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Abstract: Heterogeneous systems ensure the integration of diverse specific components to different 
applications in various domains such as the electrical, mechanical and optical fields. They can be defined 
as the combination of discrete and continuous models at the same application. This kind of system 
presents an important challenge for designers. The main problem is the difference between algorithms of 
continuous simulators and algorithms of discrete ones. One of the key challenges is to overcome 
problems of the existing environments supporting heterogeneous models. So far, research in Computer-
Aided Design (CAD) tools has attempted to offer a global view of the designed systems and to enable 
their overall verification. Indeed, the Continuous DIscrete Simulation (CODIS) tool based on co-
simulation environment proved to be a powerful tool for global verification in heterogeneous systems 
(Bouchhima et al., (2005,2007)). This paper will attempt to contribute an extension of the CODIS tool in 
two ways. Firstly, it will attempt to integrate SystemC, Simulink simulators and a hardware accelerator 
automatically in order to generate global simulation model instances. Secondly, the evaluation of the 
simulation model will be performed by using an illustrative application. 

Keywords: Co-simulation, Synchronization model, CODIS, Heterogeneous system, Continuous/Discrete 
model. 

1. INTRODUCTION 

Modern systems are increasingly complex and heterogeneous 
like mixed-signal systems and real-time controllers. 
Nowadays, systems on chip are used for convergence of 
multiple technologies. In 2001, Ferroelectric Random Access 
Memory (FRAM) and Field Programmable Gate Array 
(FPGA) were integrated on chip followed by Micro Electro 
Mechanical Systems (MEMS) and chemical sensors in 2003; 
electro-optical in 2005; and electro-biological in 2006 (ITRS, 
2006). 

These systems will be ubiquitous in communications, 
automotive, medical and other domains. The global 
verification of these systems requires new environments 
supporting new techniques enabling reusability, high 
abstraction levels and simulation accuracy. Currently, 
heterogeneous systems are designed by reusing pre-designed 
components to respect the tight constraints of time-to-market. 
This type of design represents an important challenge; one of 
the key issues being the integration of the pre-built 
components specific to different application domains such as 
the electrical, the mechanical, and the optical domains 
(Balarin et al., 2003; Nicolescu et al., 2002; Urrea et al., 
2015; Minh et al., 2012; Li et al., 2015). Nowadays, 
designers build different components to be integrated in one 
chip by using the existing powerful tools specifically 
designed for a particular application domain such as SystemC 
for the electronic digital part and Matlab/Simulink for the 

mechanical parts. Nevertheless, they often prefer to keep 
using their current tools. Consequently, the best solution of 
new CAD tools is to be based on global simulation models 
defined independently from specific languages or simulators. 
This solution would permit the integration of the best and 
most adequate existing tools to benefit from their full 
capabilities. For this reason, the purpose of this study was to 
use the co-simulation technique. This technique is expected 
to allow the description of both the continuous and the 
discrete models in a specific and appropriate language despite 
its decrease of the simulation speed. 

Nevertheless, the co-simulation model must be based on 
generic models (independent from languages or simulators). 
These models present essentially two difficulties in the 
definition of a continuous/discrete co-simulation model:  

(1) The heterogeneity of the definitions of the concepts 
manipulated by the discrete and the continuous components. 

 (2) The need for continuous/discrete communication and 
synchronization. 

Therefore, co-simulation interfaces are used for overcoming 
these difficulties. These interfaces have a great influence on 
the accuracy and the performance of the global simulation. 
Their automatic generation is very important, since their 
design is time consuming and can be an important source of 
errors. 
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As a consequence, this paper, proposes a generic architecture 
of a discrete/continuous simulation model for an accurate 
global verification in heterogeneous system design. Solutions 
are provided to implement this model in the case of SystemC, 
Simulink simulators and hardware accelerator. In addition, 
the continuous/discrete simulation (CODIS+) is presented as 
an extension of the CODIS tool, for the automatic generation 
of the global simulation model (co-simulation model) 
instances. Finally, the proposed model is evaluated using an 
illustrative application. 

The rest of this paper will be organized as follows: 

Section 2 describes the related work. Section 3 presents the 
different basic modelling concepts for discrete and 
continuous models. Section 4 introduces the CODIS+ tool by 
defining the synchronization models and their interfaces. 
Section 5 exhibits the experimental results and accuracy 
analysis. Finally, section 6 concludes the paper. 

