
CEAI, Vol.20, No.1 pp. 98-107, 2018 Printed in Romania

CODIS+: Co-simulation environment for heterogeneous systems

Mossaad Ben Ayed*, Faouzi Bouchhima**, Mohamed Abid***

*Computer Science Department, College of science and humanities at AlGhat, Majmaah University, KSA
Computer and Embedded System laboratory, University of Sfax, Tunisia

 (e-mail:mm.ayed@mu.edu.sa , mossaad_benayed@yahoo.fr)
** ENET'Com college, University of Sfax, Tunisia

(e-mail: f_bouchhima@yahoo.fr)
*** National School of Engineers of Sfax, University of Sfax, Tunisia

(e-mail: mohamed.abid@enis.rnu.tn)

Abstract: Heterogeneous systems ensure the integration of diverse specific components to different
applications in various domains such as the electrical, mechanical and optical fields. They can be defined
as the combination of discrete and continuous models at the same application. This kind of system
presents an important challenge for designers. The main problem is the difference between algorithms of
continuous simulators and algorithms of discrete ones. One of the key challenges is to overcome
problems of the existing environments supporting heterogeneous models. So far, research in Computer-
Aided Design (CAD) tools has attempted to offer a global view of the designed systems and to enable
their overall verification. Indeed, the Continuous DIscrete Simulation (CODIS) tool based on co-
simulation environment proved to be a powerful tool for global verification in heterogeneous systems
(Bouchhima et al., (2005,2007)). This paper will attempt to contribute an extension of the CODIS tool in
two ways. Firstly, it will attempt to integrate SystemC, Simulink simulators and a hardware accelerator
automatically in order to generate global simulation model instances. Secondly, the evaluation of the
simulation model will be performed by using an illustrative application.

Keywords: Co-simulation, Synchronization model, CODIS, Heterogeneous system, Continuous/Discrete
model.

1. INTRODUCTION

Modern systems are increasingly complex and heterogeneous
like mixed-signal systems and real-time controllers.
Nowadays, systems on chip are used for convergence of
multiple technologies. In 2001, Ferroelectric Random Access
Memory (FRAM) and Field Programmable Gate Array
(FPGA) were integrated on chip followed by Micro Electro
Mechanical Systems (MEMS) and chemical sensors in 2003;
electro-optical in 2005; and electro-biological in 2006 (ITRS,
2006).

These systems will be ubiquitous in communications,
automotive, medical and other domains. The global
verification of these systems requires new environments
supporting new techniques enabling reusability, high
abstraction levels and simulation accuracy. Currently,
heterogeneous systems are designed by reusing pre-designed
components to respect the tight constraints of time-to-market.
This type of design represents an important challenge; one of
the key issues being the integration of the pre-built
components specific to different application domains such as
the electrical, the mechanical, and the optical domains
(Balarin et al., 2003; Nicolescu et al., 2002; Urrea et al.,
2015; Minh et al., 2012; Li et al., 2015). Nowadays,
designers build different components to be integrated in one
chip by using the existing powerful tools specifically
designed for a particular application domain such as SystemC
for the electronic digital part and Matlab/Simulink for the

mechanical parts. Nevertheless, they often prefer to keep
using their current tools. Consequently, the best solution of
new CAD tools is to be based on global simulation models
defined independently from specific languages or simulators.
This solution would permit the integration of the best and
most adequate existing tools to benefit from their full
capabilities. For this reason, the purpose of this study was to
use the co-simulation technique. This technique is expected
to allow the description of both the continuous and the
discrete models in a specific and appropriate language despite
its decrease of the simulation speed.

Nevertheless, the co-simulation model must be based on
generic models (independent from languages or simulators).
These models present essentially two difficulties in the
definition of a continuous/discrete co-simulation model:

(1) The heterogeneity of the definitions of the concepts
manipulated by the discrete and the continuous components.

 (2) The need for continuous/discrete communication and
synchronization.

Therefore, co-simulation interfaces are used for overcoming
these difficulties. These interfaces have a great influence on
the accuracy and the performance of the global simulation.
Their automatic generation is very important, since their
design is time consuming and can be an important source of
errors.

CONTROL ENGINEERING AND APPLIED INFORMATICS 99

As a consequence, this paper, proposes a generic architecture
of a discrete/continuous simulation model for an accurate
global verification in heterogeneous system design. Solutions
are provided to implement this model in the case of SystemC,
Simulink simulators and hardware accelerator. In addition,
the continuous/discrete simulation (CODIS+) is presented as
an extension of the CODIS tool, for the automatic generation
of the global simulation model (co-simulation model)
instances. Finally, the proposed model is evaluated using an
illustrative application.

