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Abstract: Fault detection and diagnosis is one of the important and challenging issues in the field of 
control engineering. The robotic mechanical systems used instead of human in industrial, unreachable 
and hazardous spaces are always exposed to different kinds of stress and are susceptible to different kinds 
of fault in their operators and sensors. Fault detection and diagnosis in shortest possible time after the 
occurrence of fault, fault isolation, and detection of faulty components may prevent serious damages and 
additional costs. This paper aims to detect and diagnose the faults of manipulator robot using unknown 
input observer. The proposed observer is able to estimate the virtual modes, generate proper residuals, 
diagnose and detect sensor faults, and make fault detection process robust respect to disturbance and 
noise. The challenge of this observer is to determine its parameters which are sometimes inconsistent 
with each other and therefore have to be determined in the order of priority based on fault detection 
goals. In this paper, we optimize and determine the parameters of unknown input observer using 
optimization genetic algorithm. The proposed observer combined with the comparative threshold 
designed in this paper minimizes the number of wrong alarms and fault detection failures. The simulation 
results and their comparison with the extended Kalman filter confirm the efficiency of the proposed 
observer in the robust fault detection and diagnosis for manipulator robot. 

Keywords: Fault detection and isolation, manipulator robot, unknown input observer, genetic algorithm, 
adaptive threshold. 



1. INTRODUCTION 

The increased complexity of control systems in the recent 
years and their utilization in sensitive environments such as 
flight control, power plants, robotic industry, and chemical 
and nuclear processes has led to an ever-increasing use of 
fault detection systems. The occurrence of fault normally 
causes economic loss due to the reduced efficiency and 
failure of equipment. In worst possible conditions, the 
occurrence of fault may jeopardize the life of human beings. 
Fault detection and isolation (FDI) has recently attracted the 
attention of many researchers as there has been an ever-
increasing demand for better efficiency combined with 
industrial safety. It is mentioned, the major challenges in fault 
detection and diagnosis are uncertainty, disturbance, and 
changeability of model in the course of time, which should be 
isolated from fault (Venkatasubramanian et al., 2003b). In 
other words, fault detection mechanism should be robust to 
uncertainty, disturbance, changes of model parameters, and 
noise. 

In many methods of the fault detection and isolation area, the 
observer-based methods has attracted many interests (Frank 
et al., 1997). Unknown input observer is inherently robust to 
disturbance and uncertainty, provided that the system is 
observable and its parameters are properly determined 
(Hwang et al., 2010). The necessary and sufficient conditions 

are provided for the existence and design of input observer 
(Hammouri et al., 2010). The nonlinear unknown input 
observer design is investigated for fault detection in Lipschitz 
nonlinear systems (Chen et al., 2006). The sufficient 
condition of existence of nonlinear unknown input observer 
is achieved by linear matrix inequalities. The unknown input 
observer has been used for robust fault detection and 
diagnosis in chemical systems. The unknown input observer 
is used for robust fault detection in continuous stirred tank 
reactor (CSTR), (Zarei et al., 2013a, b). The simulation 
results confirm the efficiency of this method compared to the 
extended Kalman filter. In waste water treatment plant 
(WWTP), likewise, robust fault detection has been carried 
out by unknown input observer (Lafont et al., 2014). Since 
the model parameters of this system change with time, 
linearization of the model was performed around the balance 
point in each sampling and observer parameters were 
determined according to the obtained model for robust fault 
detection and diagnosis. The unknown input observer is used 
for nuclear reactors, according to relatively weak results of 
parameter estimation method in fault detection and diagnosis 
(Pang et al., 2014). The observer proposed in this paper has a 
structure similar to Kalman filter, but has an unknown input 
which also considers the issue of noise and random signals. 
The simulation results indicate the accuracy of this method in 
fault detection in the presence of Gaussian noises. In order a 
new method has also been proposed to simplify the design 
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conditions for unknown input observer (Park, 2013). In this 
method, the system model is rewritten into two parts, with 
one part having poles located in origin which make observer 
design difficult. This isolation provides better conditions for 
designing the observer in the other part with non-origin poles. 
The unknown input observer is proposed for robust fault 
detection and diagnosis for three tanks system (Sobhani et al., 
2012). The equations of this system are linearized and 
discretized in the course of time. In this paper, we focus on 
generation of structured residuals for the detection of sensor 
fault. 

