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Abstract: The paper presents an optimal batch method for tuning easy-to-implement controllers with 
fixed parameters, which are widely used to control propulsion units in unmanned aerial vehicles (UAVs) 
in rotational speed control task of the propellers. As a result of the latter, this method might be used to 
satisfy thrust demand defined by profile of a reference thrust force. In the proposed approach, tuning of a 
fractional-order proportional-integral controller (FOPI) is performed on the basis of a linear model of the 
propulsion unit. By using Hermite-Biehler and Pontryagin theorem, the range of controller parameters 
ensuring stability of the closed-loop system (rotational speed control) is obtained. In this range, or within 
the area of fail-safe parameters, the optimal choice of gains of a FOPI controller is performed, on the 
basis of the predefined cost function minimized off-line by a zero-order algorithm. In the paper, sample 
simulation results are presented, which have been obtained for the model of the propulsion unit used in 
multirotor UAVs. These results refer to data obtained in prior with a proportional-derivative-integral 
(PID) controller, CDM controller tuned by Coefficient Diagram Method, near-to-optimal fractional-order 
PID controller tuned by Best-from-the-best procedure and FOPI controller tuned by SCoMR-FOPI 
procedure.    

Keywords: UAV, fractional-order controller, propulsion unit, Hermite-Biehler and Pontryagin theorems, 
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

1. INTRODUCTION 

Factors such as dynamics, expected performance and 
maximum duration of flight of unmanned aerial vehicles 
depend on the choice of propulsion units to a great extent 
(Won Kim and Brown, 2010; Bondyra et al., 2016; 
Aleksandrov and Penkov, 2012). During implementations of 
solutions in particular constructions, starting from the class of  
Micro Aerial Vehicles (MAVs), both multirotor and fixed-
wing vehicles, unpaired, single, propulsion units are still 
commonly used. Every unit is composed of the motor, which 
is usually a brushless DC motor, a propeller mounted directly 
on the shaft of the motor and an Electronic Speed Controller 
(ESC) – see Fig. 1. This module is responsible for driving the 
DC motor via sufficiently fast changes in Pulse Width 
Modulation (PWM) duty cycles, leading to the generated 
thrust and torque. The majority of available solutions, 
especially in model scale, on the contrary to the name of 
ESC, does not have any possibility to control, or even to 
measure, the effective rotational speed of the propellers or of 
a generated thrust force, thus there is no feedback from those 
signals from the output of propulsion unit. Such an 
architecture results in many drawbacks, especially severe and 
visible in multirotor MAVs, where fast dynamics of the 
propulsion units and low mass of the construction of a UAV 
combined with no possibility to control rotational speed of

consecutive units, leads often to misbalanced thrust forces. 
Declared, reference values of rotational speeds differ from 
real ones due to multiple reasons, disturbances, mechanical 
wear of the propulsion units of low battery state in UAVs. As 
the result, current position and orientation of a MAV is 
different from the declared one, what is one of the most 
elementary and still valid problems faced by control theory 
and robotics (Raptis and Valavanis, 2011; Valavanis and 
Vachtsevanos, 2015; Guo, 2015). In the last years, an 
increased number of practical applications stipulated increase 
in scientific interest in which stabilization and improvement 
of flying-characteristics capabilities is expected.  

 

Fig. 1. Components of the propulsion unit and their mounting 
place in an unmanned aerial vehicle. 
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These applications include amongst the other: video 
recording from a stabilized or slowly-moving flying platform, 
autonomous landing, grasping objects in flight, transportation 
tasks (Pounds et al., 2012) or virtual missions of multi-robot 
systems (Zelazo et al., 2015; Saska et al., 2016). 

Possible tasks to stabilization of position and orientation of 
MAVs are sought in higher control layers then rotational 
speed control, i.e. in direct control loops of orientation and 
position of UAVs, by controlling thrust forces and angular 
torques. Further information can be found in classical 
references, as (Mahony et al., 2012; Castillo et al., 2005; Ren 
et al., 2012), and a spectrum of the proposed control 
algorithms is wide (from simple, fixed-parameter controllers 
of PID type (Bouabdallah et al., 2004), self-tuning nonlinear 
controllers (Gautam and Ha, 2013), event-based control 
(Durand et al., 2018), ending on using bio-inspired 
techniques, see (Fister et al., 2016, Duan and Li, 2014)). In 
the context of angle stabilization in fixed-wing UAV when 
using linear and nonlinear controllers, the comparison of their 
performance can be found, e.g., in (Espinoza et al., 2013; 
Espinoza et al., 2018).  

