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Abstract: Due to the practical and theoretical importance, failure diagnosis has received considerable 
attention in the recent years. This paper investigates the relative diagnosability of Discrete-event Systems 
(DESs) under the decentralized framework. The notion of relative codiagnosability is formalized to 
capture the feature that there exists at least a failure event which can be detected based on at least one 
local observation. It is deduced that relative codiagnosability is weaker than codiagnosability and relative 
diagnosability. In order to achieve the performance of a decentralized failure diagnosis system, the 
necessary and sufficient conditions for verifying the relative codiagnosability are presented and a 
polynomial-time algorithm is developed to test the relative codiagnosability by introducing opacity. 
Furthermore, some examples are provided to illustrate the presented results. It is worth noting that the 
reported work extends the idea of codiagnosability to general cases and generalizes the main results of 
relative diagnosability in the centralized observation to the decentralized setting. 
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1. INTRODUCTION 

DESs have been successfully applied to provide a formal 
treatment of many technological and engineering systems 
such as automated manufacturing systems, artificial 
intelligence, computer networks, transportation systems, 
communication protocols, robot coordination systems, 
process control and power systems. Due to the practical and 
theoretical importance, failure diagnosis of DESs, which aims 
to timely identify and exactly characterize the occurrences of 
incipient faults that may not be directly observed by the 
sensors from the expected or desired behaviours, has received 
considerable attention in the recent years (Basile et al., 2009; 
Carvalho et al., 2013; Chen et al., 2014; Li et al., 2015; 
Cabral et al., 2015; Yao and Feng, 2016; Deng and Qiu, 
2016; Geng et al., 2017). In particular, (Sampath et al., 1995) 
proposed an approach, in which a diagnoser was constructed 
to perform the on-line detection and isolation of failure 
events and off-line verification of the diagnosability property 
of a system. And (Lin, 2011) studied the diagnosability 
property by introducing opacity (Saboori and Hadjicostis, 
2012, 2014; Zhang et al., 2015; Wu and Lafortune, 2016; Yin 
and Lafortune, 2017). In addition, a number of variations of 
diagnosability focused on centralized framework have been 
investigated in the works (Thorsley and Teneketzis, 2005;  
Liu, 2009, 2014, 2015; Biswas, 2012;), where there is a 
single site to collect all the information about a system and 
there is only a diagnoser performing fault detection. 

For many large complex distributed systems, the centralized 
failure diagnosis framework may not always be appropriate, 
and instead failure diagnosis may need to be performed at 
some decentralized sites where diagnosis information is 
collected. In the decentralized setting, there is a family of 
local diagnosers running at several sites processing the local 

observations. Each local diagnoser may only observe the part 
of the dynamic behaviour of the system, and diagnosis is 
performed dispersedly at each local site where diagnosis 
information is collected. Up until now, more and more 
researchers have devoted to the decentralized failure 
diagnosis of DESs (Qiu and Kumar, 2006; Liu et al., 2008; 
Ran et al., 2018; Moreira et al., 2011; Chen and Kumar, 
2013; Sayed-Mouchaweh and Lughofer, 2015; Yin and 
Lafortune, 2017;  Deng and Qiu, 2017; Pérez-Zuñiga and 
Chanthery, 2018). In the work of (Qiu and Kumar, 2006), the 
notion of decentralized failure diagnosis is formalized by 
introducing the definition of codiagnosability that requires 
that a failure can be detected by one of the diagnosers within 
a bounded delay. Diagnosability ensures that the diagnoser 
based on the centralized system model will always be able to 
diagnose all failures without ambiguity, while 
codiagnosability guarantees that all failures are diagnosed in 
a decentralized manner using several local diagnosers. 
However, most complex engineering systems are difficult to 
satisfy the conditions of codiagnosability, so they are often 
identified as non-codiagnosable. In the case, the diagnoser 
approach proposed by (Sampath et al., 1995) cannot be used 
as a diagnosis tool for on-line failure detection. To solve the 
problem, we consider the problem of relative diagnosability 
in the framework of decentralized failure diagnosis. 

In the previous work, we have formalized the relative 
diagnosability (Zhao et al., 2017) and the relative 
predictability (Zhao et al., 2019) of DESs in the centralized 
setting. This paper is a continuation of the work (Zhao et al., 
2017, 2019) and its three main contributions are as follows. 