The rest of this paper will be organized as follows:

Section 2 describes the related work. Section 3 presents the
different basic modelling concepts for discrete and
continuous models. Section 4 introduces the CODIS+ tool by
defining the synchronization models and their interfaces.
Section 5 exhibits the experimental results and accuracy
analysis. Finally, section 6 concludes the paper.

2. RELATED WORK

In the past years, although research in the discrete/continuous
simulation area proliferated, it remained behind its digital
counterpart. An overview of related work and existing tools
is given in this section. There are mainly two approaches to
overcome the difficulties of discrete/continuous systems in
modelling and verification; i.e. common approach and co-
simulation approach.

2.1. Common approach

The common approach used a unique language for the
specification of the overall system. Some of these languages
could be obtained by extension of well-established languages.
Illustrative examples were VHDL-AMS (IEEE Std, 2007),
Verilog-AMS (Pecheux et al., 2005) and recently, SystemC-
AMS (Vachoux et al., 2003) extending, respectively VHDL,
Verilog and SystemC for mixed-signal systems design. The
first trials, contributing to the deeper understanding of the
problems in using SystemC and VHDL for mixed-signal
systems design were presented by (Bonnerud et al., 2001;
Pichon et al., 1995). In (Enwich et al., 2001), a SystemC
based framework supporting signal processing-dominated
applications was proposed. The synchronization between the
synchronous dataflow and linear continuous time is using
fixed time step. These solutions allowed the continuous
design and an accelerated time simulation. These methods
suffered from the use of one solver to resolve EDOs and
limitation of the design for different abstraction layers.
Another framework was proposed in (Bonnerud et al., 2001)
where the authors presented a mixed-signal simulation to
simulate an analog to digital data converter. The framework
included C++mixed-signal modules. They implemented a
virtual clock for the scheduling of the analog blocks to avoid
multiple executions of them due to the SystemC scheduler.

Other research based on common approach proposed a novel
language that supports discrete/continuous description as
Ptolemy (Ptolemy, 2015), MLdesigner (Schorcht et al.,
2003), and Modelica (Modelica, 2012).

Ptolemy (Ptolemy, 2015), is an open source java-based
environment that considers heterogeneous systems

represented as a set of components whose interaction styles
are governed by computation models implemented as
‘‘domains’’. It provides a unified infrastructure to assure
hierarchical composition of these computation models. The
necessity to learn a novel language presents its major
drawback.

MLdesigner (Schorcht et al., 2003) has a similar interface as
Simulink but its environment complexity presents a
challenge.

Modelica (Modelica, 2012) can also be considered as one of
these languages. Several commercial simulation tools such as
Dymola and Math Modelica are based on it. This language
provides a set of libraries for several application domains
(electrical, thermal, etc.). However, the concept of discrete
events is difficult to manipulate in this language.

In (Pinki et al., 2003; Riihimaki et al., 2005; Kajtazovic et al.,
2005; Azam, 2005), the authors presented a tool based on
UML approach. This method allows the creation of a model
from a GUI. The use of UML language makes the design
description difficult due to the requirement of a clock
mechanism and events scheduler.

Other work based on approximate metrics (Girard et al.,
2007) accelerates simulation and resolves the problem of
Ordinary Differential Equations (ODEs) complexity,
although the accurate simulation is decreased.

In (Prabhakar et al., 2015; Ghomri et al., 2013), the authors
used Hybrid Automata to explore the real-time property of
heterogeneous systems. But this method is more suitable for
continuous models than for discrete models.

In summary, several attempts were proposed for mixed-signal
simulation on common approach. They required abandoning
well established efficient tools for specific domains (IEEE
Std, 2007; Vachoux et al., 2003; Ptolemy, 2015; Oltean et al.,
2010). Common approach allowed results in shortest
simulation time but suffered mainly from three
disadvantages:

 No use of libraries and dedicated IPs developed by each
domain (discrete/continuous).

 The need to learn a new language.

 The restriction of the design use to few abstraction
layers.

To overcome these shortcomings other researchers, proposed
the use of co-simulation approach.

2.2. Co-simulation approach

The most important benefit of the co-simulation approach
was the synchronization between different simulators. In
(ElTahaway et al., 1993), the authors presented a simulation
model based on VHDL and ELDO. Based on the lock-step
approach with a fixed time step, their model was at the
physical level. Other works used the notion of co-simulation
backplane functions to integrate mixed-signal simulators. In
(Zwolinski et al., 1995), the authors developed a collection of
backplane that allowed simulators to share data during
simulation. They integrated an open source SPICE simulator

100 CONTROL ENGINEERING AND APPLIED INFORMATICS

and a logic simulator. In a similar way, the authors in
(Hickey et al., 2006; Martin et al., 2002) proposed aco-
simulation environment based on Xyce (a SPICE parallel
simulator) and SAVANT (a parallel VHDL simulator). The
interfacing is enabled by C++ classes containing methods for
signal conversion and data exchange between simulators.