2. PROBLEM STATEMENT 

The main point of this paper is to focus on the lowest layer of 
a control system, i.e. rotational speed control of a single 
propulsion unit (Fig. 2), as in (Magsimo et al., 2013; Sanchez 
et al., 2011), assuming that linear models are used, as in 
(Gardecki et al., 2013), and, on the contrary to the approaches 
proposed in (Szafrański et al., 2014; Gąsior et al., 2016), 
aiming at the use of more sophisticated control techniques as 
proposed therein. The authors are interested in using a simple 
PI controller which performance can be enhanced by 
generalization of its mathematical description with the use of 
fractional-order operators. 

By introduction of a fractional-order of integration to a 
controller, a visible improvement in the shaping of frequency 
response of a control system can become visible, as no longer 
the slope of an integer multiplicity of 20dB can be attained. 
More benefit from the application of fractional-order 
controllers (especially for practicing engineers using full 
flexibility offered by fractional-order mathematics) can be 
found in (Efe M. Ö., 2011). 

In (Giernacki et al., 2017a), Hermite-Biehler and Pontryagin 
theorems have been used to obtain a stability region estimate 
in which controller parameters in a continuous-time FOPI 
structure are sought, in accordance with the proposed 
procedure for modelling and rotational Speed Control of  

 

 

 

 

 

 

 

 

Motor-Rotor unit (SCoMR-FOPI procedure). In the paper, a  
mechanism of optimal tuning of controller parameters is 
implemented, what is the added value to the approach. The 
basic aim of the mechanism is to ensure rapid tuning and 
perform fairly simple calculations, what is of prime 
importance taking the lowest-level control layer requirements 
(rotational speed control in UAVs) into account.      

From the variety of optimization techniques (see eg. Precup 
et al., 2015, Chong and Zak, 2001, Killingsworth and Krstic, 
2006, Duan and Li, 2014), the one used in this paper is based 
on the Fibonacci-search method and bootstrapping technique. 
It has primarily been developed for off-line, model-based 
optimal auto tuning of the fixed-wing UAV orientation 
controllers (PD type) (Giernacki et al., 2018b) and for real-
time model-free optimal auto tuning of the multirotor UAV 
altitude controller (PD type) (Giernacki et al., 2018a). Both 
cited references confirmed the applicability of the method 
and its low computational complexity when tuning 
controllers of upper (an one order slower) UAV control 
layers. In the both cited references, the proposed tuning 
methods have not guaranteed, however, stability of the 
control system, what is the main characteristics of the 
proposed approach. The latter comes as a result of using the 
analytical model of the propulsion unit and stability 
condititons derived for a fractional-order system. 

The main contributions of this paper are the following: 

- presentation of a novel approach to zero-order, off-line 
optimal gain tuning of rotational speed controllers used in 
unmanned aerial vehicles based on optimization algorithm 
via bootstrapping technique and Fibonacci-search method,  

- outline of a simple prototyping synthesis method, of the 
control system of the rotational speed with continuous-time 
fractional-order controller in a FOPI structure. The controller 
parameters are optimal and chosen from a box in a stability 
area of the closed-loop system obtained by the use of 
Hermite-Biehler and Pontryagin theorems, 

- giving a study of performance of the proposed optimization 
strategy for integer-order (PI) and fractional-order (FOPI) 
type controllers by specific, comparative simulation tests for 
the dynamical model of the driving unit (used in the Hornet 
quadrotor – Fig. 3), obtained on the basis of experiments 
conducted on a special laboratory test stand – Fig. 4 
(Gardecki et al., 2013). The expectations towards a rapid and 
overshoot-free tracking of rotational speed have been 
expressed by a proper choice of a minimized aim function 
based on the error signal samples. 

 
Fig. 2. Rotational speed closed-loop control system.  
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Fig. 3. The Hornet quadrotor developed at the Institute of 
Control, Robotics and Information Engineering  
of Poznan University of Technology (propulsion units used  
in experiments). 