First, the notion of relative codiagnosability of DESs is 
formalized under the decentralized framework to describe the 
property that the occurrence of at least a failure event can be 
detected based on at least one local observation. And the 
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relationship with the notion of codiagnosability introduced by 
(Qiu and Kumar, 2006) is analysed. It is deducted that 
relative codiagnosability is weaker than codiagnosability and 
codiagnosability can be viewed as a special case of the 
relative codiagnosability. Moreover, the notion is different 
from the copredictability (Liu, 2019), which is proposed to 
capture the feature of copredictable DESs that the 
occurrences of failure events can be predicted based on at 
least one local observation.  In addition, the relative 
codiagnosability is clearly different from the k-reliable 
copredictability (Liu, 2018) which means that prediction 
performance will not be degraded even when m-k local 
agents are unavailable.  

Second, codiagnosable rate is defined to accurately describe 
the relative codiagnosability. If the codiagnosable rate of a 
system equals one, then the system is codiagnosable and it is 
considered in the previous works (Qiu and Kumar, 2006; Liu 
et al., 2008; Ran et al., 2018; Moreira et al., 2011; Chen and 
Kumar, 2013; Sayed-Mouchaweh and Lughofer, 2015; Yin 
and Lafortune, 2017; Deng and Qiu, 2017); If the 
codiagnosable rate is greater than 0 and less than 1, then the 
system is relatively codiagnosable; If the codiagnosable rate 
equals zero, the system is not relatively codiagnosable. It is 
worth noting that under the framework proposed by (Qiu and 
Kumar, 2006), relatively codiagnosable systems are 
identified as non-codiagnosable, so the diagnoser approach 
cannot be used for failure diagnosis. But in our framework, 
relatively codiagnosable systems are considered as partially 
codiagnosable, and the diagnoser approach can still be chosen 
as an on-line failure diagnosis tool to detect the occurrences 
of some failures. Moreover, the codiagnosable rate is also a 
measure of relatively codiagnosable degree of different 
systems. 

Third, the necessary and sufficient conditions for verifying 
the relative codiagnosability are presented and a polynomial-
time algorithm based on opacity is developed for accurately 
computing the value of codiagnosable rate. Moreover, the 
algorithm is also used to deal with the problem of 
codiagnosability. So our results generalize the important 
consequences of (Qiu and Kumar, 2006). 

2. PRELIMINARIES 

The paper investigates the DES modeled by a deterministic 
automaton 0( , , , )G X x  , where X  is the set of states,   

is the finite set of events, a partial function : X X    is 

the transition function and 0x X  is the initial state. *  is 

the set of all finite strings over  , including the empty string 
 . For any *s  and any x X , use the notation 0( , )!x s  

to denote that ( , )x s is defined. The generated language 

of G , denoted by L  (or ( )L G ), is defined by 
*

0{ ( , )!}L s x s ： . Let s  be a trace originating from 0x , 
*/ { }L s t st L  ：  denotes the post language of L  after 

s  and the length of s  (number of events including 

repetitions) is denoted by s . The event set o uo    , 

where o  is the set of observable events and uo  is the set of 

unobservable events. Let f uo    be the set of failure 

events and fs  denote the final event of the trace s , define 

( )f   as the set of all traces of L  that end in a failure event, 

i.e., ( ) { : }f f fs L s     . 

Let * *: oP     denote the usual projection operator which 

is used to filter out the unobservable events from a trace. The 
inverse projection is 1( ) { : ( ) }LP y s L P s y    . Also to 

avoid unnecessary complexity, the paper assumes that the 
language L  generated by G  is live and there are no cycles of 
unobservable events in G . 

Definition 1 (Zhao et al., 2017): A path 

0 0 1 1 0( , , ,..., , , , )n n nx x x x    of G  forms an ultimate cycle, if 

there are no any other transitions for each state lx  except 

for ( 1) ( 1)( , )l l l mod nx x    , where , ,l lx X    

{0,1, 2,..., }l n . 

Definition 2 (Zhao et al., 2017): A path of  G  forms a 
branch if the path originates from state 0x  and ends in an 

ultimate cycle. 

A system usually can be divided into several branches. fB  

represents the set of failure branches that contain at least one 
failure event. ~ fB  represents the set of normal branches that 

do not contain any failure events.. 