The Nexus-PDK environment proposed by Celoxica
(Celoxica) supported co-simulation of cycle accurate C, C++
and Handel-C models with SystemC, MATLAB/Simulink,
VHDL and Verilog simulators. All the models integrated in
this environment were discrete. A similar approach was
adopted by Active-HDL (Active-HDL, 2015).

These different attempts to create a co-simulation
environment suffered from:

- The increase of simulation time.
- The limitation on the number of abstraction layers.

In order to overcome the problems met in co-simulation
approach, Bouchhima et al., (Bouchhima et. al., 2005, 2007)
proposed the CODIS tool. The work of these scholars
presented the following advantages:

- They proposed a generic model for an accurate
continuous/discrete simulation that was independent from
languages and simulator;

- They provided implementation solutions in the case of
SystemC and Simulink simulators;

- They introduced the CODIS tool which can automatically
produce instances of the global simulation model. Hence,
CODIS environment presented the most powerful tool in Co-
simulation approach due to the generic model proposed.
Unfortunately, CODIS still suffers from the increased
simulation time.

Moreover, as was rightly argued by (ElTahaway et al., 1993;
Hickey et al., 2006), Celoxica, (Enwich, et al., 2001;
Dehghanimmohammadabadi et al., 2017), most of the
proposed heterogeneous approaches were application-specific
extensions or specific for a pair of simulators.

In light of this brief review, this paper purports to contribute
the following tentative proposals:

(1) a synchronization model between a discrete simulator
and an emulator for HW/SW design;

(2) a synchronization model between a continuous simulator
and an emulator using Hardware Software In the Loop
(HSIL) techniques;

(3) a synchronization model between a discrete
simulator/continuous simulator and an emulator for
continuous/discrete systems;

 (4) the implementation of the proposed solutions for
SystemC (Al-Junaid et al., 2004) as discrete simulator,
Simulink (Matlab/Simulnik) as continuous simulator and
emulator based on target architecture;

(5) the introduction of the CODIS+ tool which can verify
heterogeneous systems in the first step of design; and finally,

(6) the presentation of an accuracy and performance analysis
using an illustrative application.

3. BASICS MODELING CONCEPT

System description is based on the definition of the required
model. The understanding of different simulation models is
the aim of the definition. As will be mentioned below, the
simulation model can be assigned as a discrete model, as a
continuous model or as a heterogeneous model. Each model
has a different definition that will be presented in the next
Sub-sections.

3.1. Discrete event simulation model

The simulation of discrete models is based on events. Each
executed event can generate new events with the smallest
time stamp. An event is associated with a process.

The simulation depends on description and supported layers.
Many simulators are proposed to increase performance. The
simulation of synchronous systems is based on signals that
can have events only at clock ticks (Chang et al., 1997). The
simulation for data flow models depends on the ordering of
events. A scheduler of discrete events is used for increasing
performance (Patel et al., 2004).

3.2. Continuous simulation model

Systems described by differential and algebraic equations are
considered as continuous models. The simulation step
demands the numerical solution of these equations even some
ODEs are complexes. As a solution, many algorithms, (Gupta
et al., 1985), are proposed to discretize the continuous time
into different discrete time instants. Then the numerical value
of state is computed at these ordered time instants. The
integration step presents the interval between two
consecutive time instants. This integration step can be fixed
or variable according to the used algorithm in order to ensure
the stability, the accuracy and the continuity of the signals.

3.3. Continuous/discrete simulation: Discussion

Most dynamic systems are modelled using continuous and
discrete models. The difference between the two models is
presented essentially in the notion of time, the means of
communication and the process activation rules.

To overcome the heterogeneity of modelling, two models
were adopted in literature: common and co-simulation
approaches, which are presented in related work section.

As will be shown below, the co-simulation approach has
many advantages and is more suitable for research because it
builds the results of past researchers.

Bouchhima (Bouchhima et al., 2007) findings on CODIS
were the result of cooperative work between GRM and CES
laboratories. CODIS tool was based on co-simulation
approach. It did not only ensure synchronization between
continuous and discrete simulators but also allowed the
creation of generic interfaces. CODIS model contained
essentially two layers: synchronization layer and
communication layer. The proposed synchronization scheme
for the CODIS tool was applied in both cases of

CONTROL ENGINEERING AND APPLIED INFORMATICS 101

Matlab/Simulink and SystemC/Modelsim.

The next section describes the CODIS concept for
heterogeneous simulation.

4. ACCELERATED CONTINUOUS DISCRETE
SIMULATION (CODIS+) MODEL

The CODIS+ proposes an accelerated co-simulation method
using hardware acceleration. This extension is not only to
accelerate the simulation but also allows hardware
description using via on board emulation. This idea will be
described in the next sections.