The paper is organized as follows: Section III presents the 
steps of the proposed procedure of optimal tuning of FOPI 
controllers in rotational speed tracking problem in UAVs. 
Sections IV-VI give a deeper insight into the procedure, and, 
respectively, Section IV includes the description of a 
synthesis of the rotational speed control system with a FOPI 
controller, Section V discusses stability issues, and Section 
VI presents the optimal tuning method. Comparative tests 
performed by means of simulations have been included in 
Section VII, and Section VIII presents conclusion.  

3. PROCEDURE FOR OBTAINING OPTIMAL 
PARAMETERS OF A FOPI CONTROLLER 

The problem of optimal tuning of a fractional-order controller 
with N parameters within the predefined ranges on the basis 
of a minimization task of the function  J(t) can be ingeneral 
expressed as:  
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In the example, considered in the remaining part of the paper, 
there is a pair of gains sought in a time horizon th of a 
fractional-order controller (KP and KI) with the proposed 
procedure. The cost function values are based on Integral of 
Absolute Error – IAE measure, obtained on the basis of 
measurements of the tracking error e(t). The proposed 
method requires one to perform n identical simulation, by 
comparing n IAE values for n various controller gains pairs. 
By using the Fibonacci-search algorithm to search for 
optimal controller gains and bootstrapping technique to 
switch between tuned parameters, shortens the exploration 
time among all possible pairs of gains, by stipulating only 
those for which  IAE is decreasing, and the use of Hermite-
Biehler and Pontryagin Theorems with two BIBO (Bound-
Input Bounded-Output) conditions allows one to contract the 
ranges for controller gains only to those, where the stability 
of the closed-loop system is ensured. This is also important 
from the following reason: a proper choice of  J(t) can mirror 
the expectations towards transients in a closed-loop system.  

 

Fig. 4. Propulsion unit used in the experiments on test stand. 

In the example, the proiority choice was to ensure fast and 
and overshoot-free speed changes in a UAV, thus the 
function J(t) is absolute tracking error value-based.  

The proposed procedure is composed of the following steps, 
described in detail in the further part of the text: 

1. Obtain a model of the plant, i.e. of the motor unit of the 
UAV, in a form of a transfer function G(s) – see (1) from 
Section 4.1. 

2. Stipulate a priori values of  (fractional order operator in 
the integral term) for which optimal parameters of FOPI 
controllers will be found. For a more detailed information 
about the FOPI controller and reasonable values of the  
parameter, see Section 4.2. 

3. Use Hermite-Biehler and Pontryagin Theorems and two 
BIBO conditions (explained in Section 5) to obtain a stability 
region estimates for each of FOPI controllers. 

4. Search for optimal continuous-time controller parameters 
by the use of the Fibonacci-search algorithm and 
bootstrapping technique. 

5. Verify performance of tracking of rotational speed in 
closed-loop systems with the FOPI controllers obtained from 
Step 4. 

6. Choose the controller with the preferred dynamics.  

7. (Optional) Transform the obtained continuous-time model 
of the controller with the use of Oustaloup approximation 
into its sampled-data version, which is easy to implement in 
embedded systems of a multirotor control architecture of 
UAVs. This step is not considered in the paper due to a 
limited space. An in-depth information concerning how to 
obtain discrete-time controller models using Oustaloup 
approximation can be found, e.g., in (Tepljakov, 2017).  

4. A ROTATIONAL SPEED CONTROL SYSTEM FOR A 
LINEAR MODEL OF THE PROPULSION UNIT AND A 

FOPI CONTROLLER 

The control task with rotational speed as output signal, is 
performed in a standard negative feedback system, where the 
continuous-time linear model of the propulsion unit is 
described by a transfer function. In a similar way, a FOPI 
controller is described, however, in its case, a fractional order 
() operator in the integral term (1/s) is used. 



