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Abstract: This paper focuses on the stability analysis of analytic functions with two transcendental terms 
in order to obtain parameters that guarantee an exponential decay rate   in the response of the linear 
time-invariant system associated with the analytic function. As a consequence of this stability analysis, 
analytic expressions to tune all of the gains of a controller with time-delay action called Proportional 
Integral Retarded (PIR) control law that  -stabilizes a first-order process with dead-time are obtained. 
To illustrate the effectiveness of the theoretical results proposed, an application on a Quanser thermal 
platform is given. Furthermore, a comparison with a classical PID control law is made. 
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1. INTRODUCTION 

It is common knowledge that most of the real-life systems 
(like industrial processes) have inherent delays in its 
dynamics, this is why stability analysis and controller design 
for time delay systems have become topics of great 
importance in practical applications. Typically, this stability 
analysis is carried out within the framework of two 
approaches: time domain and frequency domain. In the first 
approach, the analysis is based on the well-known 
Lyapunov’s criteria using linear matrix inequalities (LMI’s) 
via convex optimization (Krasovskii, 1956; Razumikhin, 
1956; Gu et al., 2003; Kharitonov, 2013). However, this 
approach only provides sufficient conditions which are 
usually conservative or even non-existent. In the second 
approach, the analysis is based on the root locus of its 
corresponding characteristic equation (an analytic function 
with transcendental terms or a quasi-polynomial) in the 
complex plane. In the last decade special attention has been 
paid to the temporal approach while the frequency approach 
has been abandoned. However, unlike the temporal approach, 
the frequency approach can provide necessary and sufficient 
conditions which are not conservative. Even more, the 
feasibility of the LMI’s is usually non-existent, when they 
have parameters tuned by a frequency method. 

It is generally accepted that about 90% of industrial processes 
can be approximated by dynamical models of first or second 
order with dead-time (Silva et al., 2005). Due to its simple 
structure and ease of implementation, the most used control 
law for tracking and stabilizing this kind of systems is the 
conventional PID controller in conjunction with its different 
actions (P, I, PI, PD), see (Astrom and Hagglund, 1995). In 
the past decade, several techniques for tuning the parameters 
of the classical control laws PI or PID to stabilize first or 
second order processes with dead-time have been proposed 

(O’Dwyer, 2009). The omission of the derivative action is 
recommended because of its poor performance against high-
frequency noise (Farkh et al., 2009a; Farkh et al., 2009b; 
Hwang and Hwang, 2004; Oliveira et al., 2005; Roy and 
Iqbal, 2005; Wang et al., 2014; Marquez-Rubio et al., 2014). 
The PID has proven to be very efficient when the dead-time 
is small while the response of the closed-loop system is 
usually poor when the dead-time is large (Silva et al., 2001). 
In last case, it is convenient to introduce a dead-time 
compensating structure. The best-known dead-time 
compensating structures are the Smith predictor (Smith, 
1957), and its extensions (Palmor, 1996; Watanabe and Ito, 
1981; O’Dwyer, 2005). 

The derivative action is of great importance in a classical 
control law. Therefore, the use of encoders, observers, 
estimators or high-pass filters is usually an alternative to the 
use of this action in the control laws. However, the 
implementation of this action has at least three natural 
disadvantages. Firstly, the estimation algorithms typically 
increase the controller design. Secondly, the application of 
filters or compensators often increase the order of the closed-
loop system. Thirdly, the use of measurement tools 
(encoders) are usually very noisy. Another alternative to the 
derivative action is the use of delays in the control law 
(retarded action). The controllers with time-delays have a 
simple structure and are easy to implement, like the PID. The 
controllers with retarded action have proven to be superior to 
those employing a derivative action. Among the advantages 
of these controllers are the following: noise attenuation, do 
not require estimators or filters to approximate the time 
derivative, provide soft control signals so do not damage 
actuators, and their numerical implementation is 
computationally more efficient than other low-order 
controllers, like the PID type (Abdallah et al., 1993; Bleich, 
1996; de Souza Vieira, 1996; Just et al., 1997; I. Hong Suh, 
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1980; Swisher and Tenqchen, 1988; Zhong, 2002; Gu et al., 
2005;  Olgac and Cavdaroglu, 2011). 