A robust unknown input observer is proposed for actuator 
fault detection in linear time-varying systems with 
persistence of disturbances (Li et al., 2017). The linear matrix 
inequalities and linear matrix equalities are used to calculate 
the observer parameters. The simulation results on a wind 
turbine show good performance of the proposed observer. 

An unknown input observer-based decentralized fault 
detection and isolation is proposed for a class of large-scale 
interconnected nonlinear systems (Abassi et al., 2016). Also, 
this approach is improved (Abassi et al., 2017). In this 
method a bank of decentralized nonlinear input observer is 
used to detect actuator faults. The innovation of this approach 
is designing separately a nonlinear unknown input observer 
for each of the interconnected subsystems. On the other 
words, by using this approach there is no need to 
communicate with other subsystems for local UIO design. 
The stability theorem is given based on Lyapunov stability 
theorem driven by linear matrix equalities. The efficiency of 
this approach is shown by simulating on an automated 
highway as a large-scale interconnected nonlinear system.  

The fault detection method is presented for high-order multi-
agent systems based on unknown input observer (Liu et al., 
2015). The simulation result on multi-agent system with five 
agents show good performance of the proposed observer with 
considering disturbances. The robust fault detection for 
leader-follower linear multi-agent systems is presented using 
robust unknown input observer (Zheng et al., 2017). The 
efficiency of the proposed observer for sensor and actuator 
fault detection and isolation is shown by simulation results. 

The unknown input observer is used to detect and isolate 
actuator fault in five tank system (Tahraoui et al., 2016). A 
bank consist of two unknown input observers is designed for 
detection of two actuator faults using the dedicated residual 
signals. The performance of this approach is shown by 
simulation results. 

Fault tolerant control (FTC) scheme is proposed based on 
H   as a robust method (Belkhiat et al., 2015). In this 

approach a bank of generalized switched observer consist of 
three observers is designed to detect sensor fault with 
presence of unknown bounded disturbances. In this paper a 
compromise between the robustness and the detection of 
sensor fault is achieved. The feasibility of this approach is 
guaranteed by linear matrix inequality formulation.  

Several methods have been proposed for fault detection and 
diagnosis in manipulator robots. A method for a 2-DOF 

manipulator robot is proposed based on prediction error in the 
presence of parameter uncertainties, without any need to 
measure robot joint acceleration (Dixon et al., 2000). A 
challenge in fault detection is the alternate fault detection 
mode (Sedighi et al., 2013). In this mode, system model 
continuously switches between faulty and faultless models. 
This paper attempts to diagnose alternate sensor fault in a 
manipulator robot with two degrees of freedom using the 
extended Kalman filter. The proposed method only 
diagnoses, but not detects, the fault. The actuators fault 
detection method is presented for a flexible joint robot (Yoo, 
2012). In this method, tracking error signal is treated as 
residual and the fault is detected using statistical methods. In 
this paper, uncertainties in robot model have also been taken 
into consideration. The sensor fault detection and isolation 
method is proposed for a manipulator robot arm with six 
degrees of freedom using radial basis function (RBF) neural 
networks and linear matrix inequality (LMI), (Paviglianiti  et 
al., 2010). A bank of the state observers is proposed to form 
the residual signal. RBF neural networks have been used to 
diagnose sensor fault in PUMA manipulator robot and have 
been implemented in practice (Eski et al., 2011). 

In this paper, we diagnose and detect the faults of 
manipulator robot in a robust manner using a combination of 
unknown input observer and genetic algorithm, which have 
not yet been used for this type of robots and which is the 
innovation of this paper. In many of the methods proposed so 
far, there has not been a high percentage of fault isolation 
from disturbance, which has led to improper fault detection 
and wrong alarms. Unknown input observer is robust and 
increases the percentage of proper fault detection. The main 
goals of the UIO for fault detection and diagnosis are as 
follows: 

- Stable state estimation. 

- Robustness to the variation of the input signal. 

- Robustness to the variation of the state signals. 

- Robustness to the disturbance signals. 

- Sensitivity of each residual only to own fault and robustness 
to the other faults. 

However, there are some challenges in the implementation of 
this observer and in the computation of its parameters. One of 
these challenges is the impossibility of the implementation of 
all observer conditions and fault detection goals in a 
simultaneous way. Another challenge is the unequal number 
of equations and unknowns (i.e. observer parameters). In this 
paper, we determine the optimal parameters of unknown 
input observer using genetic algorithm, which significantly 
increases the percentage of isolation between fault and 
disturbance according to prioritization of fault detection 
goals. Therefore, determining the optimal observer 
parameters using genetic algorithm and adaptive threshold 
design for the residual signal guarantees the resistance of 
fault detection and diagnosis method. The comparison 
between the results generated by the combination of 
unknown input observer and genetic algorithm and the results 
produced by the extended Kalman filter reveals the robust 
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and rapid performance of the proposed method in fault 
detection and diagnosis.  