CODIS+ is based on co-simulation/emulation bus that
comprising two layers: (1) Communication layer and (2)
Synchronization layer. Figure 1 describes the general
architecture of CODIS+. The communication layer handles:
(1) data exchange and (2) signals conversion. The first

function allows writing or reading signal values that connect

the continuous model and the discrete model. Data exchange
is possible in both directions and depends on the type of the
context switch. When the switch is between discrete
simulator and continuous simulators, the data exchange is
ensured by shared memory. When the switch is to hardware
accelerator, the data exchange is ensured by interrupt method
(Ben Ayed et al., 2013; Ben Ayed et al., 2012). Signals
conversion takes care of the conversion between analogue
signals and discrete signals.

CODIS+ can be presented as three kinds of simulation as
shown in figure 2: (1) Hardware Software Co-Simulation
model (2) Hardware Software in The Loop (3)
Continuous/Hardware/Software Co-Simulation/Emulation.

The next sub-sections present the synchronization schemes
for different kinds of CODIS+ simulation.

Fig. 1. Generic architecture for CODIS+ simulation.

Fig. 2. Supported simulations of CODIS+.

4.1. Hardware Software Co-Simulation model

The hardware software co-simulation model is based on
synchronization schemes which respect not only the
continuous and discrete model proposed in the CODIS tool,
but also the interaction style that can be involved between
HW and SW components. In the same design, different
synchronization schemes can be used for HW and SW
components. The simulation time of SW applications
represents the execution time in the target base architecture.
Nevertheless, it should be stated that the task scheduling
policy is not the aim of this paper. The goal is to define the

 relationship between simulators based on synchronization
schemes. SC time in the following figure represents the
advance time of discrete simulator.

 Scheme 1: The SW Task receives data periodically
from the hardware Task.

As is shown in figure 3, the scheme is based on FIFO
memory between SW Task and HW Task. The main idea is
based on fixed synchronization time between simulator and
emulator. Because of the difference in speed, the HW
imposes a synchronization Time (Tsync). This Tsync must be
greater than Task time of HW or SW.

Discrete model Continuous model

Software
description

Hardware
description

State events consideration

 Context switch

Detection and sending of state events

Discrete events detection

Data exchange

Context switch

Signals conversion and data
exchange

Synchronization layer

Communication layer

Co-simulation/Emulation bus

Discrete model Continuous model

Hardware description Software description

(1) Hardware Software Co-Simulation (2) Hardware Software in The Loop

(3) Continuous/Hardware/Software Co-Simulation/Emulation

102 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 3. Synchronization model: scheme 1.

 Scheme 2: The SW Task waits the end of the
hardware Task.

Figure 4 presents the synchronization model: scheme 2. It is
clear that when a hardware component is simulated by
SystemC, the SW Task uses a waiting loop for data. Once the
hardware Task (Task1) is finished, the simulator sends data
to the SW Task and a context switch from SystemC to board
takes place. Then, the SW Task receives data and resumes the
execution. After that, the execution time of Task1 is modeled
by the SystemC wait () function. The amount of time used by
the wait function is sent to the SW part to inform it about the
duration of the waiting loop as can be seen in figure 4. The
SystemC and the emulator need to exchange the time stamp
at every context switch.

Fig. 4. Synchronization model: scheme 2.

 Scheme 3: The SW Task receives an interrupt to
indicate the end of the hardware Task

Figure 5 illustrates the synchronization model: scheme
3where the software does not use a waiting loop. However,
the end of the Task is indicated by interrupt. Therefore, the
software can execute the Task instead of waiting. The
Simulation scheduler, running on the target processor, sends
data to the simulation interfaces as shown by arrow 0. This
activates the hardware Task1. At the end of Task 1 process,
and before sending data to SW Task, the
wait_for_interrupt(sc_time) function is called as can be seen
in Figure 6. This makes the simulator advance its time as
shown by arrow 1. Furthermore, it sends an interrupt packet
to inform the emulator of the next time stamp as shown by

arrow 2. Simultaneously, the simulation scheduler activates a
timer with a period that coincides with the received interrupt
time stamp and begins the execution of an intermediate Task;
i.e. an eventual user background Task. When the timer is
reached, it interrupts the background Task. Thus the
simulation scheduler activates Task 2 implying that the
number of the interrupt is received with the interrupt packet.
The last one may request data, thus Task 1 resumes execution
and sends data packet As shown by arrow 4; which activates
Task 2. Figure 7 shows the template of the code.

Fig. 5. Synchronization model: scheme 3.

 Void wait_for_interrupt (sc_time t)

{wait(t);

 send_interrupt_packet(…..) ;}

Fig. 6. Wait_for_interrupt code.