The deliberate application of time-delays to stabilize a system 
is not a new topic, one of the most important contributions in 
this regard is the work of (Pyragas, 1992), which promoted a 
line of research known as TDFC (Time-delayed feedback 
control). Recently in (Villafuerte et al., 2013) a method for 
tuning the gains of a proportional retarded (PR) control law 
to σ-stabilize a second order system is proposed. While in 
(Ramirez et al., 2016) the above concept is extended to a PIR 
control law for second-order systems without dead-time. In 
(Villafuerte and Ortega, 2015) the tuning of a convex sum of 
PR controllers is proposed and in (Ramírez et al., 2015) a 
control law for providing exponential estimates as well as a 
guaranteed cost for a class of nonlinear time delay systems is 
presented. A new backstepping result for time-varying 
systems with one delay in the input is given in (Mazenc and 
Malisoff, 2016). In (Hernández-Díez et al., 2017) the design 
of P-δ controllers for single-input-single-output linear time-
invariant systems without time-delays is proposed. However, 
until now this methodology has only been applied to delay-
free linear time-invariant systems. Thus, the tuning of a 
controller with time-delay to stabilize linear time-invariant 
systems with dead-time is a topic with areas of opportunity. 

In this paper, the stability analysis of a class of analytic 
functions with two transcendental terms in order to obtain 
exact analytic expressions for tuning all of the parameters of 
the PIR control law that renders σ-stabiliy of first-order 
processes with dead-time is presented. The tuning is a direct 
consequence of a stability analysis of the characteristic 
equation of the closed-loop system of a first-order process 
with dead-time and a PIR control law. Thus, the characteristic 
equation analyzed is an analytic function or quasi-polynomial 
with two transcendental terms of the form 
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where )(iP ,  3,2,1i , are polynomials with real 

coefficients, Cs , hkkk rip ,,, , C denotes the set of 

complex numbers, and  denotes the set of real numbers. 
The stability analysis is done in the frequency domain using 
the D-composition method (Neimark, 1949) and the root 
continuity property (Michiels and Niculescu, 2014; Xu-
Guang Li, 2015). The parameters ),,,( hkkk rip of control law 

are determined so that the solution of the closed-loop system 
has a rate of decay . To achieve this, exact analytic 
expressions are given to ensure that the corresponding quasi-
polynomial has a root of multiplicity at least three at s . 
The results proposed here are compared with a classical PID 
control law using two tuning approaches. The purpose of the 
comparison is to show that the PIR controller can be an 
efficient alternative to the use of classic controllers such as 
the PID. In addition, due to its natural structure, the PIR 
controller can generate a better performance in the absence of 
derivative actions and in the presence of noise from the 
processes. Further, these control laws are implemented on a 
Quanser thermal platform. 

Part of the theoretical results and experimental studies 
presented by our paper have been developed during the 
preparation of the Master Thesis in (Medina-Dorantes F. I., 
2016).  

The paper is organized as follows. The system’s description 
and preliminary results are presented in Section 2. The tuning 
of the PIR controller to  -stabilize a first-order processes 
with dead-time is stated in Section 3. In Section 4, an 
illustration of the theoretical results obtained in the previous 
section is presented. Finally, some concluding remarks in 
Section 5 are given. 

2. PRELIMINARY RESULTS 

In this section, the statement of the problem, some definitions 
and results concerning the stability and stabilization of time 

delay systems are presented. 

2.1 Problem Statement 

Consider the following first-order process with a dead-time 
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where K  is the steady-state gain of the plant,   
is the dead-time or time-delay, and  T0 is the time 
constant of the plant, so the free time delay open-loop system 
is not assumed to be either stable or unstable. 

Now, consider the following PIR control law  
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where pk , ik ,  and rk  are the proportional, integral and 

retarded gains, respectively, and h is a time-delay. 
Thus, the transfer function of the closed-loop system (1)-(2) 
is  
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and the characteristic quasi-polynomial of (3) is  
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It is well known that the inclusion of a time-delay in a control 
law (retarded action) can contribute to the stabilization of a 
system, whereby a PIR control law (2) is an appealing 
alternative to the classical PID control laws for stabilizing a 
first-order process of the form (1). The main problem of this 
kind of controllers is to tune its parameters ),,,( hkkk rip .  

Besides, it is not enough to determine the parameters under 
which the system can be stabilized but also to determine the 
parameters that better stabilize the system. However, it is 
clear that a criterion for choosing the parameters of a 
controller that better stabilize a system is a relative one. In 
this paper, our criterion is related to the  -stabilization of 
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the closed-loop system and the assignment of dominant roots 
with negative real part. Results below are developed to grasp 
this concept. 