2. RELATED WORK 

In the past years, although research in the discrete/continuous 
simulation area proliferated, it remained behind its digital 
counterpart. An overview of related work and existing tools 
is given in this section. There are mainly two approaches to 
overcome the difficulties of discrete/continuous systems in 
modelling and verification; i.e. common approach and co-
simulation approach. 

2.1. Common approach 

The common approach used a unique language for the 
specification of the overall system. Some of these languages 
could be obtained by extension of well-established languages. 
Illustrative examples were VHDL-AMS (IEEE Std, 2007), 
Verilog-AMS (Pecheux et al., 2005) and recently, SystemC-
AMS (Vachoux et al., 2003) extending, respectively VHDL, 
Verilog and SystemC for mixed-signal systems design. The 
first trials, contributing to the deeper understanding of the 
problems in using SystemC and VHDL for mixed-signal 
systems design were presented by (Bonnerud et al., 2001; 
Pichon et al., 1995). In (Enwich et al., 2001), a SystemC 
based framework supporting signal processing-dominated 
applications was proposed. The synchronization between the 
synchronous dataflow and linear continuous time is using 
fixed time step. These solutions allowed the continuous 
design and an accelerated time simulation. These methods 
suffered from the use of one solver to resolve EDOs and 
limitation of the design for different abstraction layers. 
Another framework was proposed in (Bonnerud et al., 2001) 
where the authors presented a mixed-signal simulation to 
simulate an analog to digital data converter. The framework 
included C++mixed-signal modules. They implemented a 
virtual clock for the scheduling of the analog blocks to avoid 
multiple executions of them due to the SystemC scheduler. 

Other research based on common approach proposed a novel 
language that supports discrete/continuous description as 
Ptolemy (Ptolemy, 2015), MLdesigner (Schorcht et al., 
2003), and Modelica (Modelica, 2012). 

Ptolemy (Ptolemy, 2015), is an open source java-based 
environment that considers heterogeneous systems 

represented as a set of components whose interaction styles 
are governed by computation models implemented as 
‘‘domains’’. It provides a unified infrastructure to assure 
hierarchical composition of these computation models. The 
necessity to learn a novel language presents its major 
drawback. 

MLdesigner (Schorcht et al., 2003) has a similar interface as 
Simulink but its environment complexity presents a 
challenge.   

Modelica (Modelica, 2012) can also be considered as one of 
these languages. Several commercial simulation tools such as 
Dymola and Math Modelica are based on it. This language 
provides a set of libraries for several application domains 
(electrical, thermal, etc.). However, the concept of discrete 
events is difficult to manipulate in this language.  

In (Pinki et al., 2003; Riihimaki et al., 2005; Kajtazovic et al., 
2005; Azam, 2005), the authors presented a tool based on 
UML approach. This method allows the creation of a model 
from a GUI. The use of UML language makes the design 
description difficult due to the requirement of a clock 
mechanism and events scheduler. 

Other work based on approximate metrics (Girard et al., 
2007) accelerates simulation and resolves the problem of 
Ordinary Differential Equations (ODEs) complexity, 
although the accurate simulation is decreased. 

In (Prabhakar et al., 2015; Ghomri et al., 2013), the authors 
used Hybrid Automata to explore the real-time property of 
heterogeneous systems. But this method is more suitable for 
continuous models than for discrete models. 

In summary, several attempts were proposed for mixed-signal 
simulation on common approach. They required abandoning 
well established efficient tools for specific domains (IEEE 
Std, 2007; Vachoux et al., 2003; Ptolemy, 2015; Oltean et al., 
2010). Common approach allowed results in shortest 
simulation time but suffered mainly from three 
disadvantages: 

 No use of libraries and dedicated IPs developed by each 
domain (discrete/continuous). 

 The need to learn a new language. 

 The restriction of the design use to few abstraction 
layers. 

To overcome these shortcomings other researchers, proposed 
the use of co-simulation approach.  

2.2. Co-simulation approach 

The most important benefit of the co-simulation approach 
was the synchronization between different simulators. In 
(ElTahaway et al., 1993), the authors presented a simulation 
model based on VHDL and ELDO. Based on the lock-step 
approach with a fixed time step, their model was at the 
physical level. Other works used the notion of co-simulation 
backplane functions to integrate mixed-signal simulators. In 
(Zwolinski et al., 1995), the authors developed a collection of 
backplane that allowed simulators to share data during 
simulation. They integrated an open source SPICE simulator 
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and a logic simulator. In a similar way, the authors in 
(Hickey et al., 2006; Martin et al., 2002) proposed aco-
simulation environment based on Xyce (a SPICE parallel 
simulator) and SAVANT (a parallel VHDL simulator). The 
interfacing is enabled by C++ classes containing methods for 
signal conversion and data exchange between simulators. 

