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Abstract: This paper presents a collaborative control scheme to optimize the trajectory-tracking 
performance of the motor that is installed at the metacarpophalangeal (MCP) joint of a robotic finger. A 
dynamically compensated adaptive-proportional-derivative (APD) tracking controller is used to nullify 
the tracking errors during free-space motion. An APD compliance controller is used to alleviate 
disturbance caused by the application of contact-force during the grasping operation. It achieves this 
objective by altering the reference trajectory, based on the magnitude of applied force. The PD gains of 
both controllers are adaptively tuned in order to quickly respond to the changes in the system dynamics. 
Two different intelligent self-tuning mechanisms are used and comparatively analyzed to adaptively 
adjust the PD gains of these controllers; namely, fuzzy inference system (FIS) and iterative learning 
algorithm (ILA). An adaptive-neuro-fuzzy-inference-system (ANFIS) is used as an inverse model to 
transform the reference trajectory into joint-angle dynamics of the finger. It also acts as a feed-forward 
controller and supervises the trajectory tracking. The feed-forward and tracking controller outputs are 
beneficially combined via a linearized feedback control law to deliver optimal motor torque commands. 
The results of real-time experiments are presented to validate the robustness of the proposed controller. 

Keywords: Robotic finger, adaptive tracking controller, compliance controller, ANFIS, fuzzy inference 
system, iterative learning algorithm. 

1. INTRODUCTION 

The five-fingered robotic hands (FFRH) are capable of 
imitating the human hand movements. Control of FFRH 
requires the robotic finger joints to precisely track the input 
trajectory patterns. The FFRH is constructed by keeping in 
view the anatomy of a human hand, as shown in Fig. 1. 
Various designs of anthropomorphic robotic arms are 
presented in (Carbone and Ceccarelli, 2008; Chen et al., 
2012; Xu et al., 2012). A robust optimal tracking control 
system can improve the agility and flexibility of these end-
effectors and allows for dexterous grasping and manipulation 
of objects, especially in tele-operation applications. Hence, in 
this paper, an adaptive collaborative position control 
mechanism is presented to improve the trajectory tracking 
response of a robotic finger, even in the presence of time-
varying reference inputs or bounded disturbances. 

 

Fig. 1. Anatomy of human hand (Chen and Naidu, 2013). 

A lot of work has been done in the past to develop novel and 
innovative tracking control schemes for robotic hands (Chen 

and Naidu, 2011; Niehues et al., 2014). Hybrid tracking 
control strategies offer the best attributes of the different 
controllers that are being utilized by them (Chen et al., 2014). 
Therefore, the proposed control scheme combines the control 
outputs of a classical feedback controller and an intelligent 
feed-forward controller to achieve an optimal tracking 
control performance. The feed-forward controller ensures 
efficient and accurate tracking of reference trajectory by 
augmenting the tracking controller with the dynamic changes 
in the reference trajectory. An intelligent learning and 
inference system is used for this purpose. Primarily, it acts as 
an inverse kinematic model to translate the trajectory (given 
in Cartesian space) into joint-space. Secondarily, it acts a 
feed-forward controller to dynamically actuate the finger 
joints according to the reference trajectory (Rezaeeian et al., 
2008). The studies show that the ANFIS is a superior 
intelligent control mechanism than the fuzzy logic or the 
artificial neural controllers. It adaptively combines the 
inference and learning based features of both controllers, 
respectively (Carbureanu, 2014; Potluri et al., 2010; Saini 
and Rani, 2012; Zaki et al., 2010). In this research, a well-
postulated ANFIS is used as an inverse model to generate the 
necessary motor torque commands based on the dynamic 
changes in the desired trajectory (Duka, 2015).  

The trajectory tracking controller serves to minimize the 
tracking deviations, occurring between the reference 
trajectory and the actual response traced by the finger joint, 
caused by friction, modeling errors, or exogenous 
disturbances. Moreover, it improves the convergence-rate of 
the system in case of large transient. The PID controllers are 
widely used in process control industry and robotics 
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(Bequette, 2003; Bhatti et al., 2015; Shauri et al., 2014). It is 
a model-free control mechanism that depends on the 
weighted sum of the error, its rate-of-change and recent sum. 
However, the PD controllers have better asymptotic 
convergence capability (Shang et al., 2009). Therefore, in this 
research, the trajectory tracking control of the robotic finger 
is implemented via a dynamically compensated PD 
controller, where in the dynamic changes in the reference 
trajectory is provided by the feed-forward controller.  

The contact-force controllers play an important role in 
improving the tracking control mechanism of robotic 
manipulators. These controllers enable the robotic fingers to 
firmly grasp an object without de-shaping it or disturbing the 
dynamic performance of the robotic fingers. The 
conventional force controllers tend to compare the contact-
force with a set-point value and generate a control command 
to alleviate the error. However, this methodology is not 
practically viable, because it is very cumbersome to pre-
define the set-point values of force before every grasping 
application. The PD compliance controller offers a better 
alternative solution (Song and Hsu, 2011). In this technique, 
the instantaneous magnitude of the contact-force being 
applied is used to alter the reference trajectory directly. The 
modified trajectory input allows the dynamic tracking 
controller to apply a reasonable amount of torque to the joint-
motors so that the robotic fingers can appropriately penetrate 
the surface of the object and grasp it firmly. Thus, no set-
point of force is needed.  