2.2 On stability of time delay systems 

In this subsection basic definitions and concepts of time delay 
systems are presented. 

Definition 1. (Bellman and Cooke, 1963) The closed-loop 
system (1)-(2) is said to be stable if its corresponding 
characteristic quasi-polynomial (4) satisfies  

0)(Re s  

for all Cs  such that 0)( sq , where )(Re s  denotes the 

real part of s . 

 Lemma 1. (Bellman and Cooke, 1963) Consider a quasi-
polynomial of the form (4) and let  
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Then for any 0  , there is a constant 0L  such that the 

solution ),( tx  of the closed-loop system (1)-(2) satisfies the 

inequality  
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 where   is the initial condition in the Banach space 
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Using Definition 1 and Lemma 1, we will be say that the 
parameters ),,,( hkkk rip of the PIR control law (2)  -

stabilize the first-order process with dead-time (1) if the 
quasi-polynomial (4) satisfies the condition  

.,0
   

Thus  -stability implies that the system response (1)-(2) has 

an exponential decay . 

In the frequency domain approach there are several 
techniques for tuning the gains of a control law to stabilize a 
system. The most popular are Bode, Nyquist, Nichols, root 
locus, Hermite-Biehler theorem and D-composition method. 
In what follows, the D-composition method is used to obtain 
the stability and instabilities regions of the quasi-polynomial. 

 Lemma 2. Consider the closed-loop system (1)-(2) where 
 pi kk ,0 are given. The crossing boundaries of the 

quasi-polynomial in the rkh    parameter plane are defined 

by the parametric equations  

,

)sin()cos(

)cos()sin(
arctan

1
)(

)(
)(2

































n

kkK

kkKT
h

ip

ip

  (7) 

 
,

)(cos

)sin()cos(
)),((

)( 




hK

kkK
hk

ip
r






              (8) 

where ,2,1 ,0, n and  . 

Proof. Observe that 0s  is a root of the quasi-polynomial 
(4) if 0ik , which is not considered at this time. Now let 

js   with 12j . Then  
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It follows rom the above equations that  
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Accordingly,  equations (7) and (8) follow from equations 
(11) and (10), respectively. 

An application of  Lemma 2 with parameters ,36T  
,9.0K 1 , 8634.0pk , and 62.0ik  leads to  Fig. 1 

that shows  the stability and instability regions in the ),( rkh

parameter plane of the quasi-polynomial. (x) denotes roots 
with positive real part, (x) denotes roots with negative real 
part and the gray area (■) contains the parameters ),( rkh

where the quasi-polynomial (4) is stable. 

 

Fig. 1. Crossing boundaries of quasi-polynomial (4). 

Now it is natural to ask, what are the parameters of the gray 
area in Fig. 1 that stabilize a first-order process with dead-
time with the maximum exponential decay in its response? 
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To answer this question, some results for tuning the 
parameters of a PIR controller and  -stabilization of are 
presented below. 

3. TUNING OF A PIR CONTROL LAW 

In this section, the  -stability regions and a geometric 
characterization of the maximum exponential decay achieved 
by a quasi-polynomial of the form (4) are formulated. 
Because of the analysis of the previous regions, analytic 
equations to tune the parameters ),,,( hkkk rip a PIR control 

law are proposed. 

3.1  -Stability Regions 

By making the substitution  ss , the quasi-polynomial 
(4) becomes 
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Thus  -stability analysis of the quasi-polynomial (4) is 
reduced to an analysis of marginal stability of the quasi-
polynomial (12) for any given 0  and the following result 
can be enunciated. 

 Lemma 3. Consider the closed-loop system (1)-(2), where 

 pi kk ,0 ,  are given. Then the  -stability 

regions of the quasi-polynomial (4) in the ),( rkh  parameter 

plane are delimited by the following crossing boundaries:  
when 0s , 
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Proof. Note that the crossing boundaries of the quasi-
polynomial (12) delimit the  -stability region of the quasi-
polynomial (4). Observe that 0s  is a root of the quasi-
polynomial (12) if  
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Thus (13) is obtained by solving the above equation for rk . 
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where  ,  , 1  and 2  are given by (16). Since   and 
are positive, then the following identities holds 
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 Substitution of this identities into (18) and (19) gives  
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From equations (22) and (23),  
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The result follows using trigonometric identities, and 
algebraic manipulations. 

