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Abstract: A novel Fuzzy Logic controller design methodology is presented. The method utilizes an in-
house developed Particle Swarm Optimization (PSO) binary search algorithm to generate the rules for the 
Fuzzy Logic controller rule-base stage without any human experience intervention. The proposed 
technique is compared with the well-established Lyapunov based Fuzzy Logic controller design in 
generating such rules. Finally, the controller’s effectiveness and performance are tested, verified and 
validated using an electrical traction elevator control application. The designed controller’s results were 
compared with the traditional ubiquitous Proportional Integral Derivative controller and classical Fuzzy 
Logic Controllers. 
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1.  INTRODUCTION 

Currently, all controllers design strategies involve both 
model-based and model-less approaches. However, when the 
system’s model is not available or very complex to derive 
then immediately the designers investigate other possibilities 
such as PID controllers and model-less based designs (i.e. 
Fuzzy Logic, Neural Nets…etc.). Recently, designers and 
researchers start to use model-less techniques in spite of the 
model availability due to the designed controllers’ simplicity 
in structure, performance effectiveness, added smartness and 
robust operation in a wide range of industrial operating 
conditions. In reality, an optimally tuned Fuzzy Logic 
controller will at least match a conventional controller, such 
as a PID controller, on performance. But still, the spread of 
the PID controllers in the chemical and petroleum industries 
is noticeable (Abdalla, 2011).  

However, tuning the PID controller to find its three optimal 
parameters is still a challenging task; because the controller’s 
parameters exhibit contradictory effect, nonlinear and time 
dependent behaviors. Traditionally, the tuning process is 
performed using a step input and the system’s performance is 
judged based on standard performance measures: steady state 
error, overshoot, settling and rising time. In literature, several 
classical on-line and offline auto-tuning techniques were 
investigated by many researchers, which may be found in a 
diversity of technical reports and surveys and the majority of 
the schemes are application dependent (Prashant, 2004; Ang, 
2005; Feng, 2000). Artificial intelligence based search 
techniques are also investigated to optimally tune the PID 
controllers. Approaches such as Fuzzy, Evolutionary 
Algorithms and Particle Swarm, which it has demonstrated  

effective tuning of the PID controller, seems to be popular as 
well (Visioli, 1999, 2001; Bandyopadhyay, 2001; Bingul, 
2000; Krohling, 1997; Wahsh 2005). 

Fuzzy Logic (FL) based controllers is gaining popularity in 
houseware and industrial applications since the eighties, 

which owe its effectiveness to the approximate reasoning it 
generates and its imitation of human decision-making 
process. The original Mamdani’s linguistic FL fixed and 
simple controller structure had proven robustness and 
effectiveness for linear and nonlinear applications (Passino, 
1998; Galichet, 1995).  Unfortunately, the same advantage of 
the straightforward implementation of the FL controller 
hinders its effectiveness in controlling dynamical systems 
when it is improperly tuned. The enormous amount of 
flexibility available to designers in choosing the controller’s 
Membership Functions (MF) and the rule base made optimal 
tuning of the MF challenging for certain applications (Woo, 
2000).  Various researchers investigated optimal tuning of the 
MF for the Mamdani FL controller type using stochastic and 
evolutionary approaches. For example, Genetic Algorithms 
were used to choose and tune the MF of the Mamdani’s 
controller, but they were found to suffer from convergence to 
global extrema in a reasonable amount of time. Good 
comparative studies over these techniques may be found in 
the literature (Vikram, 2014). Newly developed evolutionary 
Artificial Immune System (AIS) and Particle Swarm 
Optimization (PSO) optimal tuning of the FL controller MF 
were also investigated by many researchers (Omkar, 2013; 
Bingul 2011). Typically, in all the aforementioned techniques 
the optimization was performed over the MF parameters (i.e. 
widths, centers…etc.) but not the rule base, which is typically 
selected by the designer. 

The Particle Swarm Optimization (PSO) is a relatively new 
evolutionary algorithm that may be used to find optimal or 
near optimal   solutions in huge search spaces. The PSO 
algorithms are especially useful for parameter optimization in 
continuous and multi-dimensional search spaces. The PSO 
method can generate a high-quality solution within shorter 
calculation time and it tends to converge very fast when 
compared to other stochastic methods. The PSO has proven 
both very effective and quick in diverse set of benchmark 
optimization problems (Kennedy, 1995; Elwer, 2009; Ahmad 
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2012; Abdalla, 2009). 

