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Abstract: This paper aims to synthesize a new method for robust predictive control of a class of linear 
discrete-time uncertain systems represented by Laguerre orthonormal functions. This controller adopts a 
worst-case strategy solved by a min max optimization problem taking into account the constraints 
relative to parameter uncertainties of the resulting Laguerre model and to measurement signals. In order 
to ensure a significant reduction of the Laguerre model coefficients, a new algorithm is developed to 
select the optimal Laguerre model. The unknown but bounded error approach is used to update the 
parameter domain selected as an ellipsoid. The effectiveness of the robust controller is shown by an 
example of simulation. 
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

1. INTRODUCTION 

Model Predictive Control (MPC) has become one of the most 
popular strategy for controlling discrete-time uncertain 
systems with a large frame of applications (Lazar et al., 2008; 
Nisha and Pillai, 2014; Fesharaki and Talebi, 2014; Sun et 
al., 2017; Gouta et al., 2016; Yamashita et al., 2016; Kutasi et 
al., 2017). The design of MPC uses a mathematical model to 
predict the behavior of the process by minimizing an 
objective function subjects to constraints over a finite-time 
horizon. Only the first of control inputs is applied to the 
system and after retrieving the next process output, the 
optimization problem is solved again for the next control. 

There has been interest in developing methods for systems 
approximation and discrete-time model predictive control 
using Laguerre orthonormal functions (Oliveira et al., 2000; 
Wang, 2004; Zhang et al., 2006; Asad and Hasan, 2012; 
Hidayat and Medvedev, 2012; Bouzrara et al., 2012; Kannan 
et al., 2013; Samuel et al., 2014; Mbarek et al., 2017; El Anes 
et al., 2018). However, the use of such Laguerre model 
structure implicitly involves expanding the true discrete-time 
transfer function of the system around poles near the 
dominating slow mode (Wahlberg, 1991; Wahlberg and 
Mäkilä, 1996). In this way, the Laguerre model requires a 
very large number of terms in the series expansion to 
represent systems with various representative modes, and this 
may lead to poor accuracy in the estimated model as well as 
the control strategy. In reality, the choice of the optimal 
Laguerre pole is primordial to permit the truncating order of 
the Laguerre network filters as a minimal order without too 
alter the quality of approximation (Oliveira e Silva, 1994; 
Belt and Den Brinker, 1995; Fu and Dumont, 1993). 

To situate the dynamics of the system and to permit an 
optimal and adequate choice of the Laguerre pole, we 

propose to develop a reduced complexity Laguerre model in 
order to synthesize a new robust predictive control strategy 
for SISO linear uncertain systems. The proposed control 
design uses a worst-case strategy to solve a min-max 
optimization problem, subjects to constraints on the 
measurement signals and the parameter uncertainty of the 
resulting Laguerre model. By introducing linear matrix 
inequalities (LMIs), the min-max optimization problem can 
be reformulated as a linear programming problem with a 
reduced number of constraints (Kothare et al., 1996; Boyd et 
al., 1998; Apkarian and Tuan, 2000; Jia et al., 2005). 

On the other hand, when no statistical information on the 
noise is available at the exception is bounded and of known 
boundary, the set of Fourier coefficients is updated using the 
unknown but bounded error method (UBBE). With this 
hypothesis, the uncertainty domain of parameters is usually 
considered under a convex polytope delimited by its vertices. 
This set is compatible with the measures, the model structure 
and the error bounds. Because of the complexity of the 
convex polytope, a simpler geometrical shape such as an 
ellipsoid is used to approach it (Fogel and Huang, 1982; 
Favier and Arruda, 1996). The need of such approximation is 
that the number of inequalities describing the polytope 
increases the amount of data to be processed which leads to 
complex computational (Dabbenea et al., 2003). 

The main contribution of the paper are threefold. First, a 
reduced complexity model based on Laguerre functions is 
developed. The key advantage of this model structure is it 
requires no prior knowledge about the system modes during 
the identification process and hence as few parameters as 
possible have to be estimated. Second, the derived controller 
ensures the robustness of the closed loop system against 
parameter uncertainties. Finally, it synthesizes a robust 
predictive controller handling a class of linear systems having 
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several modes. The main features of the proposed control 
approach using a reduced Laguerre model is that it is not 
sensitive to the choice of the sampling interval, it doesn’t 
requires a prior knowledge of the system delay and it 
operates on a small number of parameters. Furthermore, the 
criterion to be minimized is convex on the uncertainty 
domain of model coefficients. 