The linear combination of the error-dynamics in PD 
controllers offers a robust and efficient control strategy; if 
and only if the weightages of the error-dynamics are tuned 
properly. These weightages are denoted as the PD gains. The 
conventional techniques used to tune the controller gains do 
not always yield the best solution. The meta-heuristic search 
and optimization algorithms offer a better solution 
(Vijayakumar and Manigandan, 2016). However, in some 
practical cases, even the most optimally tuned fixed gain 
controllers are unable to control the complex dynamical 
systems. This is majorly because they lack the ability to 
handle the abrupt variations incurred in the system’s states. In 
order to quickly suppress the affects of bounded exogenous 
disturbances and parametric uncertainties, the PD gains of the 
tracking and the compliance controllers must be adaptively 
adjusted. Several intelligent self-tuning techniques have been 
discussed in the literature. The FIS is a popular model-free 
self-tuning technique. The system relies upon a heuristically 
synthesized fuzzy rule-base to dynamically adjust the PD 
gains (Baroud et al., 2015; Karray and Feki, 2015). Another 
effective technique to adaptively tune the PD gains is the 
usage of ILA (Xu and Huang, 2007). The ILA observes the 
performance of the system in response to the correctional 
efforts provided by the algorithm itself in the previous 
iterations. It then uses this knowledge to improve the effort in 
the present iteration. The iterative process continues until the 
desired correctional effort is achieved (Xu et al., 2009). In 
this research, the tracking and compliance controllers are 
separately self-tuned via FIS and ILA. Their contributions in 
optimizing the tracking and compliance control mechanisms 
are tested turn-by-turn on the index finger of an FFRH 

prototype via real-time ‘hardware-in-the-loop’ experiments. 
The corresponding results are comparatively analyzed in 
order to choose a superior self-tuning technique for the 
synthesis of a robust tracking controller. 

The rest of the paper is formatted as follows: Section 2 
presents the experimental setup of the robotic finger. The 
dynamics of the robotic finger are discussed in section 3. The 
control system design is explained in section 4. Section 5 
presents the real-time experiments and their results to 
evaluate the performance of the proposed control scheme. 
Section 5 concludes the paper.   

2. EXPERIMENTAL SETUP 

The experimental setup used to test the proposed control 
mechanism is described in the following sub-sections.  

2.1 Electronic hardware setup 

The robotic hand contains five fingers. Each finger is 
actuated with the aid of a mini permanent magnet direct-
current (PMDC) geared motor. Optical encoders are used to 
acquire the information regarding the instantaneous position 
of the motor shaft, and hence the MCP joint-angles (θr) of 
each finger. Capacitive tactile force sensors are appropriately 
placed at interior side finger tips to measure the contact-force 
(fR) applied by the robotic-fingers upon grasping an object. 
All the sensor readings are passed through a low pass filter to 
remove high-frequency noise and outlier data from the 
acquired readings. The filtered data is then differentiated to 
attain the rate-of-change of joint-angles ( ) and the rate-of-
change of applied contact-force ( ). The sensor readings and 
their derivatives are then fed to tracking as well as 
compliance controller, respectively. The motor torque control 
commands generated by the controller are applied to the 
joint-motor via a dedicated motor driver circuit. 

2.2 Software architecture 

A LabVIEW based graphical user interface (GUI), running 
on a personal computer, is used in this research (Elmerabete 
et al., 2010). It is used to apply the reference input signal, 
visualize the corresponding joint-angle response (and other 
sensor readings), run the control routine, and generate 
appropriate control signals. In order to conduct the 
“hardware-in-the-loop” simulations, a device is needed to 
relay the information regarding the current states of the joint-
motor from the sensors to the GUI, as well as to 
communicate the string of control signals issued by the 
software to the motor driver circuit. Hence, an 8-bit 
embedded microcontroller is interfaced with the GUI 
software to measure the response and accordingly control the 
position of the robotic finger-joint in real-time. Initially, the 
reference trajectory is fed to the ANFIS. The ANFIS acts as 
an inverse model to generate the information regarding the 
MCP joint-angle, angular velocity, and angular acceleration. 
The reference angle and angular velocity are fed as to the 
APD tracking controller for comparison and computation of 
tracking error. 

The measured values of joint-angle and force, acquired by the 
microcontroller via the encoders and force sensor 
(respectively), are filtered and then serially transmitted (at 
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9600 bps) to the LabVIEW application. The filtered sensor 
data is differentiated and resulting information is compared 
with their counter-parts from reference input. The resulting 
angular-error (or tracking-error) and force dynamics are 
evaluated and fed to the APD based tracking and compliance 
control routines, respectively. The angular acceleration 
delivered by the ANFIS and tracking control command 
delivered by the APD controllers are added together. The 
collaborative torque control output is transmitted to the 
microcontroller where it is translated to generate an 
appropriate pulse-width-modulated (PWM) command. 
Eventually, this PWM command drives the joint-motor. The 
entire system is operated at a sampling frequency of 250 Hz. 