In this work, a novel Particle Swarm Optimization (PSO) 
selection and tuning strategy for the FL Rule-Base (RB) and 
Membership Function (MF) is proposed. Basically, the PSO 
is a relatively new evolutionary population-based stochastic 
optimization technique that may be used to search solution 
spaces for extrema. The original idea was developed and 
coined by Eberhart and Kennedy (Kennedy, 1995). The 
advantage of the PSO method is its speed in converging for 
optimal solutions compared to other stochastic methods. The 
PSO effectiveness and performance had been tested using 
popular benchmark optimization problems (Palupi, 2011; 
Schoeman, 2010). The use of the PSO to seek optimality 
technique had been previously proposed by many 
researchers. In literature, one may find algorithms that 
describe a swarm based FL controller mobile sensor network 
approach for collaboratively locating the hazardous 
contaminants in an unknown large scale area (Cui, 2004). 
Also, applications that utilize the PSO technique to tune the 
parameters of the PI-controller for control of electrical 
motors position and speed are widely used (Allaoua, 2008). 
Even in robotics, the PSO is used to tune a FL controller for a 
2 DOF planar robot (Bingul, 2010). 

In this work, the PSO is utilized to select the FL rules as well 
as it is used to tune the rules for a more FL effective 
controller design. The proposed method utilizes an in-house 
developed Particle Swarm Optimization (PSO) modified 
binary search algorithm to generate the rules for the Fuzzy 
Logic controller rule-base stage without any human 
experience intervention. 

Furthermore, an elevator system application will be used to 
demonstrate the effectiveness of a FL rule-base auto-
generation using the Particle Swarm Optimization (PSO) 
algorithm. An overview of the PSO will be presented in 
subsequent sections; however, the more interested readers are 
referred to Eberhart and Kennedy original paper, which fully 
discusses the algorithm that is adopted by the current authors. 

2.  FUZZY PID CONTROLLER 

The Proportional, Integral and Derivative (PID) controllers 
have been successfully serving in the industry for a long time 
owing that to their simple structure and robust performance 
in a wide range of operating conditions. However, lately 
more demands in performance from such controllers are 
needed and because the PID controllers are linear in nature 
this made them not well suited for strongly nonlinear 
systems. This motivated many researchers to complement the 
PID controller with Fuzzy Logic (FL) based controller 
because FL is typically parameterized using rules and 
membership functions, which made it easy to add 
nonlinearities, logic, and additional input signals to the 
controller’s control law (Astrom, 2000). The PID controller 
currently takes many forms: Direct Action (DA), Gain 
Scheduling (GS) and Hybrid types of FL-PID controllers 
(Tang, 2001; Kazemian, 2005). 

The majority of the FL-PID controllers’ applications belong 
to the Direct Acting (DA) control scheme, where the FL 
controller part replaces the PD controller part in the 

conventional PID structure while the I-control action stays 
the same. However, this modification in the PID structure 
requires providing two measured inputs for the FL controller. 
Many researchers had proven that the two PD systems are 
equivalent with the addition of providing more intelligence 
due to the FL heuristic nature and ability to handle both 
linear and nonlinear systems (Carvaja, 2000; Moon, 1995; 
Georg, 2001).  

To handle nonlinear applications with varying properties, 
characteristics, uncertainties…etc. one may utilize the Gain 
Scheduling (GS) controller. In the GS controller scheme the 
FL part provides a dynamical mean to adjust the conventional 
PID controller’s parameters in relation to the current 
dynamical system behavior. This adaptation turns out to be 
very useful and provides the required robustness (George, 
1999). 

In the Hybrid FL-PID controller design, the conventional PID 
controller effective working space is extended by using a FL 
based controller. However, both controllers are utilizing the 
error signal as inputs, where an intelligent switching scheme 
that makes a decision on the priority of the controllers’ 
contributions may be utilized for further enhancements 
(Astrom, 2000). 

Finally, the common thought-provoking part in all the 
aforementioned popular FL-PID controllers is the FL 
controller design itself. In this work, a novel method that 
utilizes an in-house developed Particle Swarm Optimization 
(PSO) binary search algorithm is proposed to generate the 
rules for these ubiquitous FL-PID controllers rule-base stage 
without any human experience intervention. 

2.1.  Fuzzy Logic Controller Overview 

Since Zadeh had first introduced the fuzzy set theory and 
Mamdani had applied it to replace operators in control; many 
newly developed Fuzzy Logic applications are emerging 
every day. All these overwhelming applications may be 
categorized into two distinct fields: control and expert 
systems. Both fields apply inference and approximate 
reasoning using rule bases with the aid of membership 
functions over fuzzy logic sets [0, 1]; in contrast to classical 
logic sets {0, 1}. In control applications, the two widely 
accepted fuzzy linguistic inference tools are the Mamdani 
and the Takagi-Sugeno methods. This work is considering 
the Mamdani’s based FL controller design (Mamdani, 1981; 
Sugeno, 1985).     

