full state or sampled and delayed
output (Koncar and Vasseur (2003); Wang et al. (2010,
2012, 2013)), and can be also used in state estimation or
prediction (Wang et al. (2012, 2013, 2016, 2015)). Then for
the improving trajectory tracking performance, a derived
piecewise-continuous controller and recursive model free
controller were proposed in (Wang et al. (2012, 2013)).
Unfortunately, this referred proposed RMFSSC is defined
without any prescribed cost function to be minimized and
are not a model-free type trajectory tracking controller.

Therefore in this paper for a general class nonlinear
systems with unknown internal dynamics and distur-
bances, an Adaptive Optimal trajectory tracking Con-
troller (AOC) which is developed based on a ∥·∥ prescribed
to minimize a trajectory tracking error and a time-delay
estimation technique based unknown nonlinear systems
dynamics estimations is proposed. Reminding that this
proposed controller which is characterized of model-free

and optimal type has simple structure and can be imple-
mented easily in real-time application systems.

In real-time applications, an ideal case without any distur-
bances and systems variations don’t exist. The presenting
disturbance and variation need to be compensated for
better trajectory tracking performance. The application
of the time delay estimation technique is applied for this
objective. And with the proposed AOC the entire method
could provide good trajectory tracking performance.

The following of this paper is organized as follows: the
problem statement and control objective of state feedback
based trajectory tracking of nonlinear affine in control
systems with unknown internal dynamics and disturbances
is given in Section 2. In Section 3, the four steps design
method of AOC controller is introduced. Then in Section 4
based on the proposed approach and compared with PID
control, a satellite based numerical example is tested to
validate the proposed method performance and robust-
ness. Finally it is followed by some conclusion discussions
in Section 5.

2. PROBLEM STATEMENT AND CONTROL
OBJECTIVE

In this paper, the following defined non-linear affine in
control systems with unknown dynamics and disturbances
is considered as follows

ẋ(t) = f(x(t), t)) + g(x(t), t)u(t) (1)

where x(t) ∈ ℜn is the system state with an initial
condition x(0) = x0, and u(t) ∈ ℜm is the system input
signal.

The system corresponding output is assumed as in the
following form of state feedback y(t) = x(t), equal to the
system state which is measurable and accessible.

And more importantly, it is supposed that the above
non-linear system internal dynamic and disturbance of
f(x(t), t)) is assumed to be continuous and unknown, and
the controlled continuous functions of g(x(t), t) ∈ Rn×m is
supposed to be known. Noting that the referred g(x(t), t) ∈
Rn×m can be also defined as unknown without loss of
generality.

Thus, the control objective of this paper is to realize a
feasible trajectory tracking controller which ensures the
following defined trajectory tracking error trends to zero

lim
t→∞

(
ex(t) = cx(t)− x(t)

)
→ 0 (2)

where cx(t) is the desired state reference and supposed to
be differentiable. In the case of the desired state reference
discontinuous, a smoother filter can be added to remove
these discontinuities.

For simplification aim, the notation of ċx(t) = dcx(t)
dt is

introduced to represent the derivative of cx(t).

3. STATE FEEDBACK ADAPTIVE OPTIMAL
TRAJECTORY TRACKING CONTROL

For the previous considered system, this section describes
the development of the referred state feedback Adaptive
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Optimal trajectory tracking Controller (AOC) which is
based on the following four steps:

In first step: with a prescribed ∥cdot∥ norm based deriva-
tive state trajectory tracking error cost function, a mul-
ti optimal derivative state trajectory tracking controller
(ODSTC) is designed;

In second step: to remove the trajectory tracking error
of state reference, an adjusted optimal state trajectory
tracking controller (AOSTTC) is proposed on the earlier
ODSTC;

In third step: to estimate the unknown internal dynamics
with disturbances appeared in ODSTC and AOSTTC, a
time-delayed based estimation (TDE) techniques is pro-
posed to estimate the nonlinear systems unknown internal
dynamics; This TDE technique has a very simple controller
structure and can be implemented easily in the real world;

And in final step: with the referred AOSTTC and TDE,
the entire AOC controller for the unknown nonlinear dy-
namic systems with disturbance is developed completely.