2.3 Embodiment design 

The robotic hand has five fingers with one degree-of-freedom 
in each finger. The motors are installed at the MCP joint of 
each finger. A tendon-driven (wire-pulley) mechanism is 
used, in conjunction with the joint-motor, to bend or stretch 
each finger. The motors offer sufficient driving torque at low 
rotational speed, have a compact size, and are light in weight. 
Each fingertip moves from its initial extension posture (1.55 
rad.) to its maximum flexion posture (0.21 rad.) The 
schematic of the tendon-driven robotic finger-joint is 
represented in Fig. 2. The relationship between τ1 (MCP 
joint-torque) and the corresponding tension (F) in the tendon 
is given by (1).  

τ1=	rF                                                                                    (1) 

where, r is the radius of the joint. The tension is proportional 
to the length of the tendon (l), as given in (2). The stiffness-
value (kt) serves as the constant of proportionality. 

F	=	ktl                                                                                   (2) 

The resulting position of the tendon (y) is given by (3). 

y	=	rθr	+	l                                                                             (3) 

where, θr is the measured angular-position of the MCP joint. 

 

Fig. 2. Schematic of a tendon-driven robotic finger. 

One complete finger, equipped with the wire pulley 
mechanism, is shown in Fig. 3. The entire structure is 
fabricated with a 5.0 mm think fiber-glass sheet because it is 
durable, light-weight and cheap. The fully fabricated 
structure of mechanical hand is shown in Fig. 4. 

3. DYNAMICS OF ROBOTIC FINGER 

In this section, the motion of the proposed robotic-finger 
mechanism is analyzed. These dynamics are explained in 
terms of the mathematical model of the motor, the forward 
kinematics of the finger-joint, and the inverse kinematic 
model used for generating a trajectory in the joint-space. 

3.1 Actuator Model 

The fingers in the robotic hand are being driven by metal-
geared PMDC servo motors (Widhiada et al., 2015). The 
transfer function of the angular-displacement of this motor 
with respect to excitation voltage applied to it is presented in 
(4). 

 

Fig. 3. Structure of robotic finger. 

 

Fig. 4. Five-fingered robotic hand. 

θr(s)

Va(s)
=	

nKa

s s2PLa+	 Lav +	PRa s+	Rafv+	KaKb
  																		(4) 

where, 

θr = Angular displacement of motor shaft, (rad.) 

Va = Armature voltage, (V) 

 P  = Moment of inertia referred to motor shaft (Jm) and load 
shaft (JL) = 0.02675 kgm2 

La = Armature inductance = 2.7 µH 

Ra = Armature resistance = 2.0 Ω 

fv  = Viscous friction coefficient referred to motor shaft (fm) 
and load shaft (fL) = 0.42 Nms 
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Ka = Motor torque constant = 6.28 kg.cm/A 

Kb = Speed proportionality constant = 13.2 rpm/V 

n   = Gear ratio = 16 

3.2 Finger kinematics 

The study of kinematics deals with the geometrical 
interpretation of the motion of dynamical system. This 
interpretation includes the position and orientation (and their 
higher-order derivatives) of the mechanical links and joints. 
The schematic of a three link index finger is shown in Fig. 5. 
The lengths of the link 1, 2, and 3 are given by l1, l2, and l3, 
respectively. Similarly, the θr, θp, and θd, are the angles of the 
joints 1 (MCP), 2 (PIP), and 3 (DIP) of the robotic finger, 
respectively. The fingertip coordinates (X, Y) and the 
orientation ( ) of the index finger is derived via the Devenit-
Hartenberg (DH) method (Chen et al., 2011). The 
expressions are given in (5), (6), and (7).        

X	=	l1 cos θr +l2 cos θr+θp +l3 cos θr+θp+θd     												(5) 

Y	=	l1 sin θr +l2 sin θr+θp +l3 sin θr+θp+θd                  (6)                    

ϑ	=	θr+θp+θd                                                                       	(7) 

Since a wire-pulley mechanism is used in this research, 
therefore, the joint angles, θp and θd, are dependent on and 
can be derived from the MCP joint-angle (θr). 

3.3 Inverse kinematics 

The inverse kinematics provides the required joint-angles 
needed to move the finger from one position (or orientation) 
to another in the three-dimensional space.  

 

Fig. 5. Three-link finger. 