The Nexus-PDK environment proposed by Celoxica 
(Celoxica) supported co-simulation of cycle accurate C, C++ 
and Handel-C models with SystemC, MATLAB/Simulink, 
VHDL and Verilog simulators. All the models integrated in 
this environment were discrete. A similar approach was 
adopted by Active-HDL (Active-HDL, 2015). 

These different attempts to create a co-simulation 
environment suffered from: 

- The increase of simulation time. 
- The limitation on the number of abstraction layers. 

In order to overcome the problems met in co-simulation 
approach, Bouchhima et al., (Bouchhima et. al., 2005, 2007) 
proposed the CODIS tool. The work of these scholars 
presented the following advantages: 

-  They proposed a generic model for an accurate 
continuous/discrete simulation that was independent from 
languages and simulator; 

-  They provided implementation solutions in the case of 
SystemC and Simulink simulators;  

-  They introduced the CODIS tool which can automatically 
produce instances of the global simulation model. Hence, 
CODIS environment presented the most powerful tool in Co-
simulation approach due to the generic model proposed. 
Unfortunately, CODIS still suffers from the increased 
simulation time. 

Moreover, as was rightly argued by (ElTahaway et al., 1993; 
Hickey et al., 2006), Celoxica, (Enwich, et al., 2001; 
Dehghanimmohammadabadi et al., 2017), most of the 
proposed heterogeneous approaches were application-specific 
extensions or specific for a pair of simulators. 

In light of this brief review, this paper purports to contribute 
the following tentative proposals:  

(1)  a synchronization model between a discrete simulator 
and an emulator for HW/SW design;  

(2) a synchronization model between a continuous simulator 
and an emulator using Hardware Software In the Loop 
(HSIL) techniques;  

(3) a synchronization model between a discrete 
simulator/continuous simulator and an emulator for 
continuous/discrete systems; 

 (4) the implementation of the proposed solutions for 
SystemC (Al-Junaid et al., 2004) as discrete simulator, 
Simulink (Matlab/Simulnik) as continuous simulator and 
emulator based on target architecture;  

(5) the introduction of the CODIS+ tool which can verify 
heterogeneous systems in the first step of design; and finally, 

(6) the presentation of an accuracy and performance analysis 
using an illustrative application. 

3. BASICS MODELING CONCEPT 

System description is based on the definition of the required 
model. The understanding of different simulation models is 
the aim of the definition.  As will be mentioned below, the 
simulation model can be assigned as a discrete model, as a 
continuous model or as a heterogeneous model. Each model 
has a different definition that will be presented in the next 
Sub-sections.  

3.1. Discrete event simulation model 

The simulation of discrete models is based on events. Each 
executed event can generate new events with the smallest 
time stamp. An event is associated with a process.  

The simulation depends on description and supported layers. 
Many simulators are proposed to increase performance. The 
simulation of synchronous systems is based on signals that 
can have events only at clock ticks (Chang et al., 1997). The 
simulation for data flow models depends on the ordering of 
events. A scheduler of discrete events is used for increasing 
performance (Patel et al., 2004). 

3.2. Continuous simulation model 

Systems described by differential and algebraic equations are 
considered as continuous models. The simulation step 
demands the numerical solution of these equations even some 
ODEs are complexes. As a solution, many algorithms, (Gupta 
et al., 1985), are proposed to discretize the continuous time 
into different discrete time instants. Then the numerical value 
of state is computed at these ordered time instants. The 
integration step presents the interval between two 
consecutive time instants. This integration step can be fixed 
or variable according to the used algorithm in order to ensure 
the stability, the accuracy and the continuity of the signals. 

3.3. Continuous/discrete simulation: Discussion 

Most dynamic systems are modelled using continuous and 
discrete models. The difference between the two models is 
presented essentially in the notion of time, the means of 
communication and the process activation rules.  

To overcome the heterogeneity of modelling, two models 
were adopted in literature: common and co-simulation 
approaches, which are presented in related work section. 

As will be shown below, the co-simulation approach has 
many advantages and is more suitable for research because it 
builds the results of past researchers.  