The FL controller provides its crisp output (Defuzzified) 
based on crisp inputs (Fuzzified internally) by utilizing 
inference process via a rule base. Hence, the Fuzzy Logic 
controller design involves designing three stages: 
Fuzzification, Rule-Base, and Defuzzification stages. 
Normally the FL controller design is sequential, that is for the 
Fuzzification stage; the membership functions are first 
selected and partitioned then the Rule-Base is constructed 
and finally the Defuzzification stage is implemented.  

The difficulty in designing a FL controller emerges from 
capturing and covering all the aspects of the system’s 
dynamics, which is heavily dependent on the Rule Base (RB) 
and the selection of the Membership Functions (MF). The 
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rule base should be constructed in a way that the rules set 
should span the solution space. On the other hand, the  
designer  must  choose  the  type  of  fuzzification  (singleton  
or  non-singleton),  the number  of  membership  functions,  
the  functional  forms  of  the  membership  functions  (piece 
wise linear, Gaussian, sigmoidal), the parameters of the 
membership functions (fixed or tuned during a training 
procedure), the conjunction operator (t-norm, t-conorm), the 
implication or inference  operator  (Mamdani, 1981; Sugeno, 
1985; Fodor, 2004),  the  aggregation  operator  (t-norm,  t-
conorm)  and  the type  of  Defuzzification (centroid,  
maxima,  height).  This demonstrates the richness and 
flexibility of fuzzy controllers but also it reveals the need for 
some guidelines for their practical design (Bernadette, 2000). 

The creation of the FL controller membership functions 
intrigued many researchers. A closer look into the literature 
isolates three categories: autogeneration, statistical and 
psychological methods. Many autogeneration methods utilize 
Neural Nets, Genetic Algorithms, and Artificial Immune 
Systems. These techniques are iterative, numerically based 
and search for optimally adjusted membership functions to 
satisfy certain objective function (Chonghua, 2015). While 
the statistical and psychological techniques work on 
extracting expert information directly from human beings 
that are necessary to construct the FL controller membership 
functions. 

However, most researchers follow a general frame in 
determining the FL controller membership functions.  For 
example: it  is appropriate  to  use  some  piece  wise defined  
linear  functions,  that  lead  to  a  lower  sensitivity  to  an  
error measure made in their determination: 

df

dx

2
dx

X
. In addition, the minimum completeness level 

required is ε = 0. 25,  which  guarantees  the  convergence  of  
control,  and  a  maximum  completeness ε = 0. 5, 
consequently it gives a lower overshoot and a lower settling 
time of the dynamical time response (Chonghua, 2015; 
Nguyen, 1997). 

The FL controller regulates the dynamical system according 
to a collection set of rules (i.e. rule base) in the form of 
linguistic IF-THEN rules. For example: IF ei is Bi1  and  
dei/dt is Bi2 THEN ui is Ci where: ei and dei/dt are the inputs 
and ui is the FL controller’s rule fired output. Also, the Bi1 , 
Bi1 and Ci , i={1,2,..n} are linguistic terms in the Membership 
Function fuzzy subsets of the universe  of discourse. 
Traditionally, in literature these set of rules are presented as a 
table form instead of a cascaded IF-THEN statements. 

2.2.  FL controller Optimization 

Conventional Fuzzy Logic Controllers are designed using 
Top/Bottom approach (i.e. input/out signals are selected with 
their membership functions, then the rule base is assigned 
and finally inference). But in the proposed PSO optimized FL 
controller design the methodology is different; it is 
Bottom/Top design approach. Based on a standard full 
linguistic variables set for the Membership Functions, each 
input initially should have seven linguistic variables {NB: 
Negative Big, NM: Negative Medium, NS: Negative Small, 

ZE: Zero, PS: Positive Small, PM: Positive Medium and PB: 
Positive Big}.  

The proposed optimization scheme requires two pass 
operation. On the first pass the optimization process should 
first generate the Rule-Base (RB) collection set. While in the 
second pass, the optimization process will optimize the 
number of the linguistic variables for each Member Function 
(MF) within the Fuzzification stage. This might seem counter 
intuitive and different than the conventional FL controller 
design. The reason behind this: is the fact that we do not have 
off hand the optimal linguistic variables; instead a generic 
full list will be used and it will be updated subsequently by 
the optimization process.    

2.2.1.  Rule-Base Selection 

Traditionally, the construction of FL controller’s rules has 
been mainly based on expert operator’s control experience or 
actions or by data mining. Unfortunately, acquiring rules 
from experts is not an easy task; moreover it is very difficult 
to extract rules from static data bases (data mining). 
However, selecting a set of the most important and relevant 
fuzzy rules from a given rule base is an important issue in 
fuzzy rule base modeling; because it impacts the controller’s 
effectiveness. Thus it is conceivable to eliminate the 
redundant or less important fuzzy rules from the rule base, 
which should result in a compact fuzzy model with faster 
controller’s actions. Unfortunately, the decision as to which 
rules are redundant or less important is also not an easy task 
to perform.  