Where t is an estimation of the Task 1 duration

/* Task1 code */

 Instructions

 Wait_for_interrupt (t);

 Switch_context();/* context switch to SystemC */

Fig. 7. Template of synchronization code.

 Scheme 4: The SW Task may receive a random
interrupt resulting from externally received data

This scheme is illustrated by Figure 8. The SystemC begins
the execution of Task 1 and, when finished, sends a data
packet to the SW Task. Task 2 starts and the SystemC
executes the Hardware_Input_Interface. This is a process that
models the input interfaces of the hardware subsystem.
However, its execution does not advance the SystemC local
time. The process may generate a random interrupt packet
which informs the SW task of the reception of new data. The
sent packet via USB generates a USB interrupt which
interrupts Task 2. Thus, the USB interrupt plays the same
role as the hardware interrupt. Once the interrupt takes place.
Once the interrupt takes place, Task 3 begins. Therefore, the
information needed to be executed by the interrupt routine

Data packet

1
2

3

5
6

7

8

0

Task 1

Task 3

HW SW

Data packet

Data packet

Interrupt packet Intermediate
Task

 Task 2

SC Time Physical Time

Request Data 4

Task2: Waiting
loop

Task 2: processing

HW SW

Task 1 Data packet

Data packet

Idle time to
synchronize

Task 3

SC Time Physical Time

Task 2

HW SW

Task 1

Tsync
Data packet

Data packet
2 Tsync

SC Time Physical Time

Request

CONTROL ENGINEERING AND APPLIED INFORMATICS 103

can be executed. This information can be found in the
received interrupt packet.

Fig. 8. Synchronization model: scheme 4.

 To ensure communication and to save the synchronization
context, an array of shared registers was used. We assumed
that the HW / SW partitioning was static. Also, the scheduler
was static and based on data dependence. The shared
registers were used as a shared connection bus. Although this
register-based bus modelling was not the same as the actual
chip bus modelling, it was easy to set up. The register array
was implemented on the FPGA board and could be accessed
from the simulator using interrupt services routines.

The Simulator Engine ensures the verification of sequential
and parallel applications. Two examples are presented. The
first one is based on sequential Tasks and the second one is
based on parallel and sequential Tasks.

4.2. Hardware Software in The Loop (HSIL) model

HSIL model is a new co-simulation technique for different
layers. It synchronizes the continuous simulator and the HW
accelerator.In line with (Ben Ayed et al., 2013), we consider
that the time synchronization between the Simulink simulator
and the processor emulated on the FPGA board a key issue of
the proposed approach. The verification method is based on
the following synchronization scheme which respects the
interaction style between the continuous and the discrete
model.

 The Continuous model waits the end of the
hardware/software task.

Fig. 9. Synchronization scheme for HSIL.

As can be seen in Figure 9, when a hardware/software
component is emulated by the board, the continuous model
uses a waiting loop for data.

Once the controller task is finished, the emulator sends the
data to the simulator and a context switch from the board to
Simulink simulator is taken. Simultaneously, the continuous
model receives the data and resumes execution. Note that the
Simulink and the emulator need to exchange information
about the time.

4.3. Continuous/ Hardware/Software Co-
Simulation/Emulation model

Figure 10 summarizes the presented synchronization scheme.
The key part of the CODIS+ synchronization is localized in
the hardware description that represents the simulation
master because the time advancing is tied to time stamp
obtained from the discrete event.

CODIS+ proposes a co-simulation tool for heterogeneous
systems i.e. Continuous/HW/SW. It is based on the co-
simulation/emulation model between continuous simulator,
discrete simulator and HW accelerator.

We assume our system contains a continuous model and a
discrete model comprising four events (A,C,D: HW event, B:
SW event).

First, the HW accelerator executes the wait() function that
makes the processor wait for HW interrupt and switches
context to the discrete simulator. Second, the Discrete
Simulator (DS) executes event A without advancing the time
and without changing the output variables. Third, a switch
context is made to Continuous Simulator (CS). The
continuous model begins its execution until the time stamp is
reached and returns to DS. Fourth, the update step is made
i.e. update outputs and time. Fifth, the DS synchronises to the
HW accelerator to execute the SW event B, and executes the
Idle() function. Sixth, after the execution of event B, a
context switch to CS is invoked to align the time and return
to DS. Seventh, event C is executed. But in this case, we
assume that the CS generates a state event before the time
stamp is attained. In this case, a context switch to DS is
performed and the discrete time is advanced to the time of the
state event followed by a context switch back to CS.