Definition 3 (Qiu and Kumar, 2006): Let L  be the language 
of G . Assume there are m  local projections * *

,:i o iP    , 

where Mi and M {1, 2,..., }m . L  is said to be 

codiagnosable w.r.t. i M{ }iP   if there is a 0n N  such that 

0( ( )( M)( / )[ ]f js j t L s t n D                            (1) 

Where the diagnosability condition function 
*( ) : {0,1}jD st    is defined as follows: 

11  if ( ( ) )
( )

0  otherwise 
j j f

j

P P st L
D st

      
 



                (2) 

Intuitively, L  being codiagnosable means that for any trace 
s  that ends in a failure event and any sufficiently long 
continuation t  of s , there exists at least one site j  such that 

the j th diagnoser can detect the fault among the traces 

indistinguishable from st  within a finite delay. 

3. RELATIVE CODIAGNOSABILITY AND ITS 
NECESSARY AND SUFFICIENT CONDITIONS 

3.1 Definition of Relative Codiagnosability 

In the section, we consider relative diagnosability of DESs, 
where there are m  local diagnosers to detect the failures. The 
m  local diagnosers are assumed to be independent, namely, 
without communicating their observations to each other. 
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Let L  be the prefix-closed and live language of G . Now let 
us give the definition of relative codiagnosability. 

Definition 4: A trace ( )fs    is said to be codiagnosable 

w.r.t. i{ } MiP   if there is a 
´

0n N  such that 

0( M)( / , )

( ( ) ( ))( )j j f

j t L s t n

L P P st  
     

     
                    (3) 

Definition 5: If there exists a trace s  in ( )f   and s  is 

codiagnosable w.r.t. i{ } MiP  , then L  is said to be relatively 

codiagnosable w.r.t. i{ } MiP   and s . 

Intuitively, L  being relative codiagnosable means that there 
is at least one trace s  in L  ending with a failure event and 
for any sufficiently long continuation t  of s , there exists at 
least one site j  such that the j th diagnoser can detect the 

fault among the traces indistinguishable from st  within a 
finite delay. 

Example 1: Consider the automaton 0( , , , )G X x   

described by Fig.1, where 0 1 2 3 4 5 6 7{ , , , , , , , }X x x x x x x x x , 

{ , , , , }uo f       and f  is a failure event. Assume that 

there are two local diagnosers to detect failures of the system 
and there are two local projections * *

,:i o iP    , 

where i {1, 2} , and  ,1 { , }o    , ,2 { , }o    . 

 

Fig. 1. Automaton  G . 

Let s  be a trace of G and ( )fs   , then  

uo fs   or fs  . 

Case 1: Take uo fs   , then * *t   satisfies /t L s  

and 00 ( )nt n  .  If choose the first diagnoser with 1P to 

detect the failure event f , then there is a string * *    

such that *
1 1( )= ( )=P P st  , but f  . 

Similarly, if choose the second diagnoser with 2P  to detect 

the failure, then there is a string * *    such that 

2 2
* *( )= ( )=P P st   , but f  . 

In this case, the occurrence of f  contained in s  cannot be 

detected by either of two diagnosers. 

Case 2: Take fs  , then * *t   satisfies /t L s  

and 00 ( )nt n  .  If choose the first diagnoser with 1P to 

detect the failure event f , then there is no string  in the 

G  such that * *
1 1( )= ( )=P P st   , but f  . 

However, if choose the second diagnoser with 2P  to detect 

the failure, then there is a string   in the G  such that 

2 2
*( )= ( )=P P st  , but f  . 

In the case, the occurrence of f  contained in s  can be 

detected by the first diagnoser. 

 Since there is a trace fs   in G  and s is codiagnosable 

w.r.t. 1 2{P ,P } , it is shown that L  generated by G  is relative 

codiagnosable w.r.t. 1 2{P ,P } by Definition 5. But by 

Definition 3, L  is identified as non-codiagnosabe w.r.t. 

1 2{P ,P } . 

Remark 1: Comparing Definition 3 with Definition 5, it is 
known that relative codiagnosability is weaker than 
codiagnosability (Qiu and Kumar, 2006) and codiagnosability 
can be viewed as a special case of the relative 
codiagnosability. 

That is, if the language L  is codiagnosable, it must be 
relatively codiagnosable, but not vice versa. 

Remark 2: Relative diagnosability of DESs in the centralized 
setting (Zhao et al., 2017) can be viewed as a special case of 
the relative codiagnosability of DESs under the decentralized 
framework with  1m  . 

Proposition 1: If there exist 0 Mi  , such that L  is relative 

diagnosable w.r.t. 
0i

P , then L  is relative codiagnosable w.r.t. 

i{ }i MP  . 