This is very helpful in planning and generating a trajectory 
pattern for the manipulator. Generally, the reference 
trajectories are provided in the Cartesian space in the form of 
cubic polynomial. For a multi-joint manipulator, an 
accurately designed inverse kinematic model is required to 
translate the starting and destination coordinates of the end-
effector into equivalent joint-angles. The analytical solution 
of this technique is difficult to compute as the number of 
links in the robotic increases. However, a well-trained ANFIS 
can be used to accurately formulate a strategy to convert 
Cartesian-space (inputs) to joint-space (outputs). The fuzzy 
logic systems use logical reasoning based on a set of 
heuristically fabricated set of “if-then-else” rules, however, 

they lack the ability to dynamically learn. The artificial 
neural network can learn and develop a model from the 
training data presented to them, but they lack a knowledge 
base. The ANFIS combines the best features of the artificial 
neural network with Sugeno-fuzzy logic structure (Asgari 
and Ardestani, 2013). The Cartesian coordinates and 
corresponding joint-angles are recorded to train the ANFIS. 
The ANFIS optimizes the parameters of the fuzzy inference 
system using neural network based learning method to create 
a model that can accurately map the input data to the output 
data. The hybrid learning algorithm is used to train the 
ANFIS structure (Angulo and Godo, 2007). It consists of the 
least-squares method (LSM) and the back-propagation 
(gradient-descent) algorithm (BPA). The LSM identifies 
consequent parameters in the forward path. Keeping the 
consequent parameters fixed, the BPA optimizes the premise 
parameters iteratively in the backward path, until the desired 
response is achieved. The governing rules of the said model 
are as follows: 

Rule 1: If g is A1 and h is B1 then z1 = p1x + q1y + r1 

Rule 2: If g is A2 and h is B2 then z2 = p2x + q2y + r2 

where, g and h are the input variables, Aj and Bj are the 
linguistic variables of the fuzzy rule-base, v is the output 
function, pj, qj, rj are the consequent parameters, and j is the 
number of rule being considered (j = 1 or 2). The ANFIS uses 
a five-layered structure, as shown in Fig. 6. 

Layer 1: The first layer fuzzifies the input data (g and h) 
using the triangular membership functions (MF), given by 
(8). The layer evaluates the degree (μ) of input variables in 
the fuzzy set. The output of this layer is µAj(g) or µBj(h). 

 

Fig. 6. The ANFIS structure. 

μj s 	=

1+
s-dj

bj
- ,			-bj

-≤	s-cj	≤	0

1-
s-dj

bj
+ ,	  0	≤	s-cj	≤	bj

+

0,  otherwise

                     																								(8) 

where, μ(s) is the jth triangular MF having bj
-, dj and bj

+ as the 
left-half width, center and right-half width respectively. 

Layer 2: The second layer is the product layer. It commences 
fuzzy inference in order to produce the dynamic states of the 
joint using the fuzzy rule base. Each node in this layer 
corresponds to a fuzzy antecedent rule (the “if” part). The 
product T-norm aggregation operator is used with each fuzzy 
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neuron. The output of this layer is expressed via a weightage 
(w), also referred to as the “firing strength”, according to (9). 

wj	=	μAj g 	×	μBj h                                                               (9) 

Layer 3: The third layer acts as a normalization layer. This 
layer takes the ratio of the firing strength of the jth fuzzy rule 
to sum of the firing strengths of all the rules. The normalized 
weightage is given by the (10). 

wj	=	
∑wj

∑ wjj
                                                                           (10) 

Layer 4: The fourth layer performs de-fuzzification of the 
consequent rules. It takes product of the normalized 
weightages from layer 3 and the output function (v). This 
linear combination transforms the individual fuzzy 
classifications into a crisp output, as given by (11). 

sj	=	wj	(pjg	+	qjh	+	rj)                                                         (11) 

Layer 5: The fifth layer performs the summation of all the 
incoming signals from layer 4. The aggregated output is 
given by (12). 

Oj = sj

j

= 
∑ wjj (pjg+qjh+rj)

∑ wjj
                                           (12) 

The ANFIS acts as an inverse model to plan and actuate the 
joint-motor according to the input trajectory pattern 
(Bakırcıoğlu, 2016). Additionally it serves as a supervisory 
controller to feed forward the dynamic changes in the 
reference trajectory (angular acceleration).  

4. CONTROL SYSTEM DESIGN 

The proposed control scheme mainly consists of the tracking 
controller that suppresses the tracking error in position. The 
tracking controller is supported by the compliance controller 
that offers active force control (and alleviates the 
corresponding disturbances) during grasping action. Finally, 
the intelligent adaptation mechanism serves to self-tune these 
closed-loop controllers. The outputs of these controllers are 
beneficially combined with the dynamic contributions of the 
feed-forward controller using a feedback linearization 
technique (Chen and Naidu, 2014). 

4.1. Feedback linearization 

The Lagrangian approach is used to derive the dynamic 
equations of motion, given in (13), for the robotic finger 
(Abdallah et al., 2013).  

Mθr + ρ = τ                                                                          (13) 

where, 

M is the joint-inertia matrix 

ρ is vector representing the sum of Coriolus, centripetal, 
gravitational the, and frictional forces 

θr is the angular-acceleration vector of the MCP joints 

τ is the torque vector of the revolute joints 

The nonlinear dynamics represented by (13) are transformed 
into linear state-space system. The angular position and the 

angular velocity are chosen as the state-variables of this 
tracking control system, as given by (14). 

 x	=
θr

θr
                                                                          	  	 (14) 

Where, θr and θr represent the angular positions and angular 
velocities of the MCP joints, respectively. The dynamic 
equation in (13) is re-arranged to give (15).  