3.1 First Step: multi-optimal derivative state trajectory
tracking controller Design

The control objective in this subsection is to propose
an optimal state derivative trajectory tracking controller
which ensures the following trajectory tracking error
trends to zero

eẋ(t) = ċx(t)− ẋ(t)

= ċx(t)− f(x, t)− g(x, t)u(t) (3)

where ċx = dcx
dt is the desired output derivative reference.

With the following proposed simplification notations

bx = g(x, t) (4)

z(t) = ċx(t)− f(x, t) (5)

the minimization of trajectory tracking error which is
denoted as ∥∥e2ẋ∥∥ = eTẋ eẋ (6)

is proposed to use.

Then considering the referred defined L2 error norm and
with respect to u(t), one can calculate the following
ODSTC sub-controller

u(t) =
(
bTx bx

)−1
bTx z(t) (7)

which can be rewritten as

u(t) = Kx(x, t) (ċx − f(x, t))) (8)

with

bx = g(x , t) (9)

Kx (x , t) =
(
bTx bx

)−1
bTx (10)

Kx (x , t)bx = I (11)

State convergence demonstration With multiplication
of Kx(x, t) to the left side of (1) and with the above
defined ODSTC sub-controller in (8), one has the following
equation

Kx(x, t)ẋ(t) = Kx(x, t)ẋ(t)

= Kx(x, t)
(
f(x, t)) + g(x, t)u(t)

)
= Kx(x, t)f(x, t)) +Kx(x, t)g(x, t)︸ ︷︷ ︸

I

u(t)

=Kx(x, t)f(x, t) +Kx(x, t)ċx −Kx(x, t)f(x, t)

(12)

Then one has

Kx(x, t) (ċx(t)− ẋ(t)) = 0 (13)

The only possible solution for (13) which can minimize∥∥e2ẋ∥∥ = eTẋ eẋ is obtained consequently as below

ẋ(t) ≡ ċx(t). (14)

3.2 Second step: adjusted optimal state trajectory tracking
controller design

Recalling that the pre-defined control objective in this
paper is denoted as follow

lim
t→∞

ex(t) = cx(t)− x(t) → 0. (15)

While with the developed control in (8), only the state
derivative trajectory tracking of ẋ(t) ≡ ċx(t) is achieved.

Considering the real-time applications, because of their
permanent existence of initial state conditions, the above
designed controller fails to work sufficiently.

To realize the state feedback trajectory tracking of the
nonlinear affine-in control system, which means the state
trajectory tracking objective of cx(t) = x(t), the following
new adaptive controller is proposed as follow

u(t) =Kx(x, t)z(t)− βKx(x, t) (cx − x)

+K̇x(x, t) (cx(t)− x(t)) (16)

where β ∈ Rr×r is a selected stable square constant matrix
and Kx(x, t) is defined as the same in (10). And reminding

that the term K̇x(x, t)(cx(t) − x(t)) is introduced to take
into account that the coefficient of Kx(x, t) is dependent
explicitly to time with respect to x(t).

Stability demonstration With the application of the
proposed new control (16) into the considered nonlinear
system(1), one has the following relationship:

ẋ(t) = f(x(t), t) + g(x(t), t)×
(
Kx(x, t)(ċx − f(x, t))

−βKx(x, t)(cx − x) + K̇x(x, t)(cxy(t)− x(t))
)
(17)

then with multiplication of Ky(x , t) to both sides of
the above equation, and with consideration of the above
referred defined relationships in (9), (10) and(11), one has
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Kx(x, t) (ċx − ẋ(t)) + K̇x(x, t) (cx(t)− x(t))

= βKx(x, t) (cx(t)− x(t)) (18)

For simplification aim, with the introduction of notation
which is denoted as E = Kx(x, t) (cx(t)− x(t)), the above
equation can be derived as follow

Ė = βE (19)

which shows that with a selected stable constant matrix
β, i.e. with negative proper eigenvalues, one has following
convergence

lim
t→∞

E = Kx(x, t) (cx(t)− x(t)) → 0 (20)

Thus,the state feedback trajectory tracking for the consid-
er nonlinear system to its desired state output reference is
ensured x(t) = cx(t).