Bouchhima (Bouchhima et al., 2007) findings on CODIS 
were the result of cooperative work between GRM and CES 
laboratories. CODIS tool was based on co-simulation 
approach. It did not only ensure synchronization between 
continuous and discrete simulators but also allowed the 
creation of generic interfaces. CODIS model contained 
essentially two layers: synchronization layer and 
communication layer. The proposed synchronization scheme 
for the CODIS tool was applied in both cases of 
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Matlab/Simulink and SystemC/Modelsim. 

The next section describes the CODIS concept for 
heterogeneous simulation. 

4. ACCELERATED CONTINUOUS DISCRETE 
SIMULATION (CODIS+) MODEL 

The CODIS+ proposes an accelerated co-simulation method 
using hardware acceleration. This extension is not only to 
accelerate the simulation but also allows hardware 
description using via on board emulation. This idea will be 
described in the next sections.  

CODIS+ is based on co-simulation/emulation bus that 
comprising two layers: (1) Communication layer and (2) 
Synchronization layer. Figure 1 describes the general 
architecture of CODIS+. The communication layer handles: 
(1) data exchange and (2) signals conversion. The first 

function allows writing or reading signal values that connect  

the continuous model and the discrete model. Data exchange 
is possible in both directions and depends on the type of the 
context switch. When the switch is between discrete 
simulator and continuous simulators, the data exchange is 
ensured by shared memory. When the switch is to hardware 
accelerator, the data exchange is ensured by interrupt method 
(Ben Ayed et al., 2013; Ben Ayed et al., 2012). Signals 
conversion takes care of the conversion between analogue 
signals and discrete signals. 

CODIS+ can be presented as three kinds of simulation as 
shown in figure 2: (1) Hardware Software Co-Simulation 
model (2) Hardware Software in The Loop (3) 
Continuous/Hardware/Software Co-Simulation/Emulation. 

The next sub-sections present the synchronization schemes 
for different kinds of CODIS+ simulation. 

 

Fig. 1. Generic architecture for CODIS+ simulation. 

 

 

 

 

 

Fig. 2. Supported simulations of CODIS+.

4.1. Hardware Software Co-Simulation model 

The hardware software co-simulation model is based on 
synchronization schemes which respect not only the 
continuous and discrete model proposed in the CODIS tool, 
but also the interaction style that can be involved between 
HW and SW components. In the same design, different 
synchronization schemes can be used for HW and SW 
components. The simulation time of SW applications 
represents the execution time in the target base architecture. 
Nevertheless, it should be stated that the task scheduling 
policy is not the aim of this paper. The goal is to define the

 relationship between simulators based on synchronization 
schemes. SC time in the following figure represents the 
advance time of discrete simulator. 

 Scheme 1: The SW Task receives data periodically 
from the hardware Task. 

As is shown in figure 3, the scheme is based on FIFO 
memory between SW Task and HW Task. The main idea is 
based on fixed synchronization time between simulator and 
emulator. Because of the difference in speed, the HW 
imposes a synchronization Time (Tsync). This Tsync must be 
greater than Task time of HW or SW. 
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Fig. 3. Synchronization model: scheme 1. 

 Scheme 2: The SW Task waits the end of the 
hardware Task. 

Figure 4 presents the synchronization model: scheme 2. It is 
clear that when a hardware component is simulated by 
SystemC, the SW Task uses a waiting loop for data. Once the 
hardware Task (Task1) is finished, the simulator sends data 
to the SW Task and a context switch from SystemC to board 
takes place. Then, the SW Task receives data and resumes the 
execution. After that, the execution time of Task1 is modeled 
by the SystemC wait () function. The amount of time used by 
the wait function is sent to the SW part to inform it about the 
duration of the waiting loop as can be seen in figure 4. The 
SystemC and the emulator need to exchange the time stamp 
at every context switch. 

Fig. 4. Synchronization model: scheme 2. 