θr	=	‐	M
-1(ρ	-	τ)                                                                 	 (15) 

The expressions given in (14) and (15) are used to derive the 
linear state-space system given by (16). 

x	=	 0 I
0 0

x	+	 0
I

u                                                           (16) 

Such that, the control input ‘u’ is given by (17). 

u	=	‐	M-1(ρ	-	τ)                                                                	   (17) 

At a given instant, corresponding to the reference trajectory, 
if θd, θd, and θd are the desired values of angular positions, 
angular velocities and angular accelerations of the MCP 
joints, respectively; then the resulting tracking errors in 
positions, velocities, and accelerations are computed by (18), 
(19), and (20), respectively. 

e	=	θd	-	θr                                                                            (18)	

e	=	θd	-	θr                                                                            (19)	

e	=	θd	-	θr                                                                            (20) 

Substituting the expression given in (15) into (20), yields the 
expression given by (21). 

e	=	θd	+	M
-1 ρ	-	τ                                                   	           (21) 

Using the linear state-variable system expressed in (16), the 
updated form of the control input can be expressed according 
to the expressions in (22). 

u	=	θd	+	M
-1 ρ	-	τ                                     			                      (22)  

The expression in (22) is referred to as the linearized 
feedback control law. The function for the torque applied to 
the motor is given by (23). 

τ	=	M θd	-	u 	+	ρ                                                          	     (23)  

As already discussed in the previous section, the value of 
desired angular acceleration ( θd ) is fed-forward by the 
ANFIS inverse model. The control effort (u) is provided by 
the self-tuning PD based tracking controller. The building-
blocks are described in the following sub-sections. 

4.2. Tracking controller 

A classical feedback controller is used to minimize the 
tracking error in the angular position (θr) and angular velocity 
( ) of the MCP joint-motor in the robotic finger. Apart from 
minimizing the tracking error in the angular-position, the 
controller also serves to improve the convergence-rate and 
dampen the oscillations. The PID controller is a popular 
controller in the process-control industry. It is a conventional 
and linear control mechanism that does not require the 
mathematical model of the system for its computation. 
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Despite having a simple structure, it offers effective control 
effort in bringing the system to its steady-state efficiently. In 
contrast to the PID controllers, the PD controllers provide 
better global asymptotic stability for a trivial pair of PD gains 
(Su and Zheng, 2010). The PD tracking control law, used in 
this research, is given by (24).  

u = -	kPe - kDe                                                            			    	  (24) 

where, kP and kD are the proportional and derivative gains of 
the tracking controller, respectively. Initially, these gains are 
optimally tuned via trial-and-error method. The values of 
these gains are fixed at kP = 68.24 and kD = 8.65. However, 
the fixed-gain controllers are unable to handle dynamical 
systems in the presence bounded random perturbations. If not 
taken care of, these disturbances may lead to degradation of 
the tracking response. Hence, the fixed gains in the PD 
control law are replaced by self-regulated gains. These gains 
are adjusted online by a dedicated adaptation mechanism. 
Self-regulation of gains enhances the performance of the 
controller by enabling it to quickly alleviate the effects of 
bounded exogenous disturbances.  

4.3. Compliance controller 

The compliance control mechanism uses the force feedback 
to ensure a smooth interaction between the surface of the 
robotic finger and the object (having unknown stiffness 
coefficient). This phenomenon enhances the dexterity in 
grasping the objects. Upon contact with an object, the 
instantaneous value of the contact-force (fr) experienced by 
the robotic fingers is measured and filtered to remove noise. 
The filtered data is fed to a PD force controller. The 
controller generates a proportional perturbation in the 
reference trajectory signal, as shown in (25).  

Δz	=	kP
'	fr	+	kD

'	fr                                                           	    (25) 

where, kP
' and kD

' are the proportional and derivative gains of 
the compliance controller, respectively. Upon contact, the 
compliance controller tends to nullify the effect of torque 
signals applied by the feed-forward controller and the 
tracking controller by directly modifying the desired 
trajectory. It makes sure that the fingers have firmly grasped 
the object while applying a reasonable force on it. This 
feature maintains the integrity of the trajectory-tracking 
performance of the fingers (Seraji, 1998).  

The PD gains must be optimally adjusted in order to ensure 
asymptotic stability of the controller. Initially, the values of 
the compliance PD gains are fixed at kP

'	=	1.38  and 
kD

'	=	0.18, via trial-and-error method. Fixed-gain compliance 
controllers perform well only if the stiffness coefficient of the 
object is already known and the gains are tuned accordingly. 
In practice, the stiffness coefficients of every object cannot 
be pre-ascertained. Hence, the fixed-gain controllers tend to 
exhibit a slow response upon contact with a soft object, and 
become unstable while grabbing a hard object. Therefore, in 
this research, the gains of the compliance controller are also 
adjusted dynamically so that the finger can robustly adapt to 
the hardness or softness of the object while grasping it, 
without affecting the trajectory tracking phenomenon.  