Proof: 

 If there is a 0 {1, 2,..., }i m such that L  is relative 

diagnosable w.r.t. 
0i

P , then there exist a trace ( )fs    

such that 

0 0

0 0( )( / , )

( ( ) ( ))( )i i f

n N t L s t n

L P P st  
     

     
                      (4) 

If take 0j i , then there is a 0n N  such that 

0( {1,2,..., }( / , )

( ( ) ( ))( )j j f

j m t L s t n

L P P st  
     

     
                   (5) 

By Definition 5, L  is relative codiagnosable w.r.t. i{ }i MP  . 

Definition 6: Let fb B  be a branch of G , L  be the 

language generated by b , and ( ( ))fs L   . If the trace s  
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is codiagnosable w.r.t. i{ }i MP  , then branch b  is said to be 

codiagnosable w.r.t. i{ }i MP  . 

Definition 7: Let fB  be the number of failure branches in 

G  and k  be the number of codiagnosable branches in fB . 

Then the codiagnosable rate   of the language L generated 

by G  is defined as  

f

k

B
                                                       (6) 

Remark 3: If 1  , the language L  is codiagnosable; If 

0< 1 < , the language L  is relatively codiagnosable; If 

0  , the language L  is not relatively codiagnosable. 

3.2 Necessary and Sufficient Conditions of the Relative 
Codiagnosability 

Let 0( , , , )d o dG Q q   be the diagnoser (Sampath et al., 

1995) of G , where Q  is the set of diagnoser states, 

:d oQ Q    is the transition function of diagnoser states, 

and 0q  is the initial diagnoser state. State q Q  is of the 

form 1 1{( , ), , (( , )}n nq x l x l  , where ix X , { , }il N F and 

{1, 2 , }i n ， . A diagnoser state 1 1{( , ), , ( , )}m mq x l x l Q     

is: F-certain, if for each {1, 2 , }i n ， , jl F . 

Theorem 1: Assume there are m  local diagnosers 
idG of G , 

where Mi . L  is relatively condiagnosable w.r.t. i{ }i MP   

iff there exists 0 {1, 2,..., }i m  such that there is at least a F-

certain state in its diagnoser 
0i

dG . 

Poof: 

Necessity: Assume that L  is relatively condiagnosable w.r.t. 

i{ }i MP  . By contradiction it will be shown that there is at 

least a F-certain state in the 
0i

dG . It is further assumed that 

there is no F-certain state exists in the diagnoser 
0i

dG . This 

implies that no any failure events can be detected through the 
construction of the diagnoser. It follows that L  is not 
relatively condiagnosable w.r.t. i{ }i MP  , which is a 

contradiction to the intended hypothesis. Consequently, if L  
is relatively condiagnosable, there is at least an F-certain state 
in its diagnoser 

0i
dG . 

Sufficiency: Assume that there exists 0i M  such that there 

is at least a F-certain state in the diagnoser 
0i

dG . Let 

( )fs    and 0( , )x s x  . Pick any
01 ( / )it P L s , then 

0 1 1( , )x st x  . Correspondingly, 
00

0 1 1( , ( ))
id iq P st q   in 

0i
dG . 

Since 1st  contains failure events, it follows that 1 1 1( , )x l q  

with 1 =l F . Assume 1q  is F-certain, then 

0 0

1
1[ ( )]i i fP P st     . Therefore, L  is relatively 

condiagnosable. 

For the system G  described in the Example 1, construct two 

local diagnosers 
1dG  and 

2dG  by * *
,:i o iP     ( {1, 2}i ) as 

that in Fig. 2. and Fig. 3., where ,1 { , }o    , ,2 { , }o    . 

Note that there is a F-certain state 7F  in the diagnoser 
1dG , 

therefor the language L  generated by the system G  is 
relatively codiagnosable w.r.t. 1 2{ , }P P  by the Theorem 1.. 

 

Fig. 2. The local diagnoser 
1dG . 

 

Fig. 3. The local diagnoser  
2dG . 

4. TEST ALGORITHMS BASED ON THE OPACITY 

4.1 Relation between Opacity and Relative Codiagnosability 

Over the last decade, opacity as a general information flow 
property has become a very fertile field of research (Lin, 
2011; Saboori and Hadjicostis, 2011, 2012, 2013; Yin and 
Lafortune, 2017). In order to meet different types of privacy 
requirements in the context of DESs, several notions of 
opacity have been studied such as language-based opacity 
(Lin, 2011), K-step opacity (Saboori and Hadjicostis, 2011), 
infinite-step opacity (Saboori and Hadjicostis, 2012) and 
initial-state opacity (Saboori and Hadjicostis, 2013). The 
opacity in this paper refers to the language-based opacity 
proposed by Lin (2011). 