CONTROL ENGINEERING AND APPLIED INFORMATICS                 25 

     

 

4.1 Mathematical model of propulsion unit  

An in-depth description of the process of acquiring data and 
methods to identify models can be found in (Gardecki et al., 
2013; Giernacki et al., 2017a,b; Giernacki, 2016a), which are 
applied in order to derive a linear mathematical model of the 
driving unit. In the current paper, only the equation defining 
the model is cited, presented in a form of a first-order inertia 
model with transport delay (L). It is presented as  

   
  ,

104.0

1 35.0

01

0 ssL e
s

e
asa

b

sV

s
sG 








  (2) 

what forms a starting point for further synthesis, where (s) 
and V(s) are Laplace transforms of the rotor rotational speed 
(t) and the input signal v(t) applied to the electronic speed 
controller. 

Model (2) is presented with full reference to the dynamics of 
AXI 2814/12 GOLD LINE BLDC motor – Model Motors 
combined with GWS-HD9050x3-SW 9x5" (three-bladed 
propeller) and with T18A (T-Motors) 3-phase AC ESC (see 
Fig. 1). This propulsion unit achieves its maximum thrust  at 
the level of 19.09 N with PWM=77 %, RPM=8893 r/min. 
The maximum speed RPM=9039 r/min is obtained at 
PWM=75 % and useful thrust ranges from 3.924 N 
(RPM=4492.5 r/min). The rotational speed corresponding to 
the gain of 1 in below models is equal to the value of 9550.25 
r/min.  

4.2 FOPI controller basics  

Introducing an additional controller parameter denoting  a 
fractional-order of integration, an increase in accuracy of 
design in closed-loop system’s frequency characteristics 
might be achieved. Now, the slope is not constrained only to 
multiplicity of 20log(gain), but also to its fractional 
multiplications. For previous research results on fractional-
order see e.g. (Giernacki et al., 2017a; Giernacki, 2016a). 
The authors of (Chen et al., 2009) state that fractional 
calculus generalizes differentiation and integration to 
fractional order fundamental (continuous integro-differential) 
operator r
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In (3) a and t are the operation limits; r – operation order, 
which is generally a real value. 

Below, the Riemann-Liouville definition of the fractional 
differo-integral is used:  
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where n – 1 < r < n, and    is the Euler’s Gamma function. 

As in integer-order systems, the Laplace transform of (4), can 
be used, which is defined as:  

      
 




 
0

1

0
0

1
00

n

k
t

kr
t

krr
t

st tfDssFsdttfDe  (5) 

for n – 1 < r < n.  

In Eqn. 5, s operator denotes the Laplace transform variable 
and s = j. 

Furthermore, from Eqn. 5, it is therefore possible to set the 
structure of FOPI (denoted as PI) controller type to 
following form:  

  . sKKsC IP  (6) 

In Eqn. 6, the variable KP means the proportional gain,  
variable KI means integration gain and  – positive real 
number. 

Note: In the most often case, for the synthesis of closed-loop 
control system with fractional-order controllers, the  value is 
set between 0 and 1.  

5. USE OF HERMITE–BIEHLER AND PONTRYAGIN 
THEOREMS 

The closed-loop characteristic quasi-polynomial (s) 
referring the system with the controller C(s) from (6) is given 
by:  
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When the value of is fixed, a stabilizing range for the KP 

and KI parameters can be obtained on the basis of Hermite-
Biehler and Pontryagin theorems (see Appendix A and B). 
The latter can be done when all roots of (7) are real and 
interlaced, and when it is possible to estimate the stabilizing 
ranges using a pair of BIBO stability conditions (details at the 
end of the section). Then, zero-order iterative method 
combined with bootstrapping technique is proposed to find 
optimal values of KP and KI parameters in predefined ranges.  

Considering δ from the Eqn. 7 as a complex function of ω, 
the following equation can be formulate: 
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Based on the above equations, and according to Appendix C 
(equations C4-C5), the parameter KP can be described by the 
following formula: 
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As in (Bellman and Corke, 1963), the stabilizing range for KI 
should satisfy:  
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result from rewritten polynomial   *
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 to the form: 
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 is an odd function, it has the root at =0. Thus, 

for 0=0:  
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To ensure the interlace property between real   *
r

 and 

imaginary   *
i

 part of (8), the following condition results:  
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The rotational speed control system is considered stable, if a 
pair of BIBO-like criteria is met:  

- when the simulation time corresponds to the defined 
horizon of simulation (they needs to be the same),  

- when the closed-loop output signal system does not diverge, 
either exponentially of in the oscillatory manner. 