4.4. Adaptation mechanism 

As discussed earlier, the adaptive tuning of the PD gains is 
essential in enhancing the controller’s transient response, 
steady-state response, convergence-rate of tracking-error, and 
susceptibility against external disturbance. In this research, 
two intelligent self-tuning mechanisms are used to adaptively 
modulate the PD gains of the tracking and the compliance 
controller; namely, the FIS and the ILA. These adaptation 
mechanisms serve to self-regulate the PD gains in real-time 
with respect to the variations in respective controlled 
variables (or states) of the controller being tuned. The 
improvements rendered by these mechanisms in robustifying 
the tracking and compliance controllers are individually 
analyzed via real-time experiments.  

A. Fuzzy inference system  

The FIS is a model-free technique. It infers its actions 
according to a set of logical rules that are heuristically 
synthesized by the control system designer, based on his 
expertise. In this research, a two input-two output FIS is used 
for self-tuning the PD controllers, as shown in Fig. 7. 

 

Fig. 7. Structure of Fuzzy Inference system. 

A separate FIS system is used for tuning each of the two PD 
(tracking and compliance) controllers being considered (Xing 
et al., 2015). The FIS for the tracking PD controller takes e 
and  as the inputs, and delivers the updated values of kP and 
kD as its outputs. The FIS for the compliance PD controller 
takes fr and  as the inputs, and delivers the updated values 
of  and  as its output.  

The updated values of kP and kD are bounded within the 
prescribed ranges of [40, 100] and [2, 16], respectively. 
Similarly, the updated values of  and  are bounded in 
the interval [0.6, 2.2] and [0.1, 1.2], respectively. The PD 
gains are normalized in the range [0, 1] by using (26). 

Kz=	
kz	-	kz,min

kz,  max	-	kz,min
                                                	              (26) 

where, Kz is a general notation used to represent Kp or Kd for 
either of the two controllers. The PD gains are updated via a 
set of fuzzy rules of the form: If input-1 is Aj and input-2 is 
Bj, then Kp* is Cj and Kd* is Dj, where, Aj, Bj, Cj, and Dj are 
the fuzzy sets on the corresponding supporting sets, such that 
j = 1, 2,.., n. The fuzzy subsets of membership-functions 
(MF) of the input variables, for both controllers, are 
linguistically defined as; Negative Big (NB), Negative Small 
(NS), Zero (Z), Positive Small (PS), and Positive Big (PB). 
The fuzzy subsets of the output variables (Kp* and Kd*), for 
both controllers, are defined as; Small (S), Medium (M), Big 
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(B), Very Big (VB). The output value of the grade, μj, is 
given by (27). 

μj=	μAj	×	μBj                                                                        (27) 

where, μAj is the MF value of the fuzzy set Aj according to the 
value of e or fr, and μBj is the MF value of the fuzzy set Bj 
according to the value of e or fr. Based on the value of μj, the 
values of Kp* and Kd* for each rule are determined from their 
corresponding membership functions. The rule-base to tune 
the Kp* and Kd* for tracking controller and compliance 
controller is given in Table 1 and 2, respectively. 

Table 1. Fuzzy rule base of tracking controller gains. 

kP, kD 
e 

NB NS Z PS PB 

e 

NB V,M B,M B,S B,M V,M 

NS B,M M,S M,S M,S B,M 

Z B,S M,S S,S M,S B,S 

PS B,M M,S M,S M,S B,M 

PB V,M B,M B,S B,M V,M 

Table 2. Fuzzy rule base of compliance controller gains 

kP
’, kD

’ 
fr 

NB NS Z PS PB 

fr 

NB B,M M,M S,M M,M B,M 

NS B,M M,S S,S M,S B,M 

Z M,S M,S S,S M,S M,S 

PS B,M M,S S,S M,S B,M 

PB B,M M,M S,M M,M B,M 

There are a total of 25 tuning rules for each gain of each 
controller. The triangular MF of the inputs and outputs, for 
both controllers, are shown in Fig. 8 and 9, respectively. The 
center-of-area based de-fuzzification method, in (28), 
provides the normalized PD coefficients. 

Kz
*	=	

∑ μj
n
j=1 Kz,j

*

∑ μj
n
j=1

                                                               (28) 

where Kz,j* is the value of Kz* corresponding to the grade μj 
for the jth rule. The actual values of the updated PD gains are 
calculated via (29). 

kz=	 Kz,max	-	Kz,min Kz
*+	Kz,min                                										  (29) 

B. Iterative learning algorithm 

The ILA is also an intelligent model-free technique. Instead 
of developing an accurate mathematical model to represent 
the relationship between the PD gains and the variations in 
system dynamics (or states), the ILA optimally tunes the 
gains during each sampling interval via repeated learning 
(Fadil et al., 2013). This repeated sampled learning 

mechanism provides a new paradigm to precisely tune the PD 
gains. The algorithm simply memorizes the past values of PD 
gains and the corresponding profiles of tracking-error (or 
force) dynamics from the previous iterations, and uses this 
information to update the PD gains in the present iteration. 
The algorithm initiates with very little knowledge of the 
process and progressively improves via a well-postulated 
learning mechanism.  