5. EXPERIMENTAL RESULTS

The presented synchronization schemes are implemented for
Matlab/Simulink for continuous model and
SystemC/Hardware accelerator for discrete model. It should
be clearly underscored that the defined synchronization
scheme presented in section 4 is independent of language or
tool and tied only to the continuous model and the discrete
model.

CODIS+ provides a generic interface for different models as
shown in Figure 11.

To analyze the capabilities of the simulation tool, an
illustrative example was used. This example was a speed
limiter system used to limit the speed of the car according to
the driver. The figure 12 exhibits the proposed system
functionalities.

Continuous
model

Discrete
model: Control

component

Simulator

Continuous model

Emulator

Discrete model

Data packet

Data packet

 Time Physical Time

Time SC Time

Waiting loop

Task 2

HW SW

Task 1
Data packet

Data packet

Input Interface

Interruption packet

Task 3

Idle time to
synchronize

104 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 10. Synchronization scheme for CODIS+ simulation.

The discrete part of the system was modelled using
SystemC/Hardware accelerator and the continuous part was
modelled using Simulink.

Speed limiter system was the combination of two studied
systems in (Ben Ayed et al., 2013; Ben Ayed et al., 2010):
Fingerprint recognition and Closed-Loop Engine Speed
Control. The fingerprint system was described by event
discrete model. It was based essentially on five steps: (1)
Filtering (2) Binarization (3) Skeletonization (4) Minutia
extraction (5) Matching. In (Ben Ayed et al., 2016) the
different parts of fingerprint recognition were portioned using
the time consumption as follows:

 Hardware components: Binarization, Filter and
Matching.

 Software applications: Minutia extraction and
Skeletonization.

The Closed-Loop Engine Speed Control is described by
discrete and continuous model. This system is composed of
the following components:

 Event-discrete parts: Controller and Compression.

 Continuous parts: Throttle & Manifold,
Combustion and Vehicle Dynamics.

Based on CODIS+ model the speed limiter components are
simulated using:

 Event-discrete simulator (SystemC): Binarization, Filter
and Matching.

 Hardware Accelerator (FPGA board): Minutia
extraction and Skeletonization.

 Continuous simulator (Matlab): Throttle & Manifold,
Combustion and Vehicle Dynamics.

Figure 13 shows the added interfaces for the Closed-Loop
Engine Speed Control to support CODIS+ simulation. Table
1 demonstrates that CODIS+ exhibits the shortest simulation
time.

CODIS+ is approximately three times faster than CODIS and
approximately 8 times faster than Matlab. CODIS+ presents
an excellent tool based on co-simulation for heterogeneous
systems.

The experimental results support the initial hypothesis.
CODIS+ ensures a minimum simulation time because the SW
part is simulated by a hardware accelerator instead of an ISS
(Instruction Set Simulator).

Table 1. A comparison of the simulation time between different simulation tools.

 Matlab Simulation CODIS CODIS+

Simulation time (s) 19.2 8.4 2.55

Wait()

Idle()

Wait()

 t

 t

 t

Hardware
Accelerator

Discrete
Simulator

Continuous
Simulator

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 A

B

C
D

Simulation Step

Occurred/Scheduled Event

Synchronization

Detected Event

State event detected by the discrete simulator State event generated by continuous simulator

CONTROL ENGINEERING AND APPLIED INFORMATICS 105

Fig. 11. CODIS+ interfaces.

Fig. 12. Speed limiter system.

(a)Closed-Loop Engine Speed Control model

Copyright 1990-2005 The MathWorks Inc.

1

crank speed
(rad/sec)

Nedge180

valve timing

throttle deg (purple)
load torque Nm (yellow)

30/pi

rad/s
to rpm

Load

drag torque

Teng

Tload

N

Vehicle
Dynamics

Throttle Ang.

Engine Speed, N

trigger

mass(k+1)

Throttle & Manifold

Speed
Setpoint

Engine
Speed (rpm)

Desired rpm

N

Throttle Ang.

Controller

mass(k+1)

mass(k)

trigger

Compression

Air Charge

N

Torque

Combustion

Engine
Speed

Throttle
Degrees

Input finger

Fingerprint recognition

Closed-Loop Engine
Speed Control

Unrecognized

(Recognized, Max speed)

Discrete model

Continuous model

Continuous model

Discrete model

(Hardware description)

Discrete model

(Software description)

Inter_In

Inter_Out

Interface_Out

Inter_In

Inter_Out

Interface_In

Sync Synchronization

Simulink

SystemC

Hardware Accelerator

106 CONTROL ENGINEERING AND APPLIED INFORMATICS

(b)Closed-Loop Engine Speed Control with CODIS+ interfaces

Fig. 13. Generic interface for CODIS+.

6. CONCLUSION

System complexity, heterogeneity of models in the same
system and time-to-market constraints, present a challenge
for designers. Dynamic systems consist of pre-designed
components with different models i.e. continuous model and
discrete model. That is why, new CAD tools are required for
modelling and simulation.