The structure of this paper is as follows. Section 2 presents 
the Laguerre model structure for a class of linear dynamical 
systems. Section 3 describes the method developed for 
estimating the optimal Laguerre pole and the concept of the 
UBBE approaches used to update the set of Fourier 
coefficients. The main results of the robust predictive control 
are included in Section 4, in which the output predictor is 
expressed and the optimization problem is reformulated and 
solved by introducing LMIs techniques. Section 5 ends with a 
simulation example and finally, concluding remarks and 
perspectives are, made in section 6. 

2. LAGUERRE MODEL STRUCTURE 

This paper considers a linear discrete-time-invariant SISO 
(Single-Input Single-Output) system described by the 
following standard input-output model: 

( ) ( ) ( ) ( )y k G q u k e k   (1) 

where ( )u k   is the system input, ( )y k   is the output 

and ( )e k  is the measurement noise assumed to have finite 

variance (a zero-mean stationary sequence). 

The scalar transfer function ( )G q  describes the (assumed 

stable) unknown system dynamics, q  is the forward shift 

operator defined as ( ) ( 1)qx k x k  . 

In (Wahlberg, 1991; Wahlberg and Hannan, 1993), the 
discrete orthonormal Laguerre functions are given by: 

21 1
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n

z z
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z z
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  (2) 

where 1   is called the (real valued) Laguerre pole and n  

is the order of Laguerre functions. 

The following recurrent relations are defined from (2): 

2

0
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L z
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The model given in (1) is parameterized by representing the 
transfer function ( )G q  as truncated series expansion in the 

Laguerre orthonormal basis. 

Then, the Laguerre model output is written as follows: 

1

0

ˆ ( ) ( )
N

n n
n

y k g x k




   (5) 

  1( ) , ( )n nx k Z L z u k  (6) 

where   0, , 1
( )n n N

x k
   are the Laguerre filter outputs, N  is 

the truncating order,   0, , 1n n N
g

   are the Fourier 

coefficients and 1Z   is the inverse Z-transform. 

Using the Z-transform of relations given in (5)-(6) and 
assume that initial conditions are equal zero’s, the discrete-
time Laguerre filter network is given by Fig. 1. 

 

Fig. 1. Discrete-time Laguerre filter network. 

According to the filter network of Fig. 1, the following 
recurrent equations are established: 
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 (7) 

Let  0 1 1( ) ( ) ( ) ( )
T

Nx k x k x k x k   be the state vector of 

dimension N . 

From (5)-(7), the Laguerre model representation is given by: 

( 1) ( ) ( )

ˆ ( ) ( )T

x k Ax k Bu k

y k x k

  



 (8) 

where: 

 ,
N N

i jA a    is a triangular state matrix, 

 1 2

T N
NB b b b    is the control gain vector and 

 0 1 1

T

Ng g g    is the parameter vector, where ,i ja  and 

jb  are respectively given by: 
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i j
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j

jb j N       (10) 
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3. MODEL PARAMETER IDENTIFICATION 

In this section, we focus on determining the optimal Laguerre 
pole and the Fourier coefficients of the resulting model given 
in (8)-(10). 

3.1 Estimation of the Laguerre pole 

Consider the following criterion defined over the horizon M  
of data as: 

 
21

1 0

( ) ( )
M N

n n
k n

J y k g x k


 

 
  

 
   (11) 

Adopting the vectorized notation: 

 (1) (2) ( )
T

x x x x M  ,  (1) (2) ( )
T

y y y y M   

The criterion given in (11) can be written in matrix form as: 

     T
J y x y x      (12) 

Using the Gauss-Newton algorithm, the Laguerre pole at 
iteration  1i   is given by: 

   

(i)(i)
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2
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 (13) 

where   is the Newton adaptive step. 