Definition 8 (Lin, 2011): Given two languages 1 2,L L L  

and a general observation mapping * *:    , 1L  is 

strongly opaque with respect to 2L  and   if 1
1 2( )L L  ; 

1L  is weakly opaque with respect to 2L  and   if 
1

1 2( )L L    . 

The diagnosability was reformulated by the notion of opacity 
as follows. 

Let * *
f fL L     be the set of strings which contain at 

least one failure event and *
~ ( )f fL L    be the set of 

strings which do not contain any failure events. It is known 
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that ~ f fL L L  . Let n  be the set of strings with the 

length greater than N , then *n
f f

nL L      is the set of 

all strings which contain a failure event and its subsequent at 
least n  events. 

Definition 9 (Lin, 2011): A prefix-closed and live language 
( )L G  is diagnosable with respect to P  and f  if there exists 

a positive integer n  such that ( )N
fs L   

1
~( ( ) ( )) fs L G P P s s L    . 

Likewise,  the relative codiagnosability can also be defined 
by the opacity. 

Proposition 2: L  is relatively codiagnosable w.r.t. i{ }i MP   

and s , if a positive integer n  exists such that 

 
1

~

( )( )( ( ))n
f j j

f

j M s L s L P P s

s L

      


                (7) 

Proof: It is clear by  Definition 9 and Definition 5. 

Theorem 2: Let n
fs L . L  is relatively codiagnosable w.r.t. 

i{ }i MP   and s iff a positive integer n  and a j M  exist such 

that >n
fL  is weak opaque and not strong opaque w.r.t. ~ fL  

and jP . 

Proof:  

>n
fL  being weak opaque and not strong opaque with respect 

to ~ fL  and jP  means 1
~( )n

f j j fL P P L     

and 1
~( ) n

f j j f
n

fL P P L L    . Therefore, 

1
~( )n

f j j fL P P L     and 
1 >* 1

~ ~( ) ( ) ( )n
f j j f f f j

n
j

n
fL P P L L s s L s P P L           

* *>
~

n( ) ( ) ( ) ( )f j j fs s L s P s P s s L             

* *
~( )( ) ( ) ( ) n

j j f fs s P s P s s L s L             

1
~( )( ( ))n

f j j fs L s L P P s s L          

According to Proposition 2, it follows that L  is relatively 
codiagnosable with respect to i{ }i MP   and s . 

4.2 An Test Algorithm for Relative Codiagnosability 

According to Theorem 1, relative codiagnosability of a DES 
can be verified by constructing multiple local diagnosers. 
However, in this way, the value of the codiagnosable rate 
cannot be obtained. That is, it is not possible to compare the 
relative codiagnosability of different systems. Therefore, a 
new algorithm is developed to solve the problem. 

Algorithm 1: 

Let fB  be the set of failure branches, ~ fB  be the set of 

normal branches and k  be the number of branches that are 
codiagnosable in the fB . 

Initialization: 

fB  , ~ fB  , 0k  . 

1) Compute the value of fB : 

According to definition 2, find all branches in G  first. Then 

divide these branches into fB  and ~ fB . Let fB  denote the 

number of branches in  the fB , compute the value of fB . 

2) Construct automata for each failure branch after 
projections. 

Let fB contain n failure branches, i.e. 1 2{ , ,..., }nf b b bB  . 

For each failure branch after projections 
( ( ))j iP L b ( {1, 2,3,..., }i n and j M ), construct 

automaton 1 1 1 1 0( , , , )j j j j
i i i iG X x   , where 1

j
iX  is the set of 

initial state 0x  and states in which at least one observable 

event arrives, 1
j
i  is the set of observable events contained in 

ib  and 1 1 1 1:j j j j
i i i iX X     is the transition function. 

3) Construct automata for all normal branches after 
projections. 

Let ~fB contain l failure branches, i.e. 1 2{ , ,..., }lf b b bB  . For 

each normal branch after projections 
( ( ))j iP L b ( {1,2,3,..., }i l and j M ),  construct automaton 

2 2 2 2 0( , , , )j j j j
i i i iG X x   , where 2

j
iX  is the set of initial state 

0x  and states in which at least one observable event arrives 

and 2
j
i  is the set of observable events contained in the ~ib . 

2 2 2 2:j j j j
i i i iX X     denotes the transition function. 