CODIS+ environment is proposed for the simulation of
heterogeneous systems. This tool provides a generic
simulation model that generates interfaces for continuous
models (implemented in Matlab/Simulink) and discrete event
models (implemented in SystemC and HW accelerators).

It was shown on a test example that the simulation time was
reduced by 86% compared to Matlab and 69% compared to
CODIS environment.

7. ACKNOWLEDGEMENT

The authors would like to express their gratitude to Dr. Ayadi
Hajji for his help with proofreading, correcting and
improving the English of the manuscript.

The author would like to thank Deanship of Scientific
Research at Majmaah University for funding this project
under the number 37/112.

REFERENCES

Active-HDL (2015), available on line at
/http://www.aldec.com/ActiveHDLS, Established in 1984,
final revision in 2015.

Al-Junaid, H., and Kazmierski, T.J. (2004), SEAMS - a
SystemC Environment with Analog and Mixed- Signal
Extensions, IEEE International Symposium on Circuits
and Systems, IEEE.

Azam, F., Zhang, L., and Ahmad, R. (2005), Using UML
profile for connecting information architecture and
detailed information design, Proceedings of the IEEE
Symposium on Emerging Technologies, 423 – 428, IEEE.

Ben Ayed, M., Bouchhima, F., and Abid, M. (2013), A Fast

Simulation Emulation Engine, Informacije MIDEM -
Journal of Microelectronics, ElectronicComponents and
Materials, Volume (43), 162 – 172.

Ben Ayed, M., Bouchhima, F., and Abid, M. (2013), A novel
verification technique for control units, The International
Journal of Engineering and Technology (IJET), Volume
(5) 1990-1999.

Ben Ayed, M., Bouchhima, F., and Abid, M. (2010), A Novel
Application of the Classifier DECOC Based on
Fingerprint Identification, Interactive Multimodal
Pattern Recognition in Embedded Systems IMPRESS
Workshop on Database and Expert Systems Applications
DEXA, IEEE.

Ben Ayed, M., Bouchhima, F., and Abid, M. (2012), A Fast
Hardware/Software Co-Verification Method using a real
hardware acceleration, the 24th International Conference
of Microelectronics ICM, IEEE.

Ben Ayed, M., and Elkosantini, S. (2016), An Accelerated
Architecture Based on GPU and Multi-Processor Design
for Fingerprint Recognition, International Journal of
Advanced Computer Science and Applications, Volume
(7), 337-348.

Bonnerud, T.E., Hernes, B., and Ytterdal, T. (2001), A
mixed-signal, functional level simulation framework
based on SystemC for system-on-a-chip applications",
IEEE Custom Integrated Circuits proceedings, IEEE.

Bouchhima, F., Nicolescu, G., Aboulhamid, M., and Abid,
M. (2007), Generic discrete-continuous simulation
model for accurate validation in heterogeneous systems
design, Microelectronics Journal, Volume (38), 805-
815.

Bouchhima, F., Nicolescu, G., Aboulhamid, M., and Abid,
M. (2005), Discrete-continuous simulation model for
accurate validation in component-based heterogeneous
SoC design, The 16th IEEE International Workshop on
Rapid System Prototyping, IEEE, 181 – 187.

Balarin, F., Watanabe, Y., and Hsieh, H. (2003), Metropolis:
an integrated electronic system design environment,
Computer, Volume (36), 45–52.

CONTROL ENGINEERING AND APPLIED INFORMATICS 107

Celoxica, available on line at
/http://www.celoxica.com/methodologyS.

Chang, W.T., Ha, S., and Lee, E.A. (1997), Heterogeneous
simulation—mixing discrete-event models with
dataflow, Journal of VLSI Signal Processing Systems -
Special issue on the rapid prototyping of application
specific signal processors (RASSP) program, Volume
(15), 127-144.

Dehghanimmohammadabadi, M., and Keyser, T.K. (2017),
Intelligent simulation: Integration of SIMIO and
MATLAB to deploy decision support systems to
simulation environment, Simulation Modelling Practice
and Theory, Volume (71), 45-60.

ELTahaway, H., Rodriguez, D., Sabiro, S.G., and Mayol, J.J.
(1993), VHDeLDO: a new mixed mode simulation,
Proceedings EURODAC’93.

Enwich, K., Schwarz, P., Grimm, C., and Waldschmidt, K.
(2001), SystemC extensions for mixed-signal system
design, System Specification & Design Languages, 19-
28, Chapter 2, Springer US.

Ghomri, L., and Hassane, A. (2013), Continuous flow
Systems and Control Methodology Using Hybrid Petri
nets, Journal of control engineering and applied
informatics, Volume (15), 106-116.