Different parts of this paper are organized as follows. Part 1 
sets forth the manipulator robot equations. Part 3 reviews the 
process of designing the unknown input observer and 
determining its parameters using the genetic algorithm. Part 4 
explains the process of designing the adaptive threshold.  Part 
5 analyses the simulation results and compares them with the 
extended Kalman filter. The final part presents the 
conclusion. 

2. MANIPULATOR ROBOT DYNAMIC 

For the purpose of this paper, we use a manipulator robot 
with two degrees of freedom as shown in Fig. 1. Below is the 
dynamic equation of this robot (Paviglianiti et al., 2010):  

   ,M q q C q q                                                                (1) 

where, 2 1q   is joints angle vector, 2 1q 
  is joints angular 

velocity, 2 1q 
  is joints angular acceleration, and   is joints 

torque vector. The matrices 2 2 2 1,M C   are mass, decentralized 

forces, and friction matrices respectively, which are obtained 
as indicated in Fig. 2. The robot parameters are contained in 
table 1 (Paviglianiti et al., 2010). 
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              (2)                                      

Angular acceleration of the joints is obtained by equation 3:  

    1 ,q M q C q q                                                         (3)             

Considering the state vector as 1 2 1 2
Tx q q q q     and input 

vector as 1 2
Tu      , robot mode equation is written 

according to (4): 

 
 

3

4
1

,

x

x f x x

M C




 
    
   

                                                (4)  

2.1 Robot Dynamic Linearization 

Since linear and discrete equations of the system are needed 
for designing the unknown input observer, we linearized and 
discretized the equations around the balance point using 
Jacobin method. Linearization of the equations needs balance 
point, which is obtained from  ,0 0x f x  . By solving this 

equation, the balance point was computed as 4 10ex  . By 

using Jacobin, the linear equation of the robot was obtained 
from (5): 

     c cx t A x t B u t                                                           (5) 

 

Fig. 1. 2-DOF manipulator robot arm. 

Table 1.  Robot parameters 

Parameter 2
1( )p kgm  2

2 )p kgm  2
3 )p kgm   

Value 3.473 0.193 0.242  
Parameter 1( . )df Nm s 2 ( . )df Nm s  1( )sf Nm 2 ( )sf Nm

Value 1.3 0.88 1.519 0.932 

Table 2.  Parameters of PID controllers 

Parameter 1pK   1dK  1iK  

Value 100 25 5 
Parameter 2pK  2dK  2iK

Value 80 20 5 
 

where, system and input matrixes are obtained from (6)  
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                 (6)                 

If sampling rate is sufficiently small, the approximate (7) can 
be used to discretize (5): 

     x t t x t
x t

t

  



                                                          (7) 

Therefore, the discrete equation will be according to (8): 

     
       1 , 0,1, 2, ...c c

x t t x t t x t
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     
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        (8)                  
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By considering 0.01t  , the discrete equation of the robot is 
rewritten according to (9): 

     
   

4 4
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                         (9)                                             

In order to control the joints angle of the robot, we used two 
PID controllers to track the reference route as 

   1.5sin 1.75dq t t  (Paviglianiti et al., 2010). Table 2 

represents the parameters of these controllers which have 
been obtained by Ziegler-Nichols method. 

3. UNKNOWN INPUT OBSERVER DESIGN 

In fault detection and diagnosis methods based on unknown 
input observer, disturbance is considered as the unknown 
input. The main goal of designing this type of observer is to 
isolate the disturbance from the residual signal. To design the 
unknown input observer, mode and output equations of the 
discrete system are obtained from equation 10 (Zarei et al., 
2014): 

         
       

1 f d

f d

x k A x k Bu k B f k B d k

y k Cx k D f k D d k

     


  

                 (10) 

where, 1nx   is state vector, 1 1,m lu y   are input and output 

vectors of the system, 1rf   is fault vector, and 1jd   is 

disturbance vector. , ,n n n m l nA B C    are system matrix, input 

matrix and output matrix respectively. , , ,fn r fl r dn j dl jB D B D     are 

fault and disturbance matrixes in mode and output equations. 