 Scheme 3: The SW Task receives an interrupt to 
indicate the end of the hardware Task 

Figure 5 illustrates the synchronization model: scheme 
3where the software does not use a waiting loop. However, 
the end of the Task is indicated by interrupt. Therefore, the 
software can execute the Task instead of waiting. The 
Simulation scheduler, running on the target processor, sends 
data to the simulation interfaces as shown by arrow 0. This 
activates the hardware Task1. At the end of Task 1 process, 
and before sending data to SW Task, the 
wait_for_interrupt(sc_time) function is called as can be seen 
in Figure 6. This makes the simulator advance its time as 
shown by arrow 1. Furthermore, it sends an interrupt packet 
to inform the emulator of the next time stamp as shown by 

arrow 2. Simultaneously, the simulation scheduler activates a 
timer with a period that coincides with the received interrupt 
time stamp and begins the execution of an intermediate Task; 
i.e. an eventual user background Task. When the timer is 
reached, it interrupts the background Task. Thus the 
simulation scheduler activates Task 2 implying that the 
number of the interrupt is received with the interrupt packet. 
The last one may request data, thus Task 1 resumes execution 
and sends data packet As shown by arrow 4; which activates 
Task 2. Figure 7 shows the template of the code. 

Fig. 5. Synchronization model: scheme 3. 

 Void wait_for_interrupt (sc_time t) 

{wait(t); 

 send_interrupt_packet(…..) ;} 

Fig. 6. Wait_for_interrupt code. 

Where t is an estimation of the Task 1 duration 

/* Task1 code */ 

 Instructions  

 Wait_for_interrupt (t); 

 Switch_context();/* context switch to SystemC */ 

Fig. 7. Template of synchronization code. 

 Scheme 4: The SW Task may receive a random 
interrupt resulting from externally received data 

This scheme is illustrated by Figure 8. The SystemC begins 
the execution of Task 1 and, when finished, sends a data 
packet to the SW Task. Task 2 starts and the SystemC 
executes the Hardware_Input_Interface. This is a process that 
models the input interfaces of the hardware subsystem. 
However, its execution does not advance the SystemC local 
time. The process may generate a random interrupt packet 
which informs the SW task of the reception of new data. The 
sent packet via USB generates a USB interrupt which 
interrupts Task 2. Thus, the USB interrupt plays the same 
role as the hardware interrupt. Once the interrupt takes place. 
Once the interrupt takes place, Task 3 begins. Therefore, the 
information needed to be executed by the interrupt routine 
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can be executed. This information can be found in the 
received interrupt packet. 

 

Fig. 8. Synchronization model: scheme 4. 

 To ensure communication and to save the synchronization 
context, an array of shared registers was used. We assumed 
that the HW / SW partitioning was static. Also, the scheduler 
was static and based on data dependence. The shared 
registers were used as a shared connection bus. Although this 
register-based bus modelling was not the same as the actual 
chip bus modelling, it was easy to set up. The register array 
was implemented on the FPGA board and could be accessed 
from the simulator using interrupt services routines. 

The Simulator Engine ensures the verification of sequential 
and parallel applications. Two examples are presented. The 
first one is based on sequential Tasks and the second one is 
based on parallel and sequential Tasks. 

4.2. Hardware Software in The Loop (HSIL) model 

HSIL model is a new co-simulation technique for different 
layers. It synchronizes the continuous simulator and the HW 
accelerator.In line with (Ben Ayed et al., 2013), we consider 
that the time synchronization between the Simulink simulator 
and the processor emulated on the FPGA board a key issue of 
the proposed approach. The verification method is based on 
the following synchronization scheme which respects the 
interaction style between the continuous and the discrete 
model. 

 The Continuous model waits the end of the 
hardware/software task. 

 

Fig. 9. Synchronization scheme for HSIL. 

As can be seen in Figure 9, when a hardware/software 
component is emulated by the board, the continuous model 
uses a waiting loop for data. 

Once the controller task is finished, the emulator sends the 
data to the simulator and a context switch from the board to 
Simulink simulator is taken. Simultaneously, the continuous 
model receives the data and resumes execution. Note that the 
Simulink and the emulator need to exchange information 
about the time. 

4.3. Continuous/ Hardware/Software Co-
Simulation/Emulation model 

Figure 10 summarizes the presented synchronization scheme. 
The key part of the CODIS+ synchronization is localized in 
the hardware description that represents the simulation 
master because the time advancing is tied to time stamp 
obtained from the discrete event. 

CODIS+ proposes a co-simulation tool for heterogeneous 
systems i.e. Continuous/HW/SW. It is based on the co-
simulation/emulation model between continuous simulator, 
discrete simulator and HW accelerator. 

We assume our system contains a continuous model and a 
discrete model comprising four events (A,C,D: HW event, B: 
SW event). 