For example consider a speed/position control of an elevator 
system application, which is proposed to operate using a FL- 
PID controller with two inputs and one output. The inputs are 
the error e(t) and the rate of change of the error de(t)/dt, 
while the output is the reference voltage for the discrete Pulse 
Width Modulation (PWM) drive unit. Assuming, each input 
to have the full set of the linguistic variables {NB, NM, NS, 
ZE, PS, PM and P}, accordingly, the number of rules 
generated is 49 (7x7) rules. Consequently, referring to Figure 
1, which illustrate a single rule {Ri} output,  it is evident that 
each rule could have seven possible outcomes for a single 
control action (i.e. the rule firing output for the controller); 
namely {NB, NM, NS, ZE, PS, PM and PB}. In this work, an 
optimal outcome for the control action will be determined for 
each rule of the 49 rules by using the Particle Swarm 
Optimization (PSO) modified binary search algorithm 
(discussed in subsequent sections). 

 

Fig. 1. FL-PID one rule outcome possibilities. 

One way to resolve the issue of the huge number of tuning 
parameters is to implement an optimization process that
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utilizes a binary search based approach (i.e. either the rule is 
applied or not). By implementing this methodology the 
optimization process reduces the number of parameters to 49 
parameters instead of 343, which will minimize the 
computational effort needed in evaluating the system’s 
models and constraints. Each optimization parameter is taken 
as a decimal number, which when converted into a seven 
digits binary number it represents a binary weight for the 
seven possible rule outcomes (ro vector): [ro(i, 1), ro(i, 2), 
ro(i, 3), ro(i, 4), ro(i, 5), ro(i, 6), ro(i, 7)]. This formulation 
may be described in a matrix form     

	

P1

P2

P3

.

.
P49

→	

ro 1,1 ,ro 1,2 …..ro 1,7
ro 2,1 ,ro 2,2 …..ro 2,7
ro 3,1 ,ro 3,2 …..ro 3,7

.

.
ro 49,1 ,ro 49,2 …..ro 49,7

                            (1)                                                 

Where: the parameter Pi is the optimized ith rule parameter 
that has seven possible rule outcomes, which is depicted in 
Figure 1. For example: [1 0 0 0 0 0 0] represents the ith rule 
with NB as the optimal rule output for the FL controller, 
while [0 0 0 0 1 0 0] represents the ith rule with PS as the 
optimal rule output for the FL controller. This is a binary 
based selection of a rule’s outcomes (i.e. only one outcome) 
that is performed by the first pass of the optimization process.  

In contrast to the first stage rules screening, where the 
controller’s rules output were selected based on fixed set of 
input linguistic variables, the second stage decides on the 
most significant input linguistic variables that will be kept 
(i.e. the ones that contribute the most for the system’s 
response or the most influential). In order to find those 
influential linguistic variable rules combination, a weighted 
fuzzy rule base is proposed. Figure 2 illustrates the proposed 
weighted sum FL logic controller. The optimization process 
algorithm must tune these weights and come up with the most 
sensitive ones for the closed loop dynamical system’s 
response. In the weighted fuzzy rule based system, every rule 
has a weight (i.e. number between zero and one ∈ 0,1 ). 
These rules could be ranked according to their weights; the 
rules with low weights would be deferred or abandoned, 
while the high weighted rules would be kept because they are 
the most influential ones during execution. Through ranking 
the weights, a simplified rule base that contains the most 
important ones will be generated.  

 

Fig. 2. Weighted Fuzzy Logic controller.  

 

3.  PARTICLE SWARM OPTIMIZATION (PSO) 

The particle swarm optimization (PSO) has been shown to be 
an effective optima searching technique for difficult 
multidimensional none-convex problems (Kennedy, 1995).   
Recently, the PSO has been successfully applied to solve 
large scale optimization problems in a diversity of fields. 
Particle Swarm Optimization was shown that for certain 
problems it actually outperformed Genetic Algorithms (GA) 
(Eberhart 1998). It is considered a stochastic evolutionary 
computational technique with a minimal computational effort 
when compared with GA. 

3.1.  PSO Philosophy and Overview  

Kennedy and Eberhart have discovered the Particle Swarm 
Optimizer while they were trying to model the social 
behavior of artificial life, such as bird flocking, fish 
schooling, …etc. (Kennedy, 1995). A good metaphor of the 
Particle Swarm Optimization (PSO) algorithm is to imagine a 
swarm of bees in a field searching for flowers. The objective 
of the swarms is to find the location of the most flowers. 
Basically, each bee will conduct a random search and it will 
memorize the densest location of flowers it encountered. 