From (12), the Gradient 
( )J 





 and the approximate Hessian 

2

2

( )J 





 are given by: 
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with: 
W is an  N M  dimensional matrix given by: 

 (1) (2) ( )
T

W w w w M   

where  0 1 1( ) ( ) ( ) ( )
T N

Nw k w k w k w k    is the vector 

of filter sensitivities given by: 

( )
( ) , 0,1, , 1

x k
w k N



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


    (16) 

However, computing the gradient given in (14) and the 
approximate Hessian given in (15) requires determination of 
the filter sensitivities regrouped in the matrix W . 
Differentiating the state equation (8) with respect to   

yields: 

( 1) ( ) ( ) ( )w k Aw k Cx k Du k     (17) 

with: 

 ,i jC c  is an N N  dimensional matrix and 
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T

ND d d d   is a vector of dimension N . 
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,
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, 1, 2, ,i j N   are given by: 
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 (20) 

The most obvious scheme for estimating the parameter vector 
  is using least squares techniques (Lujung, 1987). It is well 
known that in this case the least squares estimate has closed 
form solution, which is given by: 

  1ˆ T Tx x x y


  (21) 

The optimal Laguerre pole can be estimated by iterating the 
following steps: 

- determine the filter sensitivities regrouped in the 
matrix W  by applying (17); 

- determine the vector of Fourier coefficients by 
applying (21); 

- determine the Gradient and the approximate Hessian 
from (14)-(15); 

- determine the optimal Laguerre pole from (13). 

3.2 Estimation of the Fourier coefficients 

The model output for the SISO system given in (1) can be 
rewritten as follows: 

( ) ( ) ( )Ty k x k e k   (22) 

where ( )x k  is the state vector,   is the parameter vector and 

ˆ( ) ( ) ( )e k y k y k   is the model error. 

Assumption1: The model error is assumed to be unknown 
but bounded and of known boundary ( )k  , such that: 

( ) ( )e k k  (23) 

According to (22) and (23) one gets: 

( ) ( ) ( ) ( ) ( )Ty k k x k y k k       (24) 

The double inequalities given in (24) generates at each time 
instant k  two hyperplanes 1kH  and 2kH  in the parametric 

space of the vector   and normal to the state vector ( )x k : 
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 1 ( ) ( ) ( )T
kH x k y k k      (25) 

 2 ( ) ( ) ( )T
kH x k y k k      (26) 

It follows from (25)-(26) that each hyperplane  1, 2kjH j   

generates two closed half-spaces  1, 2kjH j   and 

 1, 2kjH j  . Therefore, the parameter vector   satisfying 

the double inequalities (24) belongs to the domain defined by 
the intersection of the positive closed half-spaces 1kH   and 

2kH   generated by the hyperplanes 1kH  and 2kH  

respectively. 

1 2k k kH H H     (27) 

The membership of the vector  , MS , obtained following to 

the acquisition of M  measurements, must thus satisfy: 

1 2
1

M

M k k
k

S H H 



   (28) 

In this way the UBBE approach consists in determining at 
each time instant k , the smallest set of parameters 

N
MS    consisting with measurements, the model 

structure and the error bounds. 

Remark 1: Notice that the complexity of the geometrical 
form MS , increases with the number of measurements and 

the number of parameters to be estimated. To overcome this 
complexity, this exact set MS  is approached by an ellipsoid. 

4. ROBUST PREDICTIVE CONTROL DESIGN 

4.1 Step-ahead predictor 

The incremental form of (8) yields: 

( 1) ( ) ( )x k A x k B u k      (29) 

ˆ ˆ( ) ( 1) ( )Ty k y k x k     (30) 

where ( )x k  and ( )u k  are the state increment vector and 

the control increment signal, defined by: 

( ) ( ) ( 1)x k x k x k     (31) 

( ) ( ) ( 1)u k u k u k     (32) 

When the error on the Laguerre model is unknown but 
bounded, the Fourier coefficients are defined by uncertainty 
intervals. 

Equation (30) can be then rewritten as: 

ˆ ˆ( ) ( 1) ( ) ( )Ty k y k x k      (33) 

where    is the vector of parameter uncertainties and   
is the parameter uncertainty domain. 

