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Abstract: This study addresses the H∞ fault-tolerant control issue for sampled-data dynamic positioning 
(DP) ships with actuator fault. Firstly, the actuator-failure mode is established. Then, the input delay 
approach combined with Lyapunov-Krasovskii functional are used for guaranteeing the stability of the 
system and achieving H∞ tracking performance. Thus the H∞ fault-tolerant sampled-data controller is 
designed. Finally, simulation results show that the fault-tolerant controller is effective so that the required 
output can track the given signal without steady-state error under the external disturbances and actuator 
faults. 
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1. INTRODUCTION 

A DP ship is a computer-controlled vessel (see Sørensen, 
2011). Different from the conventional motion control 
methods such as anchoring or mooring, the DP ship’s motion 
is controlled by DP systems which are widely used in many 
types of vessels, for example, survey, shuttle tankers, 
offshore drilling units and so on. In the past few years, many 
papers have focused on the DP system (Strand et al., 1999; 
Xiong et al., 2017; Donnarumma et al., 2018; Du et al., 
2018), such as proportional integral derivative (PID) ( Fossen, 
1994); Kalman filtering technology (Balchen et al. , 1976; A. 
J. Sørensen et al., 1996); Vectorial backstepping techonology 
(Fossen et al., 1998; Snijders, 2005); passive nonlinear 
observer (Fossen et al., 1999; Lin et al., 2013; Lindegaard, 
2003) and so on. Recently, many technical papers have 
focused on H∞ control technology (Doyle, 2013; Francis, 
1987; Zhou K et al., 1996) for DP ships (Katebi, 2011). In 
(Wang et al., 2012), based on mixed sensitivity, a robust 
controller is designed for the DP ships with uncertain model. 
(Ngongi et al., 2015) has focused on the issue about optimal 
H∞ control for DP ships with a T-S fuzzy model (Zheng et al., 
2018; Wang et al., 2018a); In (You, 2017), the issues about 
the DP ship’s robustness are discussed using mixed µ-
synthesis and  H∞ technology. 

In reality, the electromagnetic interference, zero shift and 
actuators ageing exist in the DP ship system, so actuator 
failures are unavoidable. Therefore, designing a controller to 
tolerate actuator faults is necessary and important. Recently 
fault-tolerant control (FTC) has received considerable 
attention for DP ships. In (Benetazzo et al., 2015), by 
combining the Luenberger observer with the parity space 
approach, a reconfigurable discrete-time variable-structure 
controller is provided for a DP ship with actuator faults. In 
(Fang et al., 2015), by using the structural reliability-based 
approach, the two faults of buoyancy element loss and line 

breakage for a/the DP ship are dealt with efficiently. In 
(Cristofaro et al., 2014), in order to detect and isolate the 
actuator and faults, the FTC allocation is presented for the  
over-actuated DP ship system by using unknown input 
observers. In (Su et al., 2016), an FTC controller is developed 
for the DP ship to avoid actuator saturation and the partial 
loss of actuator effectiveness fault. In (Lin et al., 2016), by 
using an iterative learning observer, a FTC scheme is 
developed for DP ships under the unknown environment 
disturbance and thruster fault. In (Jing et al., 2017), by using 
a hyper-bolic tangent function, an active disturbance rejection 
controller is proposed for depth-pitch control of a DP ship. 

It is noted that the above mentioned results about the DP ship 
system are mainly on a continuous-time system. However, 
now that digital computers are developing rapidly, the 
analogue controllers are replaced by digital controllers and 
the available literatures have focused on that digital system 
called sampled-data system (see  Delchev et al., 2014; Abedi, 
2015; Wang et al., 2018b). DP ship system is also a sampled-
data system (see Fig.1), which adopts digital controllers to 
collect all types of sensor information, such as the position 
reference information (mostly using differential GPS 
(DGPS), the heading (mostly using the electric compass), the 
wind speed and direction, the acceleration, the vertical 
motion information and so on. These sensors provide 
continuous-time signals of ship’s motion and environment, 
which will become discrete signals after being sampled and 
quantized by the computer, and then the signals will be 
converted to continuous-time signals by zero-order holder, 
which will be send to the propeller to produce the continuous 
control thrust to determine a ship's position at sea. Therefore, 
the continuous signals and discrete signals coexist in this 
system, which is the characteristic of the sampled-data 
system and it has more important theoretical significance 
than continuous-time system. Up to now, there has been 
less research focusing on the issue of sampled-data DP ships 
system. In (Katayama et al., 2010), the SPA sampled-data 
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controller has been designed for DP ship’s sampled-data. In 
(Zheng et al., 2017a,b), the robust H∞ sampled-data 
stabilization problem for DP ships has been discussed.. 
However, there is almost no literature that has considered the 
fault-tolerant control problem for DP ships based on 
sampled-data despite its practical importance, which is the 
motivation for the research work.  