An application of Lemma 3 with parameters ,36T ,9.0K  

1 , ,8635.0pk and  62.0ik  produces the Figs 2 and 3 

that show the  -stability regions of quasi-polynomial (4) 
when *],0[   . In this case 25.0*  . 

 

Fig. 2.  -stability regions of quasi-polynomial (4). 
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Fig. 3. Zoom in to  -stability regions of (4). 

It is clear that the  -stability regions are concentric and that 

they collapse to a point as tends to 25.0 . Therefore, it 

can be assumed that   is the maximum exponential decay 
achieved by closed-loop system (1)-(2) for pk  and ik  given. 

The coordinates of the collapse point 
)6166.5,6757.1(),( rkh  are the parameter values of the 

retarded action for the PIR control tuning. By a root locus of 
the parameters of Fig. 3, it can be observed that the quasi-

polynomial (4) has three dominant roots at  , when 
)6757.1,6166.5,62.0,8635.0(),,,( hkkk rip . Therefore, the 

 -stabilization of the closed-loop first-order process (1) with 
the PID controller (2) is guaranteed, using the previous 
parameters ),,,( hkkk rip .  In Figs. 2 and 3, a complete map 

of all the parameters ݄ vs ݇௥ of the PIR controller that 
stabilizes a first-order process with dead-time is shown, for 
݇௣ and ݇௜ given. While in Fig. 3a the performance of the 
system response with respect to the selection of the points 
ሺ݄, ݇௥ሻ used in the PIR controller is presented. Here, the 
points employed for the exemplification are the points (P1), 
(P2), (P3), (P4) and (PO) given in Fig. 3. We choose the 
parameters ሺ݄, ݇௥ሻ such that the response of the closed-loop 
system has the maximum exponential decay σ*, this point is 
(PO). However, the user of the PIR controller has the 
opportunity to choose the parameters of the control law that 
best suit to obtain the desired response of the closed-loop 
system, see Fig. 3a. 

 

Fig. 3a. System response (1)-(2) when , ݇௣ and ݇௜ are fixed 
and rk , ݄ are varied. 

Next the equations of h  and rk are determined analytically, 

when pk  and ik  are given. 

3.2 Analytical equations for tuning a PID control law 

Lemma 4. Consider the closed-loop system (1)-(2), where 
 pi kk ,0  and 0  are given. Then, quasi-polynomial 

(4) has a root of multiplicity at least two at  s  if 
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Proof. The quasi-polynomial (4) has two dominant roots at 
s  if the quasi-polynomial (12) has two dominant roots 

at 0s . The conditions 0)0( q , and 0|)( 0sds
d sq  

become 
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Solving equation (27) for rk , we obtain 
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and substituting this into (26) yields  
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Then (24) follows by solving the equation above for h and 
(25) follows by solving equation (26) for rk .  

In Lemma 4 were obtained analytic expressions of the 
parameters h  and rk  for which the quasi-polynomial (4) has 

at least two dominant roots. A white line indicates the curve 

),( rkh in Fig. 3. Note that ),( rkh  approaches ),( 
rkh  which 

in turn is the point at which the  -regions collapse and it is 
there where the quasi-polynomial (4) has three dominant 

roots at  . The following result is formulated in this 
sense. 

Proposition 5. Consider the closed-loop system (1)-(2) with 
given ik0  and pk . Then, quasi-polynomial (4) has a 

root of multiplicity at least three at s  if rk  and h  

satisfy the equations (24) and (25),  and   is a positive 
solution of the quasi-polynomial 
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 Proof. By Lemma 2, s  is a root of multiplicity at least 
two of the quasi-polynomial (4). The equation  
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 From (26),  
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 Substituting this and (24) into (30) yields  

,0),,(
1

pi kkf
Q
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where ),,( pi kkf   is given by (28) and       

   022    TKkkKQ ip e  

 as long as ik  satisfies (29). 

Up to now, analytic expressions for tuning of the parameters 
h , rk  and   for which the quasi-polynomial (4) has at least 

three roots at   are characterized. However, it is necessary 
to give preliminary values to pk  and ik . The following 

result provides analytic equations for tuning of the 
parameters )ˆ,ˆ,ˆ,ˆ( rpi khkk  only giving the value of a desired

.  

 Proposition 6. Consider the closed-loop system (1)-(2) with 
characteristic quasi-polynomial (4), and let 
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TT
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84 22

0
  be a given constant. Then a quasi-

polynomial of the form (4) has a root of multiplicity at least 
three at s  if the parameters )ˆ,ˆ,ˆ,ˆ( rpi khkk  satisfy the 

conditions: 
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 where },min{ 21inf, RRki  , },max{ 21sup, RRki  , 
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     2244 23224  TTT . 