By (33), the i-step ahead predictor is given as: 

ˆ ˆ( / ) ( 1/ )

                           ( ) ( ),   1T

y k i k y k i k

x k i i  

    

   
 (34) 

By successive substitution, equation (29) yields: 

1

( ) ( ) ( 1)
i

i i j

j

x k i A x k A B u k j  



      (35) 

Thus, by successive substitution of (35) into (34) one gets: 

 

1

ˆ ˆ( / ) ( ) ( ) ( )

              ( ) ( 1)

T
i N

i
T

i j
j

y k i k y k K I x k

K B u k j

  

  


    

  
 (36) 

where NI  is the identity matrix of dimension N  and iK  is 

an  N N  dimensional matrix defined by: 

0

 0

0   0

i
j

ji

A for i
K

for i




 

 


 (37) 

According to (36), the predictor can be written as a sum of 
two components as follows: 

ˆ ˆ ˆ( / ) ( / ) ( / )l fy k i k y k i k y k i k      (38) 

with ˆ ( / )ly k i k  is the free part and ˆ ( / )fy k i k  is the 

forced part given successively as: 

 ˆ ˆ( / ) ( ) ( ) ( )T
l i Ny k i k y k K I x k       (39) 

1

ˆ ( / ) ( ) ( 1)
i

T
f i j

j

y k i k K B u k j  


     (40) 

Remark 2: From (39) and (40), it is noted that ˆ ( / )ly k i k  

and ˆ ( / )fy k i k  are affine functions of the uncertainty 

vector  . Hence, the predictor ˆ ( / )y k i k  is also affine 

function of  . 

Let ˆ ( , ) pNY k    be the vector of predicted values of the 

output given by: 

ˆ ˆ ˆ( , ) ( 1) ( )
T

pY k y k y k N       

where pN  is the prediction horizon of the output. 

Equation (38), can be rewritten in matrix form as: 

ˆ ˆ ˆ( , ) ( , ) ( , )l fY k Y k Y k     (41) 

where ˆ ˆ ˆ( , ) ( 1) ( ) p
T N

l l l pY k y k y k N         can be 

computed using (39) and ˆ ( , )
N p

fY k    is expressed as: 

ˆ ( , ) ( ) ( )fY k H U k    (42) 

with: 
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 ( ) ( ) ( 1) ( 1) u
T N

uU k u k u k u k N          is the 

control increment vector,  u u pN N N  is the prediction 

horizon of the control and ( ) 0u k i    for ui N . 

( )H   is an  p uN N  dimensional matrix representing the 

system response coefficients: 

1

2 1

1

1

( ) 0 0

( ) ( )

( ) ( ) ( )

( ) ( )

u

p p u

N

N N N

h

h h

H h h

h h


 

  

  

 
 
 
 
 
 
 
 
  


 

   
 

   
 

 

where ( ), 1,2, ,i ph i N    are affine functions of   given 

by: 

1

1
0

( ) ( ) ( )
i

T T j
i i

j

h K B A B    





    (43) 

4.2 The set of constraints 

The constraints are resulting from the uncertainty on the 
Laguerre model coefficients and bounds on control signals 
and its increments over the horizon uN , given as follow: 

 min max( )   0, 1uu u k i u i N       (44) 

 min max( )   0, 1uu u k i u i N         (45) 

where minu , maxu , minu  and maxu  are bounds on control 

signals and control increment signals. 

Let be define the following vectors of dimensions uN : 

 max max

T

MaxU u u   ,  min min

T

MinU u u   

 max max

T

MaxU u u    ,  min min

T

MinU u u     

By (44)-(45), the set   of the constraints on control signals 
and control increment signals is defined as: 

 /U U V       (46) 

with: 
  is an 4 u uN N  dimensional matrix and V  is a vector of 

dimension 4 uN , given by: 

     

,

u

u

N Max

MinN

Max

Min

I U

UI
V

U

U







   
              

      

 

where 
uNI  is the identity matrix of dimension uN ,   is an 

u uN N  dimensional matrix and   is a vector of dimension 

uN , given by: 

1 0 0 ( 1)

1 1 ( 1)
, ( 1)

0    

1 1 1 ( 1)

u k

u k
k

u k



   
         
   
   

   


 

   


 

4.3 Convex optimization problem and solution 

The robust predictive control based on a worst-case strategy 
consists in solving a min-max problem given by: 

2min max ( , )
U

J U
  

 
  

 (47) 

where 2J  is the quadratic criterion to be minimized given by: 

 2

2
1

1
2

0

ˆ( , ) ( / , ) ( )

                       ( )

p

u

N

i

N

i
i

J U y k i k r k i

u k i

  

 







    

 




 (48) 

where ( )r k i  represents the reference signal defined over 

the prediction horizon pN , 0i   is a weighting factor 

generally considered constant and equals to  . 