In this brief, the problem about H∞ fault-tolerant control for a 
sampled-data DP ship with actuator fault is discussed. By 
using input delay approach, the sampled-data DP ship’s 
system is transformed to time-varying delay system. Then the 
stability criterion is provided to guarantee that the system is 
asymptotically stable and to establish H tracking 
performance when actuator faults happen. And a H fault-
tolerant sampled-data controller is designed. One practical 
example is given to show that the DP ship system tracks the 
given signal with a lower tracking performance under the 
actuator faults and external disturbance. 

 

 

Fig. 1. DP ships control system. 

2. PROBLEM FORMULATION 

Considered the following DP ships model (see T. I. Fossen, 
2002): 

( )

M D w

J

  
  

  





                                                     (1) 

Where  Tx y  represents the earth-fixed 

position x , y  and heading of the ship,  Tp v r    is 

linear velocities (i.e. surge p , sway v  and yaw r ) of ship in 
the body-fixed frame (see Fig.2).  is the control input vector 
of forces and moments; w  is the environment disturbance. 

( )J   represents the rotation matrix between the two 
coordinates defined as 
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M and D are the inertia and damping matrices respectively, 
and they are defined as 
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Where m is the ship mass; zI is the inertia 

moment. uX  , vY , rY , rN   are the accessional mass. 

 

Fig. 2. Body-fixed coordinate systems.  

Under the assumption that the ship is stable with small ψ, so 
that ( )J   can be rewritten 

3 3( ) .J I               (2) 

then the linearized DP ship’s model becomes: 

( ) ( ) ( ) ( )

( ) ( )

x t Ax t Bu t Ew t

y t Cx t

  



                 (3) 

where  
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Where ( )y t  represents the control system output, ( )u t  

represents the control input, ( )w t  represents the exogenous 
disturbance, C is a constant matrix, assumed to be known. 

The control object is to consider the tracking control problem 
when actuator faults exist in the DP ships. The following 
actuator fault model is adopted as follows. 

( ) ( )fu t u t ，                                                                     (4) 

where 1 2{ , , }idiag      is actuator efficiency factor, 

i is the i-th actuator fault which takes value from the interval 

[ , ]  .   ,  are the lower and upper bound of i  
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respectively. When = =1  , it means the actuator ( )fu t  has 
no fault. The fault modes of actuator failures are listed in 
table1. In the paper, the loss of actuator effectiveness is 
considered as the type of fault. 

Table 1. Fault mode. 

Fault mode                   
Healthy 

Outage/Stuck  
 Loss of effectiveness         

1 
0 

>0 

1 
0 

<1 

Define the tracking error as follow   

( ) ( ) ( )e t r t y t  .                                                             (5) 

Where ( )r t  represents the reference signal. Noted that a 
controller’s tracking error integral plays a key role to 
eliminate the tracking error. Then, similar to (Liao et al., 
2002), an augmented state-space description for the DP ships 
system with actuator faults (4) is considered as follows. 

( ) ( ) ( ) ( )

( ) ( )

t A t B u t Ew t

z t C t

  

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


                                            (6) 
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The paper’s object is to design the a sampled-data controller 
to ensure that:  

1) The system (6) is asymptotically stable when actuator 
failure occurs, and the output ( )y t  can track the reference 

signal ( )r t  without steady-state error; 

2) To reject the wave, wind and current disturbances, it is 
required that 2 2|| ( ) || || ( ) ||z t w t for any non-zero 

 2( ) 0,w t L   under zero condition which satisfies the 

assumption below, where 0  ; 

Assumption 

1) The exogenous disturbance vector 

 1 2 3( ) ( ), ( ), ( )
T

w t w t w t w t  is unknown and time-variant. 

Where 
1( )w t  and 

2 ( )w t  represent the disturbance forces in 

surge and sway respectively, and 
3( )w t  represents the 

disturbance moment in yaw. 
2) ( )w t  is bounded and satisfies that 

( ) , 1,2,3i iw t p i   

where 0, 1,2,3ip i  are unknown constants. 