Also, by assuming that all the individual bees may share the 
information about their best findings of locations, then each 
bee will be guided by its own personal discovery and by the 
best location reported by the others. Consequently, by 
altering the direction of their trajectory to fly somewhere 
between the two locations, the bees will explore the field by 
overflying locations of greatest concentration and eventually 
will be drawn to the densest flower location (Robinsons, 
2004).  

3.2.  PSO Algorithm  

Based on the aforementioned philosophy in the previous 
section, the following definitions and notes are needed to 
realize the PSO algorithm. 

 An n=100 particles will be used in the PSO. 

 Every particle is identified with: current position pi, 
velocity vi and pi_Best in the searched solution space. 

 All particles share their information about their best 
findings of locations. 

 The individual particle best position pi corresponds to its 
minimum evaluated cost function J(pi)  throughout its 
search journey. 

 The global best position is the best of all the particles bests, 
p_Global. 

 The solution space will be explored by driving the particles 
to move according to their best findings and also 
influenced by the best location reported by the other 
particles. 

The mathematical representation of the swarm iterative 
updates for all particles, n, maybe given by the following 
equation: 

pi_Best t+1 =
pi_Best t     if    J pi_Best(t) ≤J pi(t+1)

pi t+1     if   J  pi_Best(t) >J pi(t+1)
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pGlobal t =min� J pi_Best , J pGlobal t  

 pi t ∈p t ,  i=0, 1, 2, …n                                                    (2) 

Figure 3 illustrates how the particles are moving and 
sweeping the solution space intelligently and it also 
summarizes the used pseudo-algorithm. Each particle in the 
swarm tracks its position by means of two vectors; one 
accelerates the particle in the direction of its own and another 
towards a global best for the whole swarm (best of the bests). 
The advancement of the particles in the solution space is 
controlled by a simple kinematic equation of the form: 

pi t+1 =pi t +∆t vi t                                                          (3) 

Where the ∆  is the advancement in time (increments) and   
is the current location of the particle (i.e. the solution). On the 
other hand, the particles’ velocities are updated during the 
search with the following formula: 

vi t+1 =wvi t +c1rand() piBest
t -pi t

                              c2rand() pGlobal-pi t                            (4) 

Where w is  a  scalar  that  generates  some  form  of 
momentum  for  the  particle  taken  from  the  previous 
iteration. The  value  that  is  used  in  this  paper  is  0.75, 
however,  this  value  could  be  changed  dynamically  as 
well  (in  an  adaptive  fashion).  The  constants  c 	and	c  
represent  the  emphasis  toward  the  particle’s  best  or 
toward  the  global  swarm’s  best  weighted  by  random 
terms.  Typical values for these weights are within the 
interval	 0	4 , but good reported values in the literature of the 
scalars are  c c 2. The local best is the best value  of  
the  solution  attained  by  the  particles  and  the global  best  
is  the  best  value  of  the  solution  attained  by the whole 
swarm. The stochastic behavior of the PSO algorithm may be 
realized through the given two random sequences: 

∈ 0,1 . Please note that the PSO algorithm is 
structured in such away it will not get stuck into local optima. 

Pseudo Algorithm 
Step I: Initialize position, velocity, local best,  
                 and global best of all the particle swarms 
 pi=rand() ;   i=1,2,…, n 

 vi=rand() ;   i=1,2,…, n 
 pi_Best=pi ;     i=1,2,…, n 

 	 	 	 	 	 	 _ 	;		 
 _ 	 	 	 	 min ; 

Step II: Repeat until fitness function of global position is  
                 acceptable or m iterations is reached  
 compute fitness Ji pi  ;    

                    if Ji pi <Ji pi_Best  then pi_Best=pi 

 pGlobal=pi_Best  if min Ji piBest
		 

 update  particle velocity			 

vi=wvi+c1rand piBest
-pi   c1rand() pGlobal-pi  

  update  particle position  pi=pi+Δtvi 
 loop step II 

Step III:  Optimal solution=the particles with best global 
fitness values 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Particles movement in solution space. 

3.3.  PSO Implementation for the Rules Auto-generation 

Many real life and engineering applications require finding 
optimal parameters that meet certain objectives (for multi-
objectives problems), which are subjective to a diversity of 
constraints. Typically, in the optimization processes the 
objective or cost function is a scalar function, which will be 
denoted by  , ∈ .  

The FL-PID controller optimization problem that was posed 
previously maybe formulated as follows: 

Minimize  J p ,   p= p1,p2,…pn

T

pi                                             

Subject to:		     Gc p, e ,			Gp u

                                        (5) 

Where:  is the optimized cost function: in this work it is 
the error function or deviation between the user’s desired 
trajectory and the system’s output (i.e. tracking system) and 
	 	  are the controller’s and the system’s dynamical 

equations; respectively. 