With these definitions, model and residual estimation 
equations of the observer will be according to (11): 

       
     1 2

1z k Fz k Gy k Ju k

r k L z k L y k

   

 
                                      (11) 

where, 1nz   is the state vector that is estimated by UIO 

observer, 1nr   is residual signal vector, 1 2, , , ,n n n l n m n n n lF G J L L      

and are design matrixes. The state estimation error vector is 
defined as (12): 

     e k z k T x k                                                            (12) 

where, 1ne   is the estimation error vector and n nT   is design 

matrix. With this definition, fault dynamic computation will 
be as follows: 

           
        

         
       

1 1 1

f d

f f d d
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       

   

    

   

     (13)                  

By replacing      z k e k Tx k   in (13), the estimation error 

dynamic of the unknown input observer is obtained from 
(14): 

           
       

1

f f d d

e k Fe k GC T A FT x k J T B u k

GD T B f k GD T B d k

      

   
     (14) 

The residual signal is written as (15) by replacing the output 
equation and in (11): 

          
         

1 2

1 1 2 2 2

f d

f d

r k L z k L Cx k D f k D d k

L e k L T L C x k L D f k L D d k

   

    
(15)  

After computing the observer error dynamic, we determined 
its parameters to achieve fault detection and diagnosis goals. 
The goals of designing the unknown input observer for fault 
detection and diagnosis are as follows: 

1. Estimation error dynamic of the observer should be stable. 

2. Change of system input signal should not take any impact 
on the residual signal, fault dynamic, and fault detection. 

3. The value of system modes should not affect error dynamic 
(18) and residual signal (19). 

4. The impact of disturbance on error dynamic (20) and 
residual signal (21) should be eliminated. 

5. The impact of faults on error dynamic (22) and residual 
signal (23) should be maintained and each residual and error 
should be dependent only on its corresponding fault so that 
the faults can be identified and isolated from each other. In 
order to achieve the above mentioned goals, equations 16-23 
should be established. 

F  is Horwitz                                                                      (16) 

0J T B                                                                             (17) 

0GC T A FT                                                                   (18) 

2 1 0L C L T                                                                        (19) 

0d dGD T B                                                                       (20) 

2 0dL D                                                                               (21) 

0f fGD T B                                                                       (22) 

2 0fL D                                                                               (23) 

3.1 Genetic Algorithm 

There will always be some challenges in the establishment of 
observer conditions and (16) to (23). The first challenge is the 
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unequal number of equations and the number of unknowns. 
The second challenge is that the simultaneous 
implementation of all the above conditions is not feasible in 
many systems and equations may be inconsistent with each 
other (Hammouri et al., 2010). Therefore, the above 
mentioned goals should be arranged in the order of priority. 
In this paper, we use genetic algorithm to optimize a fitness 
function based on the priority of each equation so that 
optimal observer parameters are obtained. The genetic 
algorithm uses Darwin’s natural selection principles to find 
an optimal formula for prediction or adaptation of the pattern. 
Genetic algorithm starts from a set of initial random solutions 
named population. Each component of the population, called 
chromosome, represents a problem answer. Chromosomes 
are transformed in successful repetitions called generation. In 
each generation, chromosomes are evaluated by computing 
the fitness function. To create the next generation, the new 
chromosomes, which are called children, are developed by 
one of two actuators of displacement and mutation. The new 
generation is formed based on the value of fitness function of 
the parents and children or deletion of others in order to keep 
the population fixed. After several generations, the algorithm 
is conducted towards the best chromosome which, in ideal 
mode, provides an optimal answer to the problem (George et 
al., 2013). Normally, the initial selection is made randomly. 
In random sampling, the number of chromosomes is 
determined based on the probability of survival of that 
chromosome. Diagram block of genetic algorithm is shown 
in Fig. 2. Equation (24) represents the fitness function used 
for optimal computation of unknown input observer 
parameters: 

     
   
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    

  

  



    

  

                         (24)                                                               

Where, , 1: 7iw i   are weighting parameters of the fitness 

function sentences and eig(.) 	 is the eigenvalue. In 
determining the observer parameters, the first priority is 
always the stability of observer. The next priority is the 
presence of faults in residuals so that all faults can be 
detected (Hammouri et al., 2010). For the purpose of full 
isolation of the faults from each other, (22) and (23) are 
considered in polar form so that each residual is dependent on 
its corresponding fault. The omission of effect of disturbance 
and modes on the residual and error are the next priorities. 
Based on these priorities, the values of weighting parameters 
are represented in table 3. The initial values have been 
randomly selected. 