For real-time applications, one can choose β = −β2
0Ir

where β0 and Ir are respectively selected constant and r-
dimensional unity matrix. And generally, the bigger value
β0 is, the faster convergence of the state of the controlled
system to its desired state reference value, which means
that one obtains

x(t) = cx(t). (21)

3.3 Third step: time-delay estimation of unknown uncertain
system dynamics and disturbances

With the developing quadratic optimal nonlinear control
which is defined in (16), one is able to realize the state
feedback trajectory tracking with exponential convergence
stability in the case where the nonlinear dynamic f(x, t) is
known, but for the case considered here in this paper be-
cause of the unknown system dynamics and disturbances
f(x, t) in z(t) = ċx(t)− f(x, t) which is appeared in (16),
a practical and robust unknown dynamic and disturbance
estimator is needed to propose.

From the derivation of the defined state equation ẋ(t) =
f(x, t) + g(x, t)u(t), then the unknown nonlinear dynamic
and disturbance can be deduced as

f(x, t) = ẋ(t)− g(x, t)u(t) (22)

For real time implementation by application of time de-
lay estimation techniques(Youcef-Toumi and Fuhlbrigge
(1989, 1991); Wang et al. (2015a, 2016); Lee et al. (2017)),

the following estimate is proposed f̂(x, t) for the system
unknown dynamic and disturbance f(x, t) as follow

f̂(x, t) = f
(
x, t− ϵ

)
= ẋ(t)− g(x, t− ϵ)u(t− ϵ) (23)

For ϵ → 0 and under the assumptions that the f(x, t) and
g(x, t) are continuous, one obtains the following relation-
ship

f̂(x̂, t− ϵ) ≃ f(x, t) (24)

It is important to note that with rapid calculation tools
development, the implementation of this assumption of
ϵ → 0 can be realized easily. And normally, the value of ϵ
is selected as the sampling period of the simulator.

3.4 Final step: time delay estimation based optimal state
trajectory tracking controller

Then with the proposed time delay estimation technique
for unknown dynamic f(x, t) in (23), the proposed state
feedback adaptive optimal trajectory tracking controller
can be defined finally as follows

u(t) =Kx(x, t)
(
ċx(t)− c(t)f̂(x, t)

)
−βKx

(
x, t

)
(cx(t)− x(t))

+K̇x

(
x), t

)
(cx(t)− x(t)) (25)

Entire closed feedback Stability analysis With the above
proposed time delay estimation technique based AOC
controller, and replaced it to equation (1), one obtains

ẋ(t) = f(x(t), t) + g(x(t), t)×(
Kx(x, t)(ċx − f̂(x̂, t))− βKx(x, t)(cx − x)

+K̇x(x, t)(cx(t)− x(t))
)

(26)

Then by multiplication with Kx (x , t) to the above equa-
tion, and with relationships defined in (9), (10), (11), one
has

Kx(x, t) (ċx − ẋ(t)) + K̇x(x, t) (cx(t)− x(t))

= βKx(x, t) (cx(t)− x(t)) + ∆f (x, t) (27)

with ∆f (x, t) = Kx(x), t)(f̂(x̂, t) − f(x(t), t)) which is
bounded and convergence to zero under ϵ → 0 (for more
detail convergence demonstration, please refer to (Youcef-
Toumi and Fuhlbrigge (1989, 1991); Wang et al. (2015a,
2016); Lee et al. (2017)).

If one denotes E = Kx(x, t) (cx(t)− x(t)), the above
equation can be rewritten as follows

Ė = βE +∆f (28)

which means with the selected stable constant matrix β
(with negative proper eigenvalues), one is able to ensure
the following relationship

lim
t→∞,ϵ→0

E = Kx(x, t) (cx(t)− x(t)) → 0 (29)

and realizing consequently the trajectory tracking of sys-
tem output to its desired state reference which is denoted
as x(t) = cx(t).