 Proof. Suppose that ik̂  and pk̂  satisfy equations (31) and 

(32), respectively. Note that if 1
ˆ Rki   then pk̂  given by (32) 

is well defined, and if 2
ˆ Rki  , the restriction (29) is 

satisfied. Substituting (32) into (28) yields 0)ˆ,ˆ,( pi kkf  , 

where h  and rk  are given by (33) and (34), respectively. 

Therefore, Proposition 5 holds, namely the quasi-polynomial 
(4) has one root of multiplicity at least three at s . 

Next we prove that h  is well defined. It follows from (33) 
that  
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Observe that the denominator of the expression above is 

different from zero if 2
ˆ Rki  . Also, it is positive if  
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On the other hand, if 





T

TT

2

84 22 
  then 

    024 222   TTT , and since 0A , 

the discriminant 

,04 26222  eKCAB  

is positive. So there is an open interval where ĥ is positive. 
The solutions of (36) are the endpoints of this interval, and 
the endpoints are curiously inf,ik  and sup,ik . Therefore, ĥ  is 

well defined if ik̂  satisfies (31). 

3.3 Summary to tune a PIR control law 

The following steps can be used for tuning a PIR controller 
for first-order plants with time delay: 

Step 1. Give a positive value of  . This value corresponds to 
the desired  -stability of the closed loop system (1)-(2).  

Step 2. Choose a non-zero value of ik̂  in the interval given 

by (31). Take into account the root locus in Fig. 4 and the 
values of pk̂  and ĥ  given by equations (35) and (32). That 
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is, the choice of ik̂  may imply that the values of pk̂  and ĥ  

are poorly suited to the process.  

Step 3. Calculate pk̂ , ĥ  and rk̂  from the equations (32), (33) 

and (34), respectively. 

Step 4. If necessary, choose another value of   and repeat 
the previous steps. 

3.3 Proposal for the election of ik  

As explained above, the first step to tuning is to choose a 

),(ˆ
sup,inf, iii kkk  . However, it is natural to ask, which ik̂  is 

appropriate? The following is a proposal for picking ik̂ . 

According to Proposition 6, for any 0  given, one value 

of ik̂  in the interval (31) must be chosen. At the same time, 

each value of ik̂  determines different values of pk̂ , rk̂  and 

ĥ  using (32), (34) and (33), respectively.  

In Fig. 4 can be seen as the roots trail are close or far from 

the dominant roots when ik̂  is incremented or decremented, 

respectively. Here, 36T , 9.0K , 1 , 25.0  and 

the values of )5143.1,43267.0(),(ˆ
sup,inf,  iii kkk , pk̂ , rk̂  

and ĥ  are given in Table 1. 

 

Fig. 4. Roots locus of (4) when   is fixed and ik  is varied. 

ik̂ {(x) 0.5, (x) 0.66, (x) 0.82, (x) 0.97, (x) 1.1, (x) 1.3, (x) 1.5} 

Table 1. Parameters of control law (2). 

ki  kp  kr  ĥ  

0.5 -21.638 26.761 0.531 

0.658 3.060 3.834 2.108 

2.108 7.654 0.842 4.403 

0.975 11.041 0.010 14.710 

1.291 11.974 0.513e-4 30.867 

1.450 12.714 1.497e-16 126.504 

Observe that, for any   given, when ik̂  is in the interval 

(31) the  -stability of the closed-loop system (1)-(2) is 
preserved, because the dominant root remain fixed although 

the gain ik̂  is varied. However, if ik̂  is varied then the roots 

to left of the dominant root (roots trail) are affected. 

4. IMPLEMENTATION OF THEORETICAL RESULTS 

In this section, the implementation and validation via 
simulation and experimentation of the theoretical results 
obtained in the previous sections are presented. The 
simulation was done using the Matlab-Simulink R2015a 
while the experimentation was made using the QNET-
HVACT thermal platform by Quanser shown in Fig. 5. 
Furthermore, to assess the effectiveness of the new control a 
comparison between the classical PID control law and the 
PIR control law is made. 

 

Fig. 5. Quanser QNET-HVAC ©  Platform. 