The automaton 2
jG   of ~( )j fP L  can be computed by 2

j
iG  : 

2 2 2 2 0( , , , )j j j jG X x     , where 2 2
j j

iX X   , 2 2
j j

i
    

( {1,2,3,..., }i l ), and 2 2 2 2:j j j jX X       is the transition 

function. 

4) Verify if ~( ( )) ( ) ( ( ))j i j f j iP L b P L P L b . 

For verifying if ~( ( )) ( ) ( ( ))j i j f j iP L b P L P L b , the product 

of 1
j
iG   and 2

jG   will be constructed. 

 Let 3 3 3 0( , , , )j j j
i i iG X x  , then  

'
3 1 2 1 2 0 0( ) ( , , )( ),,j j j j j j j j

i i oi o o iG G G X X x x         , 

3 1 2 ~( ) ( ) ( ) ( ( )) ( )j j j
i i j i j fL G L G L G P L b P L     
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For each {1, 2,3,..., }i n , check if there exists a j  such that 

~( ( )) ( ) ( ( ))j i j f j iP L b P L P L b . If exists, then 1k k  . 

5) Compute the value of the codiagnosable rate. 

The codiagnosable rate: / fk B  . 

if 1  : ( )L G  is codiagnosable; 

if 0 < 1 < : ( )L G  is relatively codiagnosable; 

if 0  : ( )L G  is not relatively codiagnosable. 

Now, discuss the computational complexity of the algorithm.  

For the system 0( , , , )G X x  , the number of feasible 

transitions from a reachable state x X  is   in the worst 

case. So the computational complexity of the first step is 
( )O Q  . In the second step, because automata 1

j
iG   has 

1
j
iX states and every state has 1

j
i  feasible transitions at 

most, so the computational complexity of construction of 1
j
iG   

is 1 1( )j j
i iO X  . Similarly for the third step, the computational 

complexity of the construction of 2
j
jG   is 2 2( )j jO X   . The 

computational complexity of product in the fourth step 

is 1 2 2( )j j j
iO X X  .  

Overall, the computational complexity of the algorithm is 
polynomial. 

4.3 Illustrative Examples 

Example 2: Consider again G  shown in Fig.1 again. 
Example 1 shows that that L  is relative codiagnosable w.r.t. 

1 2{ , }P P  by using the Definition Approach. In the following, 

we verify the conclusion by Algorithm 1.  

The first step of the algorithm is to compute the value of fB . 

As Fig.1 shows,, the system G  has three branches which are 
shown in Fig. 4 (a), (b) and (c) respectively. Notice that 1b  

and 2b  contain a fault event, but 3b  contains no fault events, 

so 1 2{ , }fB b b  and ~ 3{ }fB b . Obviously, there are two 

branches in fB , therefore 2fB  . 

 
(a) The failure branch 1b . 

 
(b) The failure branch 2b . 

 

(c) The normal branch 3b or 2
2G  of 2 ~( )fP L . 

Fig. 4. Branches of  G . 

According to the second step of the algorithm, automata 1
11G   

and 1
12G   for 1 1( ( ))P L b  and 1 2( ( ))P L b  are constructed as that in 

Fig. 5.(a) and (b), respectively. Automata 2
11G   and 2

12G   for 

2 1( ( ))P L b  and 2 2( ( ))P L b  are constructed as that in Fig. 6.(a) 

and (b), respectively. 

 

(a) Automaton 1
11G  of 1 1( ( ))P L b . 

 

(b) Automaton 1
12G   of 1 2( ( ))P L b . 

Fig. 5. Automata 1
1iG  ( {1,2}i ). 

 

(a) Automaton 2
11G  of 2 1( ( ))P L b . 

 

(b) Automaton 2
12G‘ of 2 2( ( ))P L b . 

Fig. 6. Automata 2
1iG‘ ( {1,2}i ). 

Next by Step 3, construct automata 1
2G   and 2

2G   for 1 ~( )fP L  

and 2 ~( )fP L , which are shown in Fig. 7. and Fig. 4.(c), 

respectively. 

 

Fig. 7. Automaton  1
2G  . 