In matrix form, one has 

2 21/2
2

ˆ( , ) ( , ) ( ) ( )J U Y k R k U k        (49) 

where ( ) ( 1) ( )
T

pR k r k r k N      is the reference 

vector of dimension pN  and  0 2 1, , ,
uNdiag        is a 

weighting diagonal matrix of dimension uN . 

From (49), one gets: 

   2
ˆ ˆ( , ) ( , ) ( ) ( , ) ( )

                          ( ) ( )

T

T

J U Y k R k Y k R k

U k U k

   

 

   

 
 (50) 

Using (41), the relation given in (50) yields: 

2 ( , ) ( ) ( ) ( ) 2 ( ) ( ) ( )T TJ U U k U k U k             (51) 

where ( )  is an u uN N dimensional positive-definite 

matrix, ( )   is a vector of dimension uN  and ( )   is a 

scalar defined respectively as follow: 

( ) ( ) ( )TH H       (52) 

ˆ( ) ( ) ( , ) ( )T
lH Y k R k        (53) 

ˆ ˆ( ) ( , ) ( ) ( , ) ( )
T

l lY k R k Y k R k             (54) 
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Since the criterion 2 ( , )J U   is convex over the set  , the 

maximization problem over this set is reduced to the 
maximization over its vertices. 

Therefore, the optimization problem given in (47) becomes: 

2min max ( , )
U S

J U
  

 
  

 (55) 

where S  is the set of vertices of the orthotope containing the 
ellipsoid. 

Let   a positive scalar. 

The problem given in (55) can then be formulated as: 

,
min

U 
  (56) 

Subject to: 

2 ( , ),J U S       (57) 

U V   (58) 

By (51) and (57), one gets: 

2 ( , ) ( ) 2 ( ) ( ) 0T TJ U U U U                 (59) 

Since the matrix ( )  is definite-positive, one has: 

11( ) ( ) ( ) 0TH H  
          (60) 

by (59)-(60) and applying the Schur’s lemma, the following 
LMI inequality: 

 

1

2 ( ) ( )
0

( )

1, , 2

T T
j j

j

N

U U

U

j

      
 

  
   

  

 (61) 

is equivalent to: 

 

1( ) 0

( ) 2 ( ) ( ) 0

1, , 2

j

T T
j j j

N

U U U

j



        

 


    

  

 (62) 

where  ,  1, , 2N
j j    represents the uncertainties vector 

associated to the jth vertex of S . 

By (61)-(62), the optimization problem given in (56)-(58) 
yields: 

min T

X
Q X  (63) 

Subject to: 

 
 

( ) 2 ( ) ( ) 0

1, , 2

T T T
j j j

N

LX LX U Q X

j

         

  
 (64) 

0EX F   (65) 

with: 

1uNU
X




 
  
 

 , 
10 0 1 u

u

T

N

N

Q 
 
  
  
   

0
u uN NL I    , ( ) ( ) 0 , 1, , 2T T N

j j j         

0

0

0

0

u u

u u

u

u

N N

N N

N

N

I

I
E

 
 
 

   
  

, F V  

where 0
uN  is a vector of dimension uN  containing zero’s. 

Remark 3: Noting that the number of constraints 2 4N
uN  

allowed in the problem (56)-(58) is reduced to 2 1N   
constraints allowed in the convex problem given in (63)-(65). 