The QNET-HVACT thermal platform can be considered as a 
fist-order process with dead-time of the form (1), where 

36T , 9.0K ,  and 1 . Namely, 

.
136

9.0
)( s

s
sG 


 e                                                              (37) 

For comparison purposes, the closed-loop system of the 
QNET-HVACT thermal platform with the control laws PIR 
and PID is given. It should be mentioned that the controllers 
were tuned in the following way: for PID-Silva the 
parameters of the PID controller that had a performance 
similar to the PIR controller were searched, the above with 
the purpose to exemplify the same performance of the system 
response between the PID-Silva and PIR, but different 
saturation in the control action. While the parameters of the 
PID-ߪ controller were tuned in such a way that the closed-
loop system had three dominant roots in -σ. In order to have a 
similar criterion to the PIR with respect to the placement of 
dominant roots. The PIR controller is tuned using  
Proposition 6. For 25.0 , the interval (31) is 

)5143.1,43267.0( . Choosing 62.0ik ,  the gains are 

8635.0pk and 6166.5rk , and 6757.1h is the time-

delay parameter of the controller (2).  Meanwhile, the PID 
controller is tuned by using two methods: 

1. PID-Silva. Tuning using the rules given in (Silva et al., 
2001): 
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 where   T2.0 . Here 4082.4pk , 1208.0ik , 

1739.2dk . 

2. PID- . Tuning assigning three dominant roots at s : 
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 Note that the PID-ߪ controller parameters that guarantee the  
  -stability of the closed-loop system are unique. 

4.1 Simulation results 

Plots of the closed-loop system of the QNET-HVACT 
thermal platform (37) with the controllers PIR, PID-Silva and 
PID-  are shown in Fig. 6. While the signals generated by 
each control law are shown in Fig. 7. Observe that the 
convergence of the controllers PIR and PID-  is similar, 
while that of the PID-Silva controller is slightly slower. 

 
Fig. 6. Simulation system response of  equation (37). 

 

Fig. 7. Simulation control signal applied to equation (37). 

4.2 Experimental results 

Plots of the real responses of the closed-loop system of the 
QNET-HVACT thermal platform with the control laws PIR, 
PID-Silva and PID-  are show in Fig. 8. Plots of the control 
signals applied to the platform are shown in Fig. 9. It is 
observed that the three system responses have similar 
performance. However the control signal is excessively noisy 
and saturated when the PID- control is applied. The PID-
Silva saturates only in the initial stages and it has a 
characteristic noise. Compared with the other two control 
laws, the PIR control law is not saturated at any time and is 
not noisy. In addition, to do a better comparison of the 

performance of the control laws, the Table 2 shows the mean 
square error (MSE) of the response of the closed-loop system 
of the thermal platform with the controls PID- , PID-Silva 
and PIR. It is clear that the PIR control has the best 
performance in simulation and experimentation.  

 

Fig. 8. Real system response of QNET-HVACT. 

 

Fig. 9. Real control signal applied to QNET-HVACT. 

Table 2. MSE of the system response. 

 PID-   PID-Silva 
Simulation (MSE) 0.1266 0.1402 

Experimental (MSE) 3.7419 3.7528 

5. CONCLUSIONS 

In this paper the stability analysis of analytic functions with 
two transcendental terms is presented. Getting exact analytic 
expressions to tune the parameters ),,,( hkkk rip  of a PIR 

control law to -stabilize a first-order process with dead-
time is a consequence of this stability analysis. The stability 
analysis of the closed-loop system is carried out on its 
corresponding characteristic function or quasi-polynomial 
using the D-composition method and the root continuity 
property. Furthermore, the PIR controller is compared with a 
classical PID controller using two tuning approaches: PID-
and PID-Silva. The parameters of the PID-Silva control were 
tuned in such a way that the response of the first-order 
process with dead-time had a similar performance to the 
process when use the PIR control. While the PID-s was tuned 
to place three dominant roots in - . 

In general, the above results suggest that the performance of 
the thermal system response is relatively better using the PIR 
control law. This can be corroborated by measuring the MSE 
shown in Table 2. In addition, the PIR control law generates a 
smooth, noise-free and non-saturated control signal, thereby 
damage to actuators is less and its useful life is longer, see 
Fig 9. Besides, the excess of saturation in the actuators results 
in an increase in the energy consumption of the processes. It 
is important to note that the theoretical results have not been 
published previously and the results of the implementation 
have proven to be efficient and easy to apply. Accordingly, 
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the evidence from this study suggests that the PIR controller 
is an alternative for tracking and stabilizing motion of first-
order processes with dead-time. 
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