If any of the two conditions is not met, the closed-loop 
system is considered to be unstable.  

6. FIBONACCI–SEARCH METHOD 

When the model of a plant is not available, or cannot be 
presented in analytical form, or the form of the cost function 
implies that gradient/Hessian information cannot be used, 
making additional assumptions can lead to using the 
considered optimization approach. Among such assumptions 
one can identify the unimodal cost function.  

At every optimization stage, one optimal point is sought, and 
using branch-and-bound strategy, the range embracing the 
optimum point is reduced. Also the cost function is 
calculated, as e.g. sum of squared tracking error samples over 
a horizon for repeated reference trajectory primitive. 
Following that, the optimization function accepts its value to 
reduce the range.  

 
 
 
 
 
 
 
 
 
 
 

Suppose that for the sample range [0, 1] of parameter x, a pair 
of values of the function is obtained, namely f(x(k-)) and 
f(x(k+)) for two candidate points (‘-‘ symbol refers to left 
candidate point, interior point of the range [0, 1], and ‘+’ – to 
the right candidate point): 
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where k=FN-k/FN-k+2 denotes the reduction ratio of the initial 
range between iterations, calculated as the ratio of the 
Fibonacci numbers (see (Chong and Zak, 2001) for further 
details).  

For the specific feature of the cost function, the range where 
optimum is sought can be reduced whenever it is ensured that 
it remains inside it. The algorithm terminates, when after N 
iterations the range decreases below a relative length if the 
initial one. 

This approach can be used in bootstrap sequences in a two-
parameter optimization, assuming that one of the parameters 
is kept constant and the other is found on the basis of this 
iterative procedure, and, secondly, the first one is kept 
constant (calculated on the basis of the prior iterations), and 
the other is tuned (Fig. 5). This forms a single bootstrap that 
is run in a loop. 

This can be put in the following pseudocode: 

1. Assume safe ranges of parameters R1 and R2 for a two-
parameter controller, initial value of the second parameter 
and stipulate stopping condition (accuracy) with the number 
of bootstraps, 

2. Assume the second parameter is constant (taken as the 
result of the previous iteration or as initial value), and 
perform Fibonacci search for the first parameter in the range 
R1, 

3. Assume the first parameter is constant (taken as the result 
of the previous step), and perform Fibonacci search for the 
second parameter in the range R2, 

4. If the number of bootstraps is not exceeded, proceed to 
step 2), otherwise stop the algorithm. 

If the cost function is not unimodal, the method should be 
used for various initial ranges, to identify multiple minima, to 
identify the global one.  

 

 
Fig. 5. Idea of the bootstrapping mechanism.  
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7. COMPARATIVE TESTS 

A series of simulation tests has been performed using 
MATLAB/Simulink environment, to evaluate the proposed 
optimal tuning method of a fixed-gain controller in a FOPI 
structure in a closed-loop system with the model of the 
propeller unit (see Section IV) taking step disturbances into 
account (mirroring effects of wind gusts acting on the blades 
of propellers), and with control amplitude constraints (here, 
umax=±6). Controllers have been tuned in a tracking problem 
of rectangular reference signal with amplitude equal to 1, the 
period equal to 0.8 sec in 2 second simulation horizon. It has 
been expected, to obtain a rotational speed control in UAV at 
the greatest possible pace and with no overshooots. 

This paper presents results and analysis of four numerical 
tests, with the range of parameters KP and KI calculated by 
using equation (9) and inequalities (10) and (15). 
Furthermore, there has been a supplementary material added 
to the Mathematical Models Database 
(http://mathematicalmodels.put.poznan.pl) in a form of 
source codes (MATLAB m.files) and Simulink block 
diagrams used in the current paper, to infer conclusions of 
comparatory tests from efficiency of different controller 
types. In the case of fractional-order controllers their 
implementation has been carried out with the use of a 
FOMCON toolbox (http://fomcon.net) – for details please 
refer to (Tepljakov et al., 2017). The model of a continuous-
time fractional-order controller has been subject to the 
Oustaloup-Recursive-Approximation used in FOMCON 
toolbox for Fractional Order integrator in the Matlab 
environment. The approximation parameters of fractional-
order integrator the order was equal to 5 and frequency range 
was (0.001, 1000) rad/sec sampling period for continuous-
time approximation of fractional-order integration was 0.01 
sec. The examples below present the methodology of 
obtaining controller parameters, with the most important 
configuration parameters for the fractional-order and other 
controllers presented in Table no. 1. The detailed synthesis 
description can be found in the prior work of the authors, 
cited in the caption to Figure 8. 