The optimization problem casted in equation (5) can be 
solved by a diversity of numerical techniques. However, in 
this work the Particle Swarm Optimization (PSO) is adopted 
to search the solution space  for an extrema. The PSO is 
considered an evolutionary population-based stochastic 
optimization technique, which is proven to be effective and 
easy to implement. The main objective of the optimization 
process in hand is to estimate the optimal search parameters; 

, that are needed to reshape the system’s dynamic to a 
desired one (i.e. following user’s predefined trajectories). 

4.  ELECTRICAL ELEVATOR CONTROL APPLICATION 

The PSO based FL-PID controller optimization proposed 
method will be demonstrated over an academic engineering 
application of an elevator speed profile tracking. The amount 
of work in literature on elevator systems is overwhelming. 
However, one may recognize two lines of research: group car 
control/scheduling and single car position/speed tracking 
applications. To demonstrate the effectiveness of the 
proposed approach let’s consider an electrical elevator speed 
tracking, which directly impacts the passengers ride comfort. 
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For the elevator application, the FL-PID controller objective 
is to track a user defined velocity transport profile for the 
elevator’s motor. The motivation behind this objective is to 
create lift quality for the passengers by providing passengers’ 
good ride comfort. Typically, this task involves addressing 
lateral and vertical vibrations, acceleration and deceleration, 
and jerk, which requires the controller to regulate the 
accelerations/deceleration 	 		in m/s2 and minimize the 
jerk    in m/s3. Other performance measures for the elevator 
systems are also possible; such as noise, door opening speed, 
safety…etc. For an objective analysis and evaluation of the 
ride quality, one may consider: ISO Standard 18738 (Boutler, 
2000; Abraham, 1984; Li, 2004; Rebai, 2015). Figure 4 
depicts the user defined velocity transport profile that is 
needed to be enforced by the FL-PID controller for ride 
comfort. 

 Fig. 4. Elevator car speed profile for an elevator.

Let’s consider a 2:1 gearless traction electrical elevator 
model that is depicted in Figure 5, which will be used for 
testing the controller’s performance as designed. Please note 
that the complete derivation and analysis of the elevator’s 
dynamical model are omitted due to lack of space, however, 
interested readers should consult the authors’ previous work 
on the subject (Abdalla, 2011). 

 

Fig. 5. Gearless Traction Electrical Elevator Model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Elevator simulated model  with controller. 
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Figure 6 depicts the elevator’s complete SIMULINK/ 
MATLAB® implemented model that was used in the 
simulation and design of the system, which is also 
complemented with the proposed FL-PID controller. The 
simulated system model consists of basic modules: a three 
phase voltage source, universal bridge, Pulse Width 
Modulation (PWM) and the elevator subsystem that consists 
of six internal subsystems and the PM-DC motor subsystem 
(Abdalla, 2011). Table 1 lists all the elevator’s simulated 
parameter values that were used to generate the results. 

Table 1.  Elevator’s Simulated Parameters. 

Armature resistance (Ra) 0.49 Ω 
Armature inductance (La) 4.3 mH 
Motor constant (Ke) 0.49 
Coulomb friction value (tf) 0.18 
Coefficient of viscous friction (Kf) 4.6e-4 
Radius 1 (R1) 0.2 m 
Radius 2 (R2) Sheave 0.3 m 
Radius 3 (R3) 0.2 m 
Moment of inertia (J1) 0.08 Kg.m2 
Moment of inertia (J2) 0.15 Kg.m2 
Moment of inertia (J3) 0.08 Kg.m2 

4.1.  FL-PID Controller Design 

The PID fuzzy logic based controller structure presented 
earlier in Figure 4 need to be synthesized. To illustrate the 
effectiveness of the proposed design approach, two strategies 
in generating the FL-PID controller will be implemented. The 
first approach will be the Fuzzy Lyapunov synthesis 
(analytical techniques) and the second one will be the PSO 
(stochastic), both will generate the needed rules of the 
Mamdani-type FL controller for the sake of comparison. 
Their membership functions, rule base arrays and generated 
rules control surfaces will be compared. 

The major steps in the FL controller design constitutes: 
creating a knowledge base of the rules (Inference), 
establishing membership functions for the crisp inputs ( 
Fuzzification) and implementing membership functions for 
converting to crisp outputs (Defuzzification). In this work, 
the sensed input signals (measurements) that are fed to the FL 
controller are the error and its rate of change, , . 

e t =vd t -v(t)                                                                      (6) 

Where 		is the desired reference speed of the car (i.e. the 
speed profile) and    is the elevator’s actual speed output. 
For proper velocity profile tracking, the FL-PID controller 
needs to minimize the deviation or error function  . 