4. APPLICATION TO SATELLITE CONTROL
SYSTEMS

To validate the proposed control method, we consider
here a satellite which rotates in free space under the
influence of gas jets mounted along three mutually or-
thogonal body-fixed axes as in (Brogan (1985)), and com-
pared to a classical Proportional-Integral-Derivative (PID)
Controller whose parameters are tuning by Nichol Zeigler
tuning rules and can be defined as follow

u(t) = Kpex(t) +Ki

∫
ex(t)dt+Kdėx(t) (30)

where Kp, Ki, and Kd are parameters of classical PID.
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4.1 Application system description

In this subsection, the referred satellite rotating is de-
scribed firstly. Let ω = [ωx ωy ωz]

T be the three compo-
nents of angular velocity denoted with respect to the body-
fixed axes and T = [Tx Ty Tz]

T be the three components
of input control torques.

By applying Newton’s second law to the satellite rotating
body, states that dH/dt = T , where H is the angular
momentum vector, and the time rate of change d/dt is with
respect to a fixed inertial reference. The vector H can be
expressed in body coordinates as H = [Jxωx Jyωy Jzωz]

T

where the constants Ji with i = x, y, z are moments of
inertia of he body and x, y, z are assumed to be principal
axes of inertia.

The inertial rate of change dH/dt = T is related to the

apparent rate Ḣ as seen by an observer moving with the
body by

dH/dt = [Ḣ] + ω ×H (31)

Therefore one has the following three input control torques
as follows

Tx = Jxω̇x + (Jz − Jy)ωyωz

Ty = Jyω̇y + (Jx − Jz)ωxωz

Tz = Jzω̇z + (Jy − Jx)ωyωx)

These referred Euler’s dynamical equations which can be
rearranged as following nonlinear affine in control system:

ω̇ = f(ω, t) +GuT (32)

with ω =

[
ωx

ωy

ωz

]
, f(ω, t) =


Jy − Jz

Jx
ωyωz

Jz − Jx
Jy

ωxωz

Jx − Jy
Jz

ωxωy

, uT =

[
Tx

Ty

Tz

]
,

and G =


1

Jx
0 0

0
1

Jy
0

0 0
1

Jz

.
It is important to note that f(ω, t) is considered as an
unknown dynamic function and include disturbance in the
above controller application, while for the control input
matrix G can be considered as a known matrix without
loss the generality: because in the case of unknown G, one
can introduce a known matrix G0, then the above equation
can be rewritten in the following equivalent form

ω̇ = f ′(ω, t) +G0uT (33)

with f ′(ω, t) = f(ω, t) + G − G0. Thus one can always
suppose that the matrix G is disposable and known, while
f ′(ω, t) is unknown.

Thus, in the general case without loss of generality, one
can suppose that in the above equation (32) that f(ω, t)
is unknown including the disturbances, and G can be
supposed known.

4.2 Numerical Simulation Results

In this subsection, to demonstrate the proposed AOC con-
troller performance, the above referred satellite nonlinear
systems is used to implement and compared it with the
most widely applied and effective PID controller.

In the following numerical simulations and corresponding
results, the desired state velocities references are chosen
as piecewise constants and sinusoidal references which
are continuous. Their corresponding numerical results are
illustrated respectively in two cases: first case are the
figures from Fig.1 to Fig.9 which are under the filtered
piecewise constant reference, and second case are figures
from Fig.10 to Fig.18 which are under the sinusoidal
reference.
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Fig. 1. Estimation of unknown dynamic and disturbance in
x-axis under desired state filtered piecewise constant
reference
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Fig. 2. Estimation of unknown dynamic and disturbance in
y-axis under desired state filtered piecewise constant
reference

Noting that the implemented filtered piecewise constant
reference and the sinusoidal references are the most widely
used and re-presentive references in application world.
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Fig. 3. Estimation of unknown dynamic and disturbance in
z-axis under desired state filtered piecewise constant
reference
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Fig. 4. Velocity tracking in x-axis under desired state
filtered piecewise constant reference

For the considered two different references from figures
of Fig.1 to Fig.3 and from figures of Fig.10 to Fig.12, it
can be concluded easily that the proposed time-delayed
estimation technique can estimate very well the unknown
internal dynamic and disturbance of the considered satel-
lite controlled systems.