An in-depth analysis has been conducted with special 
attention paid to effectiveness of the optimization of 
parameters of a FOPI controller (KP and KI) for fixed values 
of  (in the tests, it has been assumed that these parameters 
fall in the range from 0.1 to 1.0 with an increment of 0.1, i.e. 
for controllers PI0.1-PI1.0). A two-dimensional parameter 
search space grid, with values of cost functions, i.e. integral 
performance indexes of I1 (IAE) have been returned for, has 
been obtained for every  on the basis of Hermite-Biehler 
and Pontryagin theorems.  

The obtained ranges of parameters ensuring stability have 
finally been reduced to the range presented in Figure 6, in 
order to be able obtain them in an iterative manner, with 
surface I1=f(KP, KI) drawn, e.g. see the case of the controller 
PI0.1 presented in Figure 6. By doing so it became possible to 
verify if the Fibonacci-search method combined with 
bootstrapping technique actually finds the global minimum of  
 

 

Fig. 6. Stability regions obtained from Hermite-Biehler and 
Pontryagin theorems (saturated to: KPmax=100, KImax=100) of 
parameters KP, KI for change of  values from 0.1 to 1 for 
closed-loop control system with plant model (2):  value 
from -200 to 200 (step: 4 rad/s); above: sample I1=f(KP, KI) 
function for PI0.1 controller. 

Table 1. Parameters of controllers used in comparatory 
tests accompanied by basic performance indices. 

 CDM PID 
tuner 

PID 
SROT 

FOPID SCoRM
-FOPI 

FOPI 
optimal 

KP - 21.3 3.24 3.24 21.86 91.7 
KI - 267 49.4 49.4 14.41 7.01 
KD - 0.426 0.06 0.06 - - 
 - - - 0.02 0.01 0.01 
μ - - - 1.33 - - 

Other 
sets 

A(s)= 
0.0008s2+0.36s 
B(s)=0.0001s2+
0.0196s+1 
F(s)=1 

- - - - - 

IAE 0.1611 0.4445 0.4670 0.2646 0.3126 0.2843 
ISE 0.0780 0.3859 0.4097 0.3275 0.3349 0.3351 

 

I1 with given accuracy. In the paper (Giernacki et al., 2017a),  
the parameters KP and KI (marked with triangles, see Fig. 7a) 
have been obtained with accuracy 10-2. The method proposed 
in this paper allowed to increase this accuracy to up to 10-4.  

In order to do so, two series of tests have been conducted, 
with initial values for KP and KI parameters equal to 10 
assumed in both tests, performing consecutive bootstraps, 
seeking in an iterative manner for parameters KP and KI 
minimizing by Fibonacci-search method of I1 for the 
following cases:  

- Test 1: stopping criterion = 0.005, accuracy of Fibonacci-
search method = 0.001, delta parameter for the last 
Fibonacci-search iteration (i.e. to perform dichotomy-like 
iteration) = 0.01, limit of main iterations = 20,  

- Test 2: respectively: 0.0001, 0.0001, 0.001, 100. 

The results have been presented in Table 2 and Figure 7, 
where graphical results of convergence of the algorithm have 
also been included for several pairs of initial KP and KI (Test 
III). Figure 8 presents the comparison of tracking 
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performance for the optimal FOPI controller with controllers  
presented in following papers (Gardecki et al., 2013; 
Giernacki et al., 2017a; Giernacki, 2016a) – Test IV. The 
comments to the results of simulations tests have been 
included in Conclusion Section. 