Now determine whether 1 1 ~ 1( ( )) ( ) ( ( ))i f iP L b P L P L b  

based on step 4 of the algorithm. To this end, automaton 1
31G  

(i.e., the product of 1
11G   and 1

2G   ) and automaton 1
32G  ( i.e., 

the product of 1
12G   and 1

2G   ) are constructed as that depicted 

by Fig. 8.(a) and Fig. 8.(b). As  Fig. 8.(a) shows, 
1 ' '

1 11 1 2 1 11( ) ( ) ( )P L P L P L   , i.e., 

1 1 1 ~ 1 1( ( )) ( ) ( ( ))fP L b P L P L b . But as shown in Fig. 8.(b),  
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1 1 1
1 12 1 2 1 12( ) ( ) ( )P L P L P L     i.e., 

1 2 1 ~ 1 2( ( )) ( ) ( ( ))fP L b P L P L b . 

 

(a) Automaton 1
31G . 

 

(b) Automaton 1
32G . 

Fig. 8. Automata 1
3i ( 1,2)iG  . 

Likewise, to determine whether 

2 2 ~ 2( ( )) ( ) ( ( ))i f iP L b P L P L b , automaton 2
31G  ( i.e., the 

product of 2
11G   and 2

2G  ) and automaton 2
32G  ( i.e., the 

product of 2
12G   and 2

2G   ) are constructed as that in Fig. 9(a) 

and Fig. 9(b). As Fig. 9.(a) shows, 2 ' '
2 11 2 2 2 12( ) ( ) ( )P L P L P L  , 

i.e., 2 1 2 ~ 2 1( ( )) ( ) ( ( ))fP L b P L P L b . From Fig. 9.(b), it is  

known that 1 1 1
2 12 2 2 2 12( ) ( ) ( )P L P L P L    i.e., 

2 2 2 ~ 2 2( ( )) ( ) ( ( ))fP L b P L P L b . 

Therefore, the value of k  is 1. 

 

(a) Automaton 2
31G  

 

(b) Automaton 2
32G  

Fig. 9. Automata 2
3i ( 1,2)iG  . 

The final step is to get the value of the codiagnosable rate. It 
is clear that the codiagnosable rate 

/ 1/ 2 0.5fk B    . 0 < 1< , therefore we have the same 

conclusion as Example 1 that L  is relatively codiagnosable 
w.r.t. 1 2{ , }P P . 

In addition, the result shows that half of the failure events in 
the system G  can be diagnosed by the diagnoser approach 
proposed in (Sampath et al., 1995). However, according to 
(Qiu and Kumar, 2006), the language L  of G  is identified as 
non-codiagnosable, so the diagnoser approach cannot be used 
to detect the failure events in the G . In fact, if the 
codiagnosable rate   of a language is closer to 1, the 

diagnoser method can be used to diagnose most of the failure 
events of the system. 

Example 2: Consider the plant G  depicted as Fig. 10. It is a 
DES model of the decentralized delivery manufacturing 
system shown in Fig. 11., which describes the situation that a 

robot delivers a batch of semi-finished products from 
Workshop 1 to two Test stations and another three 
Workshops. 

 

Fig. 10. DES in Example 2. 

In Fig. 11., events are eight execution instructions: 

a : Teststation1 of Factory1 (F1:Teststation1 for short) 
receives the products from Workshop1 of Factory1 
( F1:Workshop1 for short ); 

b : Workshop1 of Factory2 (F2:Workshop1 for short) 
receives the products from F1:Teststation1; 

c : Teststation1 of Factory2 (F2:Teststation1 for short) 
receives the products from F2:Workshop1; 

d : Workshop3 of Factory1 (F1:Workshop3 for short) 
receives the products from F2:Teststation1; 

e : Workshop2 of Factory1 (F1:Workshop2 for short) 
receives the products from F1:Teststation1;; 

f : F2:Teststation1 receives the products from 

F1:Workshop2; 

g : Deliver the products from F1:Workshop3 to 

F1:Workshop3; 

f : The products were delivered from F2:Workshop1 to 

F1:Workshop2 by mistake. 

 

Fig. 11. A delivery manufacturing system. 

Initially, if the robot executes instruction 1 (i.e., a ), then it 
will travel on Rail 1 and deliver the semi-finished products 
from F1:Workshop1 (i.e., state 0q ) to F1:Teststation1 (i.e., 

state 1q ) for detecting. After that, the robot picks up the 

products to F2:Workshop1 (i.e., state 2q ) or F1:Workshop2 

(i.e., state 3q ) for further processing under instruction 2 (i.e., 

b ) or instruction 5 (i.e., e ) and then to F2:Test Station 1 (i.e., 
state 4q ) for further detecting after executing instruction 3 

(i.e., c ) or instruction 6 (i.e., f ). Finally, the robot will 

deliver the products from F2:Teststation1 to F1:Workshop3 
(i.e., state 5q ) for using. 