4. ADAPTIVE THRESHOLD 

After generating the residual signal, it is time to set the 
threshold and make decision for fault detection. Threshold is 

a curve which is depicted on the residual signal in normal and 
fault-free mode in such a way that the residual is placed 
inside the threshold. In the time of fault occurrence, if fault 
detection method is efficient, the residual signal exits the 
threshold and the fault alarm is activated. 

 
 

Threshold, for fault-free case

Threshold, for faulty case

r t

r t

 




                         (25)                  

So far, many methods have been used for making decision on 
the residual signal. From among these methods, adaptive 
threshold is an efficient method for fault detection. To 
determine the fixed threshold, it is assumed that the residual 
has normal distribution with mean m  and variance  . By 
using normal distribution formula, we can use the 
corresponding time of t   and mean and variance to have the 

probability   on the residual signal (Sobhani et al., 2012). 

 
P

r t m
t 



 
  
 
 

                                                         (26) 

Table 3.  Weighting parameters of fitness function 

Parameter 1w   2w  3w  4w

Value 1 0.4 0.4 0.7 
Parameter 5w  6w  7w   

Value 0.7 1 1  

 

Fig. 2. Block diagram of genetic algorithm. 

 

Fig. 3. Block diagram of proposed method.      

Based on this description, the fixed threshold (positive sign 
of up threshold and negative sign of down threshold) can be 
obtained from (27): 

T
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T m t                                                                            (27)   

where, T  is the fixed threshold and 1, 2,3t   . The bigger t  , 

the bigger the value of the fixed threshold and the bigger the 
probability of non-detection of the faults with smaller rang. 
On the other hand, the smaller t  , the smaller the value of the 

fixed threshold and the bigger the number of wrong alarms. 
Therefore, the fixed threshold cannot guarantee a high 
percentage of proper fault detection. But this problems can be 
solved by making a change in the equation and converting it 
to a comparative equation. In this method, mean and variance 
of the residual signal data along a specific window is used to 
generate the threshold on the residual signal. Moreover, a 
weighting parameter is used to prioritize the recent data or 
soften the threshold. The adaptive threshold is obtained by 
(28) (Sobhani et al., 2012). 

     T t m t t t                                                             (28)   

where, ,m   and are mean and variance along the window 
with weighting parameter, which are obtained by (29): 

       
       

1 1

1 1

m t m t m t

t t t

 

   

   

   
                                            (29)   

Where,  m t  and  t  are mean and variance along the 

window and  0,1   is the weighting parameter. It should be 

noted that the longer the window or the bigger the number of 
data located in the window, the softer the threshold will be 
and the more it will proceed towards the threshold. On the 
other hand, the smaller the length of window, the more the 
threshold will change and, in other words, the more it tracks 
the noise. Given that noise is a random signal, a compromise 
should be made between these two components by selecting a 
proper window length. Figure 3 illustrates the diagram block 
of the proposed method. 

5. SIMULATION RESULTS 

In order to simulate the unknown input observer for detection 
and diagnosis of manipulator robot fault, four faults were set 
in robot sensors and two disturbances were set in the first and 
second joints. Therefore, fault and disturbance matrixes are 
according to (30). The time of occurrence and the range of 
faults and disturbances are contained in table 4, 5 and Fig. 4. 

4 4

4 4

4 2
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0 1 0 0

0
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f
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d

d
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D I
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








 
  
 



                                                            (30)                         

Considering the fitness function in genetic algorithm in (24), 
observer design matrixes are as follows: 

0.5 1 0 0

0 0.5 1 0

0 0 0.5 1

0 0 0 0.5

F

 
 
 
 
 
 

 

0 0 0.3491 0.4612

0 0 0.3122 0.3933

0 0 0.2012 0.4016

0 0 0.0032 0.0341

T

 
 
 
 
 
 

 

1

1 0 1.9213 2.8212

0.9821 1 0 0.5101

7.0128 7.7824 1 0

0 1.8205 1.9277 1

L

  
  
 
 

 

0.002319 0.001929 0.002364 0.0000247

0.029124 0.024726 0.026138 0.002324

T

J
    

  
 

4 4G I   

2 4 4L I   

The measurement noise variance in sensors is 0.01, the 
number of data of each window for the adaptive threshold is 
100, and the weighting parameters is 0.8  . 