Fuzzification: The initial design of the proposed FL-PID 
controller will be based on two inputs: the error 	 		and the 
rate of change of the error		 , and one output: reference 
voltage  for the discrete PWM generator.  Initially, the 
FL controller will be implemented with seven linguistic 
variables that are tentatively selected to span the two inputs 
and the output ranges; namely: Negative Big (NB), Negative 
Medium (NM), Negative Small (NS), Zero (ZE), Positive 
Small (PS), Positive Medium (PM) and Positive Big (PB). 

However, the initial number of these linguistic variables will 
be reduced through the optimization process later on. 

Defuzzification: A weighted center that utilizes the gravity 
method will be used to generate the crisp output. Equation 7 
illustrates the estimation of the crisp controller output 
(gravity method). 

u*(t)=
∑ Wi μik ci

m
i=1 

∑m
i=1

 
                                              
                                          (7) 

Where  is the weight of rule, μ  denotes the degree that 
instance matches the rule  R  , and c 	ϵ { C1, …. CM} is the 
centroid of every fuzzy set. 

 Rule-Base:  The rule-base matrix will be derived first by 
using the Fuzzy Lyapunov synthesis  and the second method 
will be the proposed PSO. Both techniques will generate the 
needed rules of the Mamdani-type FL controller. The 
complete design strategies will be presented by the following 
subsequent sections. 

4.2.  Rule-Base Generation using Lyapunov Synthesis 

The FL-PID controller performance in tracking the user’s 
defined speed profile heavily hinges and affected by the rule-
base matrix generation step. A systematic approach in 
deriving the needed rule-base matrix is the Lyapunov 
Synthesis approach (Carvajal, 2000). 

Define a continuously differentiable function F ∋		 t
e t 				e t  as a Lyapunov function with the following 

standard characteristics: 

 0, for only 0, 
 0, ∈ 0 , 
 0, ∈ 0 ,   where  0 		   is the 

neighborhood of zero; excluding the origin itself.  

Now, assuming that the reference speed is  and its 
derivatives  and  are bounded and available to be used 
by the controller, let’s choose F  as a Lyapunov function of 
a quadratic form:     

F(x)=
1

2
e2(t)+e2(t)                                                              (8) 

where the error is given as in equation (6). It is clear that the 
proposed Lyapunov function 	 satisfies the first two 
conditions, while the last condition needs to be fulfilled to 
establish stability in the sense of Lyapunov. Consequently, 
the derivative of the Lyapunov function yields the following: 

F(x)=e(t)(e t +e t )                                                             (9) 

By knowing that the second derivative of the error is 
proportional to the output of the FL controller (u) then the 
corresponding requirement of Lyapunov stability becomes: 

F(x)=e(t)(e(t)+u(t))<0                                                       (10) 

Consequently, equation (10) must be negative definite at all 
times, which leads us to draw the following conclusions: 

Constraint 1:  If  and  are both positive then take  
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Constraint 2:  If  and  are both negative then take  
																																  
Constraint 3:  If  and  have opposite signs then take  
																																 0 

Now, using the aforementioned constraints, one can 
construct the FL-PID controller rule base. Table 2 and 
Figure 7 depict the Laypunov-based designed rule base 
control surface and enlist the controller’s rules. It is evident 
that the surface smoothness dictates the effectiveness and 
smoothness of system’s control actions and consequently 
the controller’s performance. In addition, the Lyapunov 
derived constraints did not provide enough information to 
reduce the number of the linguistic variables. 

Table 2. Lyapunov FL-PID Controller Rules. 

			  NB NM NS ZE PS PM PB 

NB PB  PB PB PB PM PS PS 

NM PB  PB PB PB PB PM PM 

NS PB  PB PB PB PB PB PB 

ZE PB PM PB ZE NB NM NB 

PS NB NB  NB NB NB NB NB 

PM NM NM  NB NB NB NB NB 

PB NS NS NM NB NB NB NB 

 

   

 

 

 

 

 

 
 

Fig. 7. Lyapunov based FL-PID controller surface. 

4.3.  Rule-Base Generation using Proposed PSO 

The previously introduced Particle Swarm Optimization 
(PSO) algorithm will be executed to generate an optimal set 
of FL-PID rule-base matrix. The cost function that was 
implemented in the PSO optimization process is the norm of 
the difference in speeds profiles (i.e. the error function or 
deviation):  ∥ ∥. 

The optimization process will be implemented on two passes. 
In the first pass, the PSO will perform a binary search for the 
controller’s actions (i.e. one rule outcome), which was fully 
illustrated in Figure 5. While the second PSO optimization 
pass will generate the set of rules’ weights that will be 
implemented in equation (7), which was also presented in 
Figure 6. The resulted PSO optimization outcomes should 
result in a controller’s output actions that should mimic the 

system’s operator best reaction experiences for the 
designated inputs and it should provide smooth speed 
tracking.  