It is assumed that the state variables of DP ships are 
measured in 0 1 20 kt t t t       , where 

, 1,2,kt k    is sampling instant. The sampling period is 
assumed that 

1 , 0, 0,k kt t d k d                 (7) 

Considered the state-feedback control law as follow 

 1 2 1

0
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( )
k

k
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        (8)                  

where K is the sampled-data controller gain. Substituting (8) 
into (1), then 

( ) ( ) ( ) ( )

( ) ( )
kt A t B K t Ew t

z t C t

   


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

                               (9) 

Remark 1: The system (9) includes not only discrete signals 
but also continuous signals, and it is different from reference 
(Li et al., 2017), in which the control signals are continuous, 
and it is more difficult to analyse. Besides, compared to the 
existing literatures, the sampled-data control method for DP 
ship systems in the paper is different and has more practical 
significance. 

By input delay approach, the system (9) can be converted to 
the system as follows. 

( ) ( ) ( ( )) ( )

( ) ( )

t A t B K t t Ew t

z t C t

    


   





                     (10) 

where  

1( ) ,k k kt t t t t t     ,                                                       (11) 

( )t is a time-varying delay and satisfies 

0 ( ) , ( ) 1, kt d t t t                   (12) 

Remark 2: Input delay approach, which is introduced by 
(Fridman et al., 2004), is one of the major approaches to 
analyse the sampled-data system, in which the sampling 
period could be non-constant. Besides, compared with the 
traditional lifting techniques, it can easily deal with the 
control problem for the system with uncertain parameters 
(Gao et al., 2010). 

The following lemma will be used in the paper: 

Lemma 1 (Leibniz-Newton formula): If ( )f x is a differentiable 
function which is defined in the interval [ , ]a b , then 

( ) ( ) ( )
b

a
f t dt f b f a    

3. MAIN RESULTS 

In this section, the fault-tolerant sampled-data control 
problem for system (10) will be solved. The Lyapunov 
functionals are constructed to guarantee that the system is 
asymptotically stable and establish H∞ tracking performance. 
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And the design methods of fault-tolerant sampled-data 
controllers are provided. 

Theorem 1: Given scale 0, 0d   , the system (10) achieves 
the H  tracking performance  , if there exist matrices 

0, 0, 0,Z P Q    , , 1, 2,3, 4i iM N i   satisfying 
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                                                                  (13) 
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Proof.  First, consider the following Lyapunov-Krasovskii 
functional. 

3

1
1

( ) ( ), [ , )i k k
i
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                        (14) 
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Calculating the derivative of ( )V t , it can be obtained that 

1

2
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                         (18) 

Using the Leibniz-Newton formula, it can be obtained that 

 
( )

( ) ( ) ( ) 0
t

t t
t t t s ds


   


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 
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t t

t d
t t t d s ds


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


                             (20) 

That is, for any appropriately dimensioned matrices 

, , 1, 2,3, 4i iM N i  , the equations can be obtained as follow: 

 

 
1 2 3 4

( )
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T T T T
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Similarly, it can be obtained that 
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Adding Eqs.(21)-(23) into (18) yield 

1 2 3

4 ( )

1 2 3

( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ( )) ( )

( ) ( ) ( ( )) ( )

2 ( ) ( ( )) ( )

( )

T T T

tT T

t d

T T T

tT

t t

T T T

T

V t t P t t Q t t d Q t d

d t Z t s Z s ds

t M t t M t d M

w t M t t t s ds

t N t t N t d N

w t N



     

   

   

   

   





    

 

    
        

    







 

   



( )

4

1 1

1

( )

( ) 1

( ( )) ( ) ( )

( )( 0

0

) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t

t d

TT

T T

t T T T

t t

t t T T T

t d

t t t d s ds

t d A BK E

Z A BK E

dMZ M dNZ N t

t M s Z Z M t Z s ds

t N s Z Z N t Z s ds







   

 





   

   





 





 



        

    
   

 

        

        









 

 

                                      (24) 

where 
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1 2 3 4
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               (25) 

Since 0Z  , then the last two terms in (24) are negative. 
According to the Schur complement, (13) implies that 

1 1

0 0

0

T
d A BK E Z A BK E

dMZ M dNZ N

 
 
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  

                          (26) 

 



36                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

Thus, from Eq. (26), it can be obtained that 

2( ) ( ) ( ) ( ) ( ) 0T Tz t z t w t w t V t  
                      (27) 

Under zero conditions, there are (0) 0V  and ( ) 0V   . 
Integrating (27) yields 2 2|| ( ) || || ( ) ||z t w t  for any non-zero 

 2( ) 0,w t L  , then the H∞ tracking performance is 

guaranteed, which completes the proof. 

Remark 3. In order to achieve a H∞ tracking performance for 
system (10), a free-weighting matrix approach combined with 
the Lyapunov-Krasovskii functional are used in Theorem 1. 