5. SIMULATION EXAMPLE 

To illustrate the utility of the robust predictive control based 
on the Laguerre model structure, consider a highly oscillating 
system described by the following discrete transfer function 
(Malti et al., 1998): 

4 3 2

5 4 3 2

3.8 3.71 0.3995 0.2439 0.254
( )

0.85 0.555 0.616 0.0733 0.0612

z z z z
G z

z z z z z

   


    
 (66) 

with 5an   and 4bn   are the orders of the denominator 

and the numerator of the transfer function ( )G z . 

The performances of the Laguerre model is evaluated by the 
following criteria: 

The signal noise to ratio (SNR): 

 

 

2

1

2

1

( )

( )

M

m
k

M

m
k

y k y
SNR

e k e













 

where my  and me  are the mean values of y  and e  

respectively. 

The normalized mean squared error (NMSE): 

 

 

2

1

2

1

ˆ( ) ( )

( )

M

k
M

k

y k y k
NMSE

y k










 

The parametric reduction of rate (PRR): 

1
a b

N
PRR

n n
 


 

The Gaussian sequence used as input to generate the output 
signal is plotted in Fig. 2 on a window of 1000M   
iterations. 
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Fig. 2. Sequence of Gaussian input ( )u k . 

The tuning parameters and bounds on control signals and 
control increment signals used in this simulation are: 

4pN  , 2uN  , 10  , 27 27u   , 7 7u    

Tab. 1 summarizes the set of vertices of the orthotope 
containing the ellipsoid updated using the UBBE approach 
for SNR=10. 

Table 1. List of vertices. 

1s  2s  3s  4s  5s  6s  
2.9373 0.2438 2.9147 0.7464 3.0068 0.8242 
-1.090 0.4128 -1.0397 1.1540 -1.2225 1.3157 
0.7457 0.2170 0.7236 0.5281 0.8067 0.6536 

Using the computational algorithm in subsection 3.1, the 
optimal Laguerre pole is 0.7208  . By applying the Monte 

Carlo method, Fig. 3 shows the result of the estimated pole 
for 100 realizations of noise (SNR=10) when a stationary 
zero mean Gaussian white noise corrupts the output signal. 

 

Fig. 3. Monte Carlo simulation of the Laguerre pole for 100 
realizations of noise. 

Figure 4 plots the Laguerre model output and the process 
output. The representation of the true system by orthonormal 
Laguerre functions leads to the following resulting Laguerre 
model given by: 

0.7208 0 0 0.6932

0.4805 0.7208 0 0.4996

0.3463 0.4805 0.7208 0.3601

2.9546

1.1307

0.7735

,A B



  



 

   
   
      
   
 
 
  
 

 (67) 

It can be observed from Fig. 4 that the approximation of the 
oscillating system (66) by the Laguerre model (67) is 
guaranteed ( 33.9 10NMSE    and 67%PRR  ). 

 

Fig. 4. Validation of the Laguerre model. 

Under the robust predictive controller using the Laguerre 
model, the simulation results are depicted in Figs. 5-6. From 
Fig. 5, it is clear that reference signal can be tracked with 
good dynamical performance. This is predictable since a 
tracking criterion is optimized. However, the tuning 
parameters pN , uN  and   determine the convergence rate 

of the system output. 

In order to verify the robustness of the controller, we plot in 
Figs. 7-8 the results for different error bounds. It can be 
clearly seen from Figs. 7-8 that under the proposed controller, 
the predicted outputs can be rapidly tracked. Thus, the 
robustness of the closed loop system is ensured.  

 

Fig. 5. Evolution of the predicted under the robust controller. 
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Fig. 6. Control and increment control signals. 

 

Fig. 7. Evolution of the predicted outputs for different SNR. 

 

Fig. 8. Evolution of the maximum criteria for different SNR. 

6. CONCLUSION 

This paper has provided a robust predictive control for 
dynamical systems using a new Laguerre modelling. The 
optimal Laguerre pole is estimated using a new algorithm 
based on the Gradient method where new equations are 
derived to determine the filter sensitivities. The set of Fourier 
coefficients of the resulting Laguerre model is an ellipsoid 
updated using the UBBE approaches. A min-max 
optimization problem is formulated and solved under LMIs 
constraints resulting from the model uncertainty and the 
control signals. The future works will be focused on 

extending the result to the robust predictive controller of 
multivariable uncertain systems. 
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