 

Fig. 8. Input fuzzy membership function. 

 

Fig. 9. Output fuzzy membership function. 

The expression of PID-type ILA, expressed in (30), is 
derived from the original derivative-type iterative learning 
control scheme presented in (Arimoto et al., 1984). 

ui+1	=	ui	+	αei	+	β ei

t

0
dτ	+	γei                          					            (30) 

where, ui is the control signal at ith iteration of a given time-
sample, ei is the tracking error at the ith iteration of a given 
time-sample, and α, β, and γ are the learning gains. Generally 
the ILA system is demonstrated according to Fig. 10. The 
objective is to make ei → 0 as i → ∞. In order to achieve 
asymptotic stability, the leaning gains are tuned using (31). 

|1	–	 α	+	β	+	γ 	b1|	<	1                                                       (31) 

where, b1 is the first Markov parameter. If the state-space 
representation of the continuous-time system is available in 
terms of its matrices (A, B, C, and D), then b1 = CB ≠ 0. In 
this research, the integral part in PID-type ILA is excluded 
because the ILA naturally takes the sum of the control action 
from previous iterations. Hence, a PD-type ILA based model 
is used to self-tune the controller(s) and deliver precisely 
adjusted PD gains within a finite time interval (Han and Lee, 
2011). Consequently, the modified ILA used to tune the kP 
and kD of tracking controller is given by (32). 



94                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

kp

kd i+1

= 
kp

kd i

+
αp γp
αd γd

e
e i

                                         			 (32)  

The expression in (32) can be interpreted according to (33). 

kz, i+1	=	kz, i	+	φEi                                                               (33) 

where, kz,i is the vector containing the values of kP and kD at 
ith iteration of a given time-instant, Ei is the vector of error 
dynamics at ith iteration of a given time-instant, and φ is the 
matrix of manually-tuned fixed learning gains of ILA for 
self-tuning of tracking controller. 

 

Fig. 10. Structure of iterative learning algorithm. 

Similarly, the modified ILA used to tune the  and of 
compliance controller is given by (34). 

k'
p

k'
d i+1

=	
k'

p

k'
d i

+
α'

p γ'
p

α'
d γ'

d

fr
fr i

                                 								  (34)  

The expression in (34) can be simplified according to (35). 

k'
z, i+1	=	k

'
z, i	+	δFi                                                          	   (35) 

where, k’z,i is the vector containing the values of  and  
at ith iteration of a given time-instant, Fi is the vector of 
contact-force dynamics at ith iteration of a given time-instant, 
and δ is the matrix of manually-tuned learning gains of the 
ILA for compliance controller. Using the condition given in 
(31), the learning gains are optimally tuned via trial-and-error 
method to achieve best effort. The evaluated matrices of the 
learning gains, φ and δ are shown in (36). They are kept 
constant through the experimentation phase. 

 φ = 11.58 2.66
3.17 1.42

, δ = 2.09 0.85
0.95 0.18

 																																(36)                  

With all the individual control modules appropriately 
installed in the proposed control architecture, the final block 
diagram of the adaptive collaborative control mechanism is 
shown in Fig. 11. 

Fig. 11. Adaptive collaborative control mechanism. 

5. TESTS AND RESULTS 

The controller’s trajectory tracking response is analyzed via 
three different test cases. For each test-case, the proposed 
control scheme is initially equipped with fixed-gain PD 
controller, followed by a fuzzy tuned PD (FPD) controller, 
and eventually with the ILA-based adaptive PD controller 
(IPD).  

The dimensions of all the fingers are only slightly different. 
Hence, when the MCP joint-motor is actuated according to a 
given trajectory, each finger exhibits consistent closed-loop 
tracking response. Therefore, the performances of tracking 
controllers (and its variants) are experimentally tested on the 
index finger only.  

 

The GUI application represents the recorded sensor data 
graphically for the sake of visualization and comparative 
assessment. In each graphical representation, the reference 
trajectory and the corresponding angular responses traced by 
the joint-motor is shown in “blue” and “red” color, 
respectively.  

Test A: The free-space motion of the index finger is tested 
while tracking the reference trajectory, given by (37), that is 
applied to the MCP joint-motor of the finger.  

z = 1.5cos(0.15(t - 8.6)) + 0.08sin(0.9(t - 8.6))                   (37)	

The trajectory tracking response of the generic PD, FPD, and 
IPD controller is shown in Fig. 12, 13, and 14, respectively.
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Fig. 12. (a) Trajectory tracking response with PD controller, (b) Tracking error response with PD controller. 

                                        

Fig. 13. (a) Trajectory tracking response with FPD controller, (b) Tracking error response with FPD controller. 

                                        

Fig. 14. (a) Trajectory tracking response with IPD controller, (b) Tracking error response with IPD controller.  

Test B: The reference input is perturbed by externally 
applying an external disturbance torque signal, given by (38), 
to the joint motor while it is tracking the reference trajectory 
of (37). This time-varying disturbance torque signal is added 
directly to the finalized motor torque (τ) control commands. 