8. CONCLUSION 

In the paper, the optimal tuning method of FOPI controllers 
in an rotational speed tracking problem has been presented in 
the system with a model of the sample driving unit used in 
UAVs. The efficiency of the proposed method has been 
verified on the basis of four tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The major conclusions include: 

- The proposed method allows to limit the search space of 
optimal controller parameters to the range, in which the 
prototyped closed-loop system is stable. In the simulation 
tests it has turned out to be sufficient to have grid of 106x106 
points in the case of a PI0.1 controller, for which the lowest 
value of I1 has been obtained, with the improvement of 6.6 % 
with reference to I1 for PI0.49 with SCoRM-FOPI method 
(Giernacki et al., 2017a),  

- By decreasing , a decrease in I1 can be observed, with 
increase in KP and decrease of KI, 

 
Fig. 7. Surface I1=f(KP, KI): a) local minima obtained from SCoMR-FOPI method (Giernacki et al., 2017) (triangles – 
controllers PI0.1 and PI0.49), controller PI0.1 from Test I (squares), controller PI0.1 from Test II (circles), b)-c) convergence 
of the proposed algorithm for PI0.1 controller (Test I and II), d)-f) convergence of the proposed algorithm for PI0.1 

(Test no. III).  
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Fig. 8. Reference signal (SET) tracking in disturbed (DIST) 
systems with Coefficient Diagram Method (CDM) controller 
(Gardecki et al., 2013), two PID controllers tuned by 
MATLAB PID Tuner and Simulink Optimization Toolbox 
(SROT) (Giernacki, 2016a), as well as FOPID and FOPI 
controllers tuned by Best from the best (Giernacki, 2016a), 
SCoMR-FOPI (Giernacki et al., 2017a) and Fibonacci-search 
method (Giernacki, 2018b), respectively. 

- By increasing the accuracy of the algorithm (see Test III), 
the number of main iterations increases, as well the number 
of required bootstraps (see Fig. 7e) in order to achieve even a 
slight improvement in I1, e.g. for PI0.1 controller at the level 
of ~0.5 %; it cannot be, however, guaranteed – in 4 cases, 
higher values of I1 can be noted in comparison with Test I, 

- Results of Test III (Figs. 7d-f) suggest the correct 
convergence of the algorithm to the optimal point in a few 
main iterations, 

- Since the cost function (I1) is relatively flat, the slight 
improvement in tracking performance can be observed (see 
Fig. 8), with the transient behaviour of the closed-loop 
system presenting the tendency to oscillatory behaviour. 

In order to improve the tracking performance, it is expected 
in further tests to include different cost functions, taking e.g. 
control effort into account. In further works, a modification to 
three-parameter off-line iterative framework is planned. 
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Appendix A. Hermite-Biehler Theorem 

(Caponetto et al., 2010; Hafasi et al., 2013) 
 

Let δ be a complex function of ω described by equation (8), 
where   *

r
 and   *

i
 represent the real and imaginary 

parts of   j* . The   j*  is stable if: 

  *
r

 and   *
i

 only have simple real roots and these are 

interlaced; 

        0
*'***'   riri

, for some some = ̅ in 

(−∞,+∞), 

where  
*'

i
 and  

*'
r

 are the derivatives of   *
i

 and 

  *
r

 with respect to ω. An important step is to ensure that 
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  *
i

 and   *
r

 only have real roots. This can be achieved 

by applying the Pontryagin Theorem.  

Appendix B. Pontryagin Theorem 
 

Let  s*  be described by the equation (7) assuming s=j. 

To assure that   0*  i
and   0*  r

only have real roots, 

it must be assured that in interbals 

,...,3,2,122  lll   (B1) 

  *
i

 and   *
r

 have exactly 4lN+M roots. For situation 

where characteristic equation is of fractional order, the 
  *

i
 and   *

r
 must have 4l([N]+1)+[M]+1 roots, 

where [...] represents the integer part, and N and M are taken 
as degree of the numerator and denominator polynomials of 
the integer part. 

Proofs can be found in (Caponetto et al., 2010). 

 

Appendix C.   *
r

 and   *
i

 calculation  

for the FOPI controller  
 

Rewriting the   0s  quasi-polynomial from equation (7) 

for transfer function C(s) of controller from equation (6), 
following equation can be written:  

    .0100
*  seasaKbsKbs sL

IP   (C1)

For g=Ls and =a/b equation (C1) takes the form:   
        ,/// /
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0
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I
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and for g=jit is true that 
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Finally, after replacing the ejwith cos()+jsin(), the real 
  *

r
 and imaginary   *

i
 parts of   *  can be 

described by following two equations: 
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