To determine the threshold in fault-free mode, the simulation 
is performed and the up and down thresholds are computed 
by (29). Next, the faults are applied to the manipulator robot 
and the simulation is performed again. Fig. 5 to Fig. 8 
illustrate the residuals. As you can see, each residual is only 
dependent on its corresponding fault. In the time of fault 
occurrence, the corresponding residual signal exits the 
threshold and the alarm is activated. Based on the results, in 
addition to detecting the occurrence of all faults, the type of 
fault can also be detected and the allocated alarm can be 
notified to user. Furthermore, none of the residuals is 
sensitive to disturbance and there will be no wrong alarm due 
to the presence of disturbance. According to the results, the 
number of wrong alarms reaches zero, which indicates the 
resistance of the proposed observer to disturbance. 

5.1 Comparison Result with Kalman Filter 

In this part, we compare the proposed method with the 
extended Kalman filter to confirm the efficiency of the 
proposed observer. The extended Kalman filter is one of the 
most widely used observers for mode estimation and fault 
detection in non-linear systems which uses Jacobin 
linearization technique around the previous estimated point. 
In this filter, the covariance of estimation error and the modes 
of the next moment are estimated through two steps of time 
updating and measurement. For the purpose of fault detection 
and diagnosis, the difference between actual modes of the 
robot and the estimated modes are used as the residual signal 
(Axelsson et al., 2010). Fig. 9 to Fig. 12 illustrate the 
estimation error (residuals) which are generated by the 
extended Kalman filter. As you can see in the figures, the 
residuals are sensitive to both disturbances in addition to 
faults. In effect, each residual treats each disturbance as a 
fault, which was expectable due to lack of resistance in this 
filter. Moreover, not all the residuals are only dependent on 
their corresponding faults. According to the figure, only the 
residual 2 is dependent on fault 2. The residuals 1 and 3 are 
dependent on both faults 1 and 3 and the residual 4 is 
dependent on two faults 2 and 4. Therefore, the fault 2 can be 
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detected from residual 2. Then, fault 4 can be detected from 
the residual 4 and omission of fault 2. But the faults 1 and 3 
are not isolatable because both residuals 1 and 3 have reacted 
to both faults. The extended Kalman filter not only fails to 
isolate the faults 1 and 3 but also treats all disturbances as 
fault, which results in the increased wrong alarms. Therefore, 
the comparison between the proposed observer and the 
extended Kalman filter confirms the efficiency of the 
unknown input observer. 

Table 4.  Specification of faults 

Fault 1(rad)f   2 (rad)f  3 (rad/s)f  4 (rad/s)f

Magnitude 0.2 0.1 0.25 0.35 
Start time 15 35 70 75 

Table 5.  Specification of disturbances 

Disturbance 1(rad)d  2 (rad)d  

Magnitude 0.4 0.5 
Start time 10 50 
Stop time 20 60 
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Fig. 4. Faults and disturbances. 
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Fig. 5. Residual 1 generated by the proposed UIO. 
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Fig. 6. Residual 2 generated by the proposed UIO. 

0 20 40 60 80 100
-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

re
si

du
al

3

 

 

Residual3

Up Threshold
Down Threshold

 

Fig. 7. Residual 3 generated by the proposed UIO. 
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Fig. 8. Residual 4 generated by the proposed UIO. 
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Fig. 9. Residual 1 generated by EKF. 
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Fig. 10. Residual 2 generated by EKF. 
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Fig. 11. Residual 3 generated by EKF. 
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Fig. 12. Residual 4 generated by EKF. 

5. CONCLUSION 

In this paper, we designed an unknown input observer for 
fault detection and diagnosis in manipulator robot. The most 
important goal of using this observer is to make the residual 
signal robust respect to disturbance. There are two major 
challenges in designing this observer and computing its 
parameters. The first challenge is the unequal number of 
equations and unknowns. The second challenge is the 
impossibility of establishment of all equations and the 
presence of inconsistency. In order to overcome these two 
challenges, we used genetic algorithm to find optimal 
parameters and prioritize the equations and the goals of fault 
detection and diagnosis. As shown in simulation results, the 
proposed observer combined with the adaptive threshold is 
able to detect the occurrence of all faults. Furthermore, by 
determining the appropriate observer parameters, the residual 
is only dependent on its corresponding fault. Therefore, the 
type of fault can also be identified in addition to the 
occurrence of fault. Considering the goal of using this 
observer and determining the optimal parameters, the 
residuals are robust respect to disturbance and no disturbance 
is wrongly treated as fault. 
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