If instruction 3 is executed by mistake at the F2:Workshop1 
(i.e., f  occurs), the robot will travel on Rail 1 and deliver 

the products from F2:Workshop1 to F1:Workshop2, where 



CONTROL ENGINEERING AND APPLIED INFORMATICS                       39 
 

     

 
 

the products will be processed again. Then, the robot picks up 
the products to Test Station 2 for further detecting under 
instruction 6 (i.e., f ). 

Because instruction 3 (i.e. c ) has nothing to do with Factory1, 
so it is not visible to the Factory1. And instruction 1 (i.e. a ) 
and instruction 5 (i.e. e ) have nothing to do with Factory2, 
so they are not visible to the Factory2. In addition, failure 
event f  are also not visible to Factory1 and Factory2. Here, 

assume that there are two local projections  
* *

,: ( {1,2})i o iP i    , where ,1 { , , , , , }o a b d e f g  , 

,2 { , , , , }o b c d f g  . 

Next verify the codiagnosability of the system through 
Algorithm 1. 

As Fig. 10 shows, the system has three branches which are 
shown in Fig. 12.(a), Fig. 12.(b) and Fig. 12.(c) respectively. 

1{ }fB b , therefore 1fB  . 

 

(a) The failure branch 1b  

 

(b) The failure branch 2b (i.e. 1
21G  ) 

 

(c) The normal branch 3b  

Fig. 12. Branches of the system. 

Automata 1
11G   for 1 1( ( ))P L b  and 2

11G   for 2 1( ( ))P L b  are 

constructed as that in Fig. 13. and Fig. 14. Similarly, 
automata 1

21G   and 2
21G   for 1 2( ( ))P L b  and 2 2( ( ))P L b  are 

constructed as that in Fig. 12(b) and Fig. 15. And automata 
1
22G   and 2

22G   for 1 3( ( ))P L b  and 2 3( ( ))P L b  are constructed as 

that in Fig. 16(a) and Fig. 16(b).  

According to 1
21G   and 1

22G  , automaton 1
2G   are constructed as 

that in Fig. 17. Likewise, according to 2
21G   and 2

22G  , 

automaton 2
2G   are constructed as that in Fig. 18. 

 

Fig. 13. Automaton 1
11G  of 1 1( ( ))P L b . 

 

Fig. 14. Automaton 2
11G  of 12 ( ( ))P L b . 

 

Fig. 15. Automaton 2
21G  . 

 

(a) Automaton 1
22G  or 1

32G   

 

(b) Automaton 2
22G   

Fig. 16.  Automata 22
jG  ( {1, 2}j ). 

 

Fig. 17. Automaton 1
2G  . 

 

Fig. 18. Automaton 2
2G  . 

Automaton 1
31G   (i.e., the product of 1

11G   and 1
2G  ) is 

constructed as that in Fig. 19. As Fig. 19 shows, 
' ' '

1 1 1 2 1 1( ) ( ) ( )P L P L P L  i.e., 1 1 1 ~ 1 1( ( )) ( ) ( ( ))fP L b P L P L b . 

Automaton 2
31G   (i.e., the product of 2

11G   and 2
2G  ) is 

constructed as that in Fig. 20. As we can see from Fig.20,  
' ' '

2 1 2 2 2 1( ) ( ) ( )P L P L P L  i.e., 2 1 2 ~ 2 1( ( )) ( ) ( ( ))fP L b P L P L b . 

Therefore, the value of k is 1. 

 

Fig. 19. Automaton 1
31G  . 

 

Fig. 20. Automaton 2
31G  . 

The codiagnosable rate / 1fk B   . The result indicates 

that L  is codiagnosable. And the example shows that the 
algorithm is also applicable for the verification of 

codiagnosability introduced by (Qiu and Kumar, 2006).
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5. CONCLUSIONS 

In this paper, we investigated the relative diagnosability of 
the decentralized failure diagnosis system. The notion of 
relative codiagnosability was formalized, which is weaker 
than codiagnosability and relative diagnosability. In order to 
verify whether a system is relatively codiagnosable, the 
necessary and sufficient conditions of relative 
codiagnosability were presented. Moreover, an opacity-based 
algorithm was proposed for calculating the codiagnosable 
rate and its complexity is polynomial. The reported work 
generalizes the main results of Qiu (2006). Further issue 
worthy of consideration is relative diagnosability of fuzzy 
DESs. We would like to consider it in subsequent work. 
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