Moreover, the proposed entire AOC controller compared
with the classical PID controller, the entire proposed
AOC approach which can be tuned easily, ensures better
trajectory tracking performances in term of rising times
and static state errors under the above implemented two
references (illustrated in figures from Fig.4 to Fig.6 and
figures from Fig.13 to Fig.15). More importantly, the
tuning parameters of the proposed AOC approach can be
configured much more easily than PID.

Then concerning their control inputs of the AOC, which
are illustrated respectively in figures from Fig.7 to Fig.9
under filtered piecewise constant reference and figures from
Fig.16 to Fig.18 under sinusoidal reference, are both s-
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Fig. 5. Velocity tracking in y-axis under desired state
filtered piecewise constant reference
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Fig. 6. Velocity tracking in z-axis under desired state
filtered piecewise constant reference
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Fig. 7. Torque control input in x-axis under desired state
filtered piecewise constant reference
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Fig. 8. Torque control input in y-axis under desired state
filtered piecewise constant reference
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Fig. 9. Torque control input in z-axis under desired state
filtered piecewise constant reference

mooth and practical for real-time implementations. And
more importantly to note that the obtained input ampli-
tudes obtained by the proposed AOC control are relatively
smaller than the classical PID control inputs. From this
side of view, one can see that the proposed AOC method
consumes less energy and are more economical.

5. CONCLUSION REMARKS

In this paper for a nonlinear affine-in control systems with
unknown internal dynamics and disturbance, a new state
feedback adaptive optimal trajectory tracking controller
has been proposed and analysed completely of its corre-
sponding closed-loop stability. The effectiveness and ro-
bustness of the proposed AOC approach have been demon-
strated and compared with a classical PID controller via
a nonlinear satellite rotating motion system.

This develop AOC controller which is based on a ∥ · ∥
prescribed norm to minimize the state trajectory tracking
error and the time-delay estimation technique based non-
linear systems unknown perturbed dynamics estimations
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Fig. 10. Estimation of unknown dynamic and disturbance
in x-axis under desired state sinusoidal reference
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Fig. 11. Estimation of unknown dynamic and disturbance
in y-axis under desired state sinusoidal reference
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Fig. 12. Estimation of unknown dynamic and disturbance
in z-axis under desired state sinusoidal reference
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Fig. 13. Velocity tracking in x-axis under desired state
sinusoidal reference
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Fig. 14. Velocity tracking in y-axis under desired state
sinusoidal reference
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Fig. 15. Velocity tracking in z-axis under desired state
sinusoidal reference
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Fig. 16. Torque control input in x-axis under desired state
sinusoidal reference
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Fig. 17. Torque control input in y-axis under desired state
sinusoidal reference
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Fig. 18. Torque control input in z-axis under desired state
sinusoidal reference
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has adaptive and optimal characteristics. With the systems
state feedback, the proposed AOC controller dose not
require any knowledge of the controlled nonlinear internal
dynamics and disturbances, and can ensure the desired
state trajectory tracking performance of the controlled
nonlinear MIMO systems under two difference references
(i.e., the filtered piecewise constant reference and the si-
nusoidal references).

It is important to note that one side the proposed AOC
method has smaller torque inputs by comparing with
the PID controller which implies that the proposed AOC
method is more economical and consumes less energy and
more environment amiable, and the other side for real-time
implementation with the rapid development of numerical
calculators, although the time-delay estimation technique
performance is related to the realization capacity of the
time delay value of ϵ to zero, its influence to the stability of
the entire controlled systems remains limited. And for high
precision application cases, the proposed AOC method can
be improved further by the combination of the estimation
techniques of the time-delay estimation induced error.
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