Girard, A., and Pappas, G. J. (2007), Approximation Metrics
for Discrete and Continuous Systems, IEEE
Transactions on Automatic Control, Volume (52), No. 5,
p.782-798, 2007.

Gupta, K., Davis, R.S., and Tescher, P.E. (1985), A review of
recent developments in solving ODES, ACM Computing
Surveys (CSUR), Volume (17), 5-47.

Hickey, D.R. , Wilsey, P.A. , and Hoekstra, R.J. (2006),
Mixed-signal simulation with the Simbus Backplane,
39th Simulation Symposium, IEEE.

IEEE Std 1076.1 (2007), IEEE Standard VHDL Analog and
Mixed-signal Extensions, IEEE.

ITRS (2006), International Technology Roadmap for
Semiconductor Design, available on line at
/http://public.itrs.net/S.

Kajtazovic, S., Steger, C., and Pistauer, M. (2005), A HDL-
independent modeling methodology for heterogeneous
system designs, IEEE Behavioral Modeling and
Simulation Workshop, p. 88 – 93.

Li, S., and Cao, J. (2015), Distributed adaptive control of
pinning synchronization in complex dynamical networks
with non-delayed and delayed coupling, International
Journal of Control, Automation, and Systems, Volume
(13), 1076–1085.

Martin, D.E., Wilsey, P.A., and Hoekstra, R.J. (2002),
Integrating multiple parallel simulation engines for
mixed-technology parallel simulation, Simulation
Symposium, IEEE.

Matlab/Simulink, available on line at www.mathworks.com.
Nicolescu, G., Yoo, S., and Bouchhima, A. (2002),

Validation in a component-based design flow for
Multicore SoCs, in Proceedings of ISSS, IEEE.

Minh, T., and Pumwa, J. (2012), Simulation and Control of
Hybrid Electric Vehicles, International Journal of

Control, Automation, and Systems, Volume (10), 308-
316.

Modelica (2012), A unified object-oriented language for
physical systems modeling, specifications report,
www.modelica.orgS.

Oltean, V.E., Dobrescu, R., Popescu, D., and Nicolae, M.
(2010), Hybrid modelling and simulation approaches for
a class of mechatronic systems, Journal of control
engineering and applied informatics, Volume (12), 47-
54.

Patel, H.D., and Shukla, S.K. (2004), Towards a
heterogeneous simulation kernel for system level
models: a SystemC kernel for synchronous data flow
models, IEEE Computer society Annual Symposium on
VLSI, IEEE.

 Pecheux, F., Lallement, C., and Vachoux, A.(2005), VHDL-
AMS and Verilog-AMS as Alternative Hardware
Description Languages for Efficient Modeling of
Multidiscipline Systems, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 204-225.

Pichon, F., Blanc, S., and Candaele, B. (1995), Mixed-signal
modeling in VHDL for system-on-chip applications,
European Design and Test Conference, IEEE.

Pinki, M., Francis, M., Chandrasekhar, V., Austin, A., and
Mantooth, H.A. (2003), Achieving language
independence with Paragon, International Workshop on
Behavioral Modeling and Simulation, p. 149-153.

Prabhakar, P., Duggirala, P.S., Mitra, S., and Viswanathan,
M. (2015), Hybrid automata-based cegar for rectangular
hybrid systems , Formal Methods in System Design,
Volume (46), 105-134.

Ptolemy (2015), University of California, Berkeley,
/www.ptolemy.eecs.

Riihimaki, J., Kukkala, P., and Kangas, T., Hannikainen, M.,
Hamalainen, T.D. (2005), Interfacing UML 2.0 for
Multiprocessor System-on-ChipDesign Flow,
International Symposium on System-on- Chip, p. 108-
111.

 Schorcht, G., Troxel, I., Farhangian, K., Unger, P., Zinn, D.,
Mick, C.K., George, A., and Salzwedel, H. (2003),
System-level simulation modeling with MLDesigner,
Modeling, Analysis and Simulation of Computer
Telecommunications Systems, 11th IEEE/ACM
International Symposium, IEEE, p 207 – 212.

Urrea, C., and Coltters, J. P. (2015), Design and
implementation of a graphic 3D simulator for the study
of control techniques applied to cooperative robots,
International Journal of Control, Automation and
Systems, Volume (13), 1476–1485.

Vachoux, A., Grimm, C., and Einwich, K. (2003), Analog
and mixed signal modeling with SystemC-AMS,
Proceedings of the 2003 International Symposium on
circuits and systems, IEEE.

 Zwolinski, M., Garagate, C., and Mrcarica, Z. (1995),
Anatomy of a simulation backplane, IEE Proceedings -
Computers and Digital Techniques, Volume(142), 377-
385.