A free-weighting matrix approach was introduced in (He, 
et.al, 2004), in which the relationships between the terms of 
the Leibniz–Newton formula are established by free-
weighting matrices. Since matrix

iM and ,iN 1,2,3,4i  are 

free respectively, their optimal values can be obtained if the 
corresponding LMI is solved. Compared with the fixed 
weight matrix, it can overcome the conservatism. This 
approach can also avoid the restriction on the derivative of 
time-varying delays. Therefore, it plays a role key in reducing 
conservatism for the delay-dependent results. 

Then the fault-tolerant sampled-data controller (8) will be 
designed. 

Theorem 2: Given scales 0, 0d   , the system (10) is 

asymptotically stable under the assumption that the sampling 
period is bounded, that is, 

1 , 0k kt t d k     if there exist 

matrices 0, 0, 0, , , 1, 2,3,4j jP Q Z M N j       , satisfying   
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                                                                  (28) 

Where 
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and the sampled-data controller gain matrix K  is obtained as 

  1
1 2K K K KP                                        (29) 

Proof: Noting that 0Z  , it can be obtained that 

1( ) ( ) 0,Z P Z Z P                                                                (30) 

which is equivalent to 

1 2PZ P Z P                                                                       (31) 

Let  , , , , , , ,T T T T Tdiag P P P I P P I I      .  

Denoting  
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Pre- and post-multiplying (13) by  and T respectively, the 
following inequality can be obtained: 
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(32) 

where 

11 1 1
T T TPA A P Q M M PC CP             

by the Schur complement, Eq. (28) can be obtained. This 
completed the proof. 

4. NUMERICAL EXAMPLES 

To validate the performance of the proposed methods, a 
simulation example about output tracking control for DP ship 
is given. The main parameters are that: the ship’s length is 
76.2m, tonnage is 4.591×106 kg. Similar with (Tannuri et al., 
2010), the M and D in model (1) are given by: 

6

6

9
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0 0 3.7454 10
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4

5 6

6 8

5.0242 10 0 0

0 2.7229 10 4.3933 10

0 4.3933 10 4.1894 10

D

 
     
    

 
Similar to (Li et al., 2017), the environment disturbance w(t) 
is considered as  

( ) ( )Tw t J b                                                                       (33) 
where ( )J   is defined in (1), and 3b  represents the 
vector describing the un-modeled disturbance force and 
moment. For simulation, this paper assumed that 



CONTROL ENGINEERING AND APPLIED INFORMATICS                 37 

     

 

 0.3 0.5 0.1b   , the ship’s initial states 

 ( ) 0 0 0 0 0 0sx t  . In addition, considering the 

actuator fault, the lower and upper bound of i  are 0.1 and 1 

respectively. Then, the actuator efficiency factor   is 
assumed to be {1,1,0.35}. sampling interval is assumed to be 

1d  , then the H∞ tracking performance is obtained that 
min 0.7652  . And the controller gain matrices are given by 

1

0.0165 0 0 0.0482 0 0

0 0.0283 0.0031 .0001 0.0805 0.0031

0.0040 3.0321 7.7750 0.969 3.5593 28.3172

K
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2

0

0.0031

7.7752

K

 
   
  

 

When ( ) 0.5r t   and ( ) 0.5sin 4r t t , the ship’s output ( )y t  
and the reference signal ( )r t  are given in Figs. 3 and 5 
respectively, and the error between ( )y t  and ( )r t  are shown 
in Fig. 4 and 6 respectively, from which it can be seen that 
whether ( )r t  is a constant or a variable, when there exist 
actuator fault (at about 0.3t   in this case) and external 
disturbances, ( )y t  can still track ( )r t  well. This indicates that 
the DP ship has an acceptable tracking performance when the 
external disturbances and actuator fault happen. 

 
Fig. 3. ( )y t  and ( )r t  when ( ) 0.5r t  . 

 
Fig. 4. The error between ( )y t  and ( )r t  when ( ) 0.5r t   

 

Fig.5 ( )y t  and ( )r t  when ( ) 0.5sin 4r t t . 

 

Fig. 6. The error between ( )y t  and ( )r t   when ( ) 0.5sin 4r t t  

5. CONCLUSIONS 

In this brief, the issue about H∞ fault-tolerant control for 
sampled-data DP ships with actuator fault is discussed. 
Firstly, the DP ship’s linearized model with sampled-data is 
converted to a time-varying delay system. Then a H fault-
tolerant sampled-data controller is designed to 
guarantee stability and establish H tracking performance. 
Finally, the effectiveness of the obtained method is 
demonstrated by a DP ship example. The method proposed in 
the paper is also suitable for the other type of ship. In future, 
the new sliding mode control method (see Wang et.al, 
2018c,d) for sampled-data nonlinear DP ship systems will 
be studied. 
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