First, the HW accelerator executes the wait() function that 
makes the processor wait  for HW interrupt and switches 
context to the discrete simulator. Second, the Discrete 
Simulator (DS) executes event A without advancing the time 
and without changing the output variables. Third, a switch 
context is made to Continuous Simulator (CS). The 
continuous model begins its execution until the time stamp is 
reached and returns to DS. Fourth, the update step is made 
i.e. update outputs and time. Fifth, the DS synchronises to the 
HW accelerator to execute the SW event B, and executes the 
Idle() function. Sixth, after the execution of event B, a 
context switch to CS is invoked to align the time and return 
to DS. Seventh, event C is executed. But in this case, we 
assume that the CS generates a state event before the time 
stamp is attained. In this case, a context switch to DS is 
performed and the discrete time is advanced to the time of the 
state event followed by a context switch back to CS. 

5. EXPERIMENTAL RESULTS 

The presented synchronization schemes are implemented for 
Matlab/Simulink for continuous model and 
SystemC/Hardware accelerator for discrete model. It should 
be clearly underscored that the defined synchronization 
scheme presented in section 4 is independent of language or 
tool and tied only to the continuous model and the discrete 
model. 

CODIS+ provides a generic interface for different models as 
shown in Figure 11. 

To analyze the capabilities of the simulation tool, an 
illustrative example was used. This example was a speed 
limiter system used to limit the speed of the car according to 
the driver. The figure 12 exhibits the proposed system 
functionalities.  
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Fig. 10. Synchronization scheme for CODIS+ simulation. 

The discrete part of the system was modelled using 
SystemC/Hardware accelerator and the continuous part was 
modelled using Simulink. 

Speed limiter system was the combination of two studied 
systems in (Ben Ayed et al., 2013; Ben Ayed et al., 2010): 
Fingerprint recognition and Closed-Loop Engine Speed 
Control. The fingerprint system was described by event 
discrete model. It was based essentially on five steps: (1) 
Filtering (2) Binarization (3) Skeletonization (4) Minutia 
extraction (5) Matching. In (Ben Ayed et al., 2016) the 
different parts of fingerprint recognition were portioned using 
the time consumption as follows: 

 Hardware components: Binarization, Filter and 
Matching. 

 Software applications: Minutia extraction and 
Skeletonization. 

The Closed-Loop Engine Speed Control is described by 
discrete and continuous model. This system is composed of 
the following components: 

 Event-discrete parts: Controller and Compression. 

 Continuous parts: Throttle & Manifold, 
Combustion and Vehicle Dynamics. 

Based on CODIS+ model the speed limiter components are 
simulated using: 

 Event-discrete simulator (SystemC): Binarization, Filter 
and Matching. 

 Hardware Accelerator (FPGA board): Minutia 
extraction and Skeletonization. 

 Continuous simulator (Matlab): Throttle & Manifold, 
Combustion and Vehicle Dynamics. 

Figure 13 shows the added interfaces for the Closed-Loop 
Engine Speed Control to support CODIS+ simulation. Table 
1 demonstrates that CODIS+ exhibits the shortest simulation 
time.  

CODIS+ is approximately three times faster than CODIS and 
approximately 8 times faster than Matlab. CODIS+ presents 
an excellent tool based on co-simulation for heterogeneous 
systems. 

The experimental results support the initial hypothesis. 
CODIS+ ensures a minimum simulation time because the SW 
part is simulated by a hardware accelerator instead of an ISS 
(Instruction Set Simulator).   

Table 1. A comparison of the simulation time between different simulation tools. 

 Matlab Simulation  CODIS  CODIS+  

Simulation time (s)  19.2 8.4  2.55 
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Fig. 11. CODIS+ interfaces. 

 

Fig. 12. Speed limiter system. 
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(b)Closed-Loop Engine Speed Control with CODIS+ interfaces 

Fig. 13. Generic interface for CODIS+. 

6. CONCLUSION 

System complexity, heterogeneity of models in the same 
system and time-to-market constraints, present a challenge 
for designers. Dynamic systems consist of pre-designed 
components with different models i.e. continuous model and 
discrete model. That is why, new CAD tools are required for 
modelling and simulation. 

CODIS+ environment is proposed for the simulation of 
heterogeneous systems. This tool provides a generic 
simulation model that generates interfaces for continuous 
models (implemented in Matlab/Simulink) and discrete event 
models (implemented in SystemC and HW accelerators).  

It was shown on a test example that the simulation time was 
reduced by 86% compared to Matlab and 69% compared to 
CODIS environment. 
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