In the first pass, the PSO selected the 49 rule base outcomes,  
∗ ∗, ∗, … , ∗ , recalling that ∈ 0,1  is a binary 

byte, refer to equation (1). While in the second pass, the PSO 
searched the solution space 	 	 for every rule optimal 
weight,  ∗ ∗, ∗, … , ∗ . After applying the second 
pass, the number of rules reduced from (49) rules to (21) 
rules by keeping only the significant weights. The 
corresponding set of significant weights of these rules is 
given by the following weight vector: [0.6238, 0.8518, 
0.6069, 0.6193, 0.8967, 0.5895, 0.5948, 1.000, 0.5864, 
0.2994, 1.000, 0.3128, 0.5912, 1.000, 0.5834, 0.6374, 0.8822, 
0.5692, 0.6102, 0.8275, and 0.5934]. Consequently, this 
reduction in weights has reduced the linguistic variables set 
that pertain for the error input from seven linguistic variables 
to only three linguistic variables. Table 3 and Figure 8, 
summarizes the PSO results and depicts the FL-PID rule base 
control surface, which exhibits smoother controller actions 
with a lower number of rules than the Lyapunov-based 
design. 

Table 3. PSO-based FL PID Rules. 

NS ZE PS 

NB PM PB PS 

NM PM PB PM 

NS PM PB PM 

ZE PS ZE NS 

PS NM NB NM 

PM NM NB NM 

PB NS NB NM 

 Fig. 8. PSO-based FL PID Control Surface. 

Note that since this elevator application is more sensitive to 
the rate of change of the error (i.e. speed profile change); the  

  linguistic variables are highlighted (fine), while the error 

in speed is taken as a coarse distribution (i.e. no need for 
large speed deviations). Also, note how the PSO generated 
weights about the ZE column of the error e(t) were the 
largest. That is actually expected because fine tuning is 
performed by the controller in that region (i.e. giving high 
sensitivity). 

u(t
)

u(t
) 
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The generated PSO based FL-PID controller control surface 
that is presented in Table 3 and Figure 8 demonstrates 
smoothness of the controller’s control signals (actions) as a 
function of the controller’s inputs, which provides a sense of 
the controller’s trajectories for a two input based systems. In 
this case, this plot shows the control signals (reference 
voltage for the discrete PWM generator) as a function of the 
error and the rate of change of the error. Clearly, all 
trajectories are directed towards the origin, which gives an 
indication of the controller’s stability. Finally, even with 
much less number of used rules, the PSO-based tuning 
generated a control surface that is smoother than the one 
generated by Lyapunov design, which was depicted earlier in 
Table 2 and Figure 7. 

The corresponding membership functions for the two inputs 
and the output of the FL-PID controller are shown in Figure 
9. The PSO has generated the following membership 
functions: (i) membership functions for the error,  (ii) 
membership functions for the change of error,  and (iii) 
membership functions for the reference voltage for the 
discrete PWM generator, . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. FL-PID Controller Membership Functions. 

To test the effectiveness of the FL-PID controller and to 
validate its ability to generate proper control laws that will 
track a designer’s velocity profile, Matlab computer 
simulations have been used for the elevator system. Figure 10 
depicts the results for the PSO FL-PID. Each figure illustrates 
one of the important elevator’s physical variables. Typically 
the acceleration range should be between (-1.5 to 1.5) mps2 
for human comfort, which is obviously met by the 
controller’s output.  

 

 

Fig. 10. Response Results using FL-PID Tuned with PSO. 
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Also, the controller tracking of the speed profile is done 
nicely with minimal amount of jerk. Figure 10 also depicts 
the position, velocity, acceleration and jerk trajectories for 
the tenth floor user calls. The controller’s ability to track the 
designer’s speed profile is evident. Also, the acceleration and 
jerk values are within human tolerated values. 

5.  CONCLUSIONS 

A novel Fuzzy Logic controller design methodology was 
proposed. The method dealt with the auto generation of a FL-
PID rule-base matrix, in contrast, to the classical design 
methodology that is based on human operator experience and 
intervention.  

Also, the new design methodology offered an optimized 
number of possible Fuzzy Logic linguistic variables that are 
needed in the fuzzification and output stages of the controller. 
This resulted in simplifying the fuzzy rule-base matrix entries 
that are generated from the first optimal screening.  

In the FL-PID rule-base matrix optimization, a modified 
binary search optimization algorithm, which was based on 
Particles Swarm Optimization (PSO) strategy was proposed 
and successfully implemented. The performance of the PSO 
designed FL-PID controller was demonstrated on controlling 
and tracking the speed profile of a gearless electrical elevator 
system. It demonstrated the ability to track both position and 
speed profile for an electrical elevator system; yet 
maintaining a minimal amount of acceleration and jerk and 
creating passengers comfort. The designed controller also 
exhibited higher performance when compared with a FL-
Lyapunov synthesized controller. 
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