τdist	= 0.05( cos(2πt) + sin(4πt))  																																													(38) 

The disturbance torque signal is shown in Fig. 15. The 
trajectory tracking responses and the error variations of the 
generic PD controller and its adaptive variants are shown in 
Fig. 16, 17, and 18, respectively.  

 

Fig. 15. Disturbance torque signal. 
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Fig. 16. (a) Trajectory tracking response with PD controller, (b) Tracking error response with PD controller. 

                                     

Fig. 17. (a) Trajectory tracking response with FPD controller, (b) Tracking error response with FPD controller. 

                                       

Fig. 18. (a) Trajectory tracking response with IPD controller, (b) Tracking error response with IPD controller. 

The performance of the controller is analyzed by the 
following parameters exhibited by the response. 

 Rise-time (tr): The time taken by the response to rise from 
its initial position and converge to the reference trajectory. 

 Overshoot (OS): The maximum absolute error incurred in 
the response after converging to the reference trajectory.  

 Settling time (ts): The time taken by the joint-angle 
response to converge and settle within ±2% of the 
reference trajectory. 

 Root-mean-square-error (RMSE): The root of the 
arithmetic mean of the squared-sum of instantaneous error 
samples.  

These performance parameters are recorded in Table 3 for 
each of the three control strategies, for the two testing 
scenarios (A and B). The experimental results clearly 
manifest that the ILA-based self-tuning of PD tracking 
controller is superior in performance than the other versions.  

Test C: When the robotic hand grasps an object, the contact-
force acts a disturbance to the trajectory tracking response of 
robotic fingers. For this purpose, a compliance controller is 
employed. Instead of proportionally changing the motor 
torque control signal, the proposed controller directly 
modifies the reference trajectory. This technique effectively 
complies with the applied contact-force (disturbance) and 
adjusts the tracking control signal accordingly. The 
compliance of the finger is tested as it makes contact with a 
soft rubber ball (of radius = 0.08 m), while tracking the 
trajectory, given by (39). 

z	=	0.5 cos (0.05(t	+	0.75))	+	1  																																																(39) 

The variation in force experienced at the tip of the index 
finger, upon its contact with the ball, is shown in Fig. 19. The 
corresponding modified reference trajectories of the index 
finger provided by the PD, FPD, and IPD based compliance 
controllers are shown in Fig. 20, 21, and 22, respectively.  
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The graphical illustrations clearly manifest that the ILA 
based PD compliance controller surpasses the compliance 
performance of the other two PD controller variants.  

Table 3. Summary of experimental results. 

Test Controller 
tr 
(s) 

OS 
(rad) 

ts 
(s) 

RMSE 
(rad) 

A 

PD 1.09 0.09 3.18 0.13 

FPD 0.66 0.10 2.79 0.09 

IPD 0.75 None 1.17 0.06 
 

B 

PD 0.44 0.21 8.07 0.25 

FPD 0.37 0.16 4.92 0.18 

IPD 0.39 0.11 2.20 0.12 

 

Fig. 19. Contact force applied on the tip of index finger. 

 

Fig. 20. Modified trajectory using PD compliance controller. 

 

Fig. 21. Modified trajectory using FPD compliance 
controller. 

 

Fig. 22. Modified trajectory using IPD compliance controller. 

6. CONCLUSION 

The synthesis of an adaptive collaborative position and 
tracking controller for the finger joint of an FFRH is 
described in this paper. The ANFIS controller is trained to 
accurately track the trajectory pattern by delivering the 
dynamic changes occurring in the reference trajectory in real-
time. The tracking error minimization and disturbance 
rejection is done via a dynamically compensated adaptive PD 
tracking controller. The individual controller outputs are 
fused together via a linearized feedback control law to 
enhance the trajectory tracking performance of the finger 
during free-space or grasping motion. The tracking control 
system is augmented by a compliance controller that alters 
the reference trajectory according to the disturbance caused 
by the application of contact-force upon grasping a given 
object. The PD gains of tracking and compliance controller 
are self-tuned via two different model-free techniques; 
namely FIS and ILA. In FIS systems, the accuracy of the 
artificially synthesized rule-base becomes the bottleneck. The 
heuristically developed rules-base cannot compensate for the 
inevitable and unprecedented nonlinearities and uncertainties 
existing in a servo-system. On the other hand, the ILA tuned 
servomechanism “learns” the PD gains needed to generate 
the required control action via the repeated process. This self-
tuning procedure ensures the quick asymptotic convergence 
of the PD controllers; allowing them to achieve enhanced 
trajectory-tracking performance. Three tests are conducted to 
compare the effect of the two adaptation techniques upon the 
tracking accuracy exhibited by the proposed control system. 
The experimental results have validated the superior 
performance of ILA in robustifying the PD controllers. In 
future, nonlinear gain modulation and other intelligent tuning 
techniques can be explored. Model-based optimal controllers 
can also be analyzed and integrated with the existing PD 
control system to improve the tracking response. Moreover, 
the compliance control output can be used to appropriately 
modify the torque signals being applied to the motors, instead 
of using it to directly to modify the reference trajectory. 
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