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Abstract: This study presents a finite difference fractional order gradient operator to enhance CoHOG 
feature extraction for image classification problems. A finite difference Euler approximation of 
fractional-order derivative (FOD) filter structure is used for the fractional-order gradient calculations for 
derivative orders around the value of one. The proposed gradient operator is employed for CoHOG 
feature extraction and performance improvements obtained in image classification are demonstrated over 
six image sets containing about 15000 images. It is observed that roughly 5% improvement is possible in 
average correct classification percentage (CCO) at the fractional gradient order of 0.4 when compared to 
average correct classification percentage of the conventional gradient with the integer order of 1.0. In the 
case of proper fraction-orders selection particular to dataset, classification accuracy improvements can be 
obtained up to 14.8% depending on dataset. 
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1. INTRODUCTION 

Feature extraction is a fundamental task in many image 
processing applications such as texture classification et al.,  
2012), emotion recognition (Senechal et al., 2012), 
handwritten character recognition (Sundaram and 
Ramakrishnan, 2013), fish species classification (Rodrigues 
et al., 2014), blood vessel detection (Fathi and Naghsh-
Nilchi, 2011) and human action recognition (Marín-Jiménez  
et al., 2012). Feature extraction aims to decrease the amount 
of resources needed for describing a large set of data 
accurately. Feature extraction methods perform two essential 
tasks: it transforms input parameter vectors into feature 
vectors as an early processing and thus reduces the 
dimensionality and complexity of data (Wang and Paliwal, 
2003; Fathi and Naghsh-Nilchi, 2011; He et al., 2012; Marín-
Jiménez et al., 2012; Senechal et al., 2012; Sundaram and 
Ramakrishnan, 2013; Rodrigues et al., 2014).  

In image classification problems, generation of feature 
vectors from image data is considered as an early processing 
task and the generated feature vectors directly feeds to input 
of classifiers. Hence, a well-defined feature extraction 
algorithm makes the image classification process more 
effective and robust (Wang and Paliwal, 2003). Due to the 
fact that visual appearance is difficult to model due to 
complicating factors, such as high variability of texture, 
illumination variance of surfaces, cluttered background, 
pose…etc., appearance based algorithms need powerful 
classifiers using robust features (Liu et al., 2011). The widely 
used feature descriptors in image processing are edge and 
orientation information. 

To improve object identification performance in images, 
gradient-based features were developed which are edge 
orientation histogram (EOH) (Gerónimo et al., no date), 

histograms of oriented gradients (HOG) (Dalal and Triggs, 
2005; Talu et al., 2013), co-occurrence HOG (CoHOG) 
(Watanabe et al., 2009), multilevel edge energy features 
(Maji et al., 2008), shapelets (Sabzmeydani and Mori, 2007), 
and edge density (Phung and Bouzerdoum, 2007). Both EOH 
and HOG methods distribute the gradients into several 
orientation bins. EOH features are the ratio between the 
summed gradient magnitudes of two bins for a given 
rectangular region. The HOG method encapsulates alterations 
in the magnitude and orientation of contrast over a grid of 
small image patches. Especially, HOG features show 
satisfactory performance in recognition of different object 
types including natural objects as well as artificial objects 
(Watanabe et al., 2009; Ren et al., 2010). Gradient-based 
features present two benefits: one is the robustness against 
illumination variance because gradient orientations of local 
regions do not alter much with illumination variance 
(Watanabe et al., 2009). The other is the robustness against 
deformations because slight shifts and affine deformations do 
not make significant changes in the histogram (Watanabe et 
al., 2009). However, histogram based features have limited 
discriminative power because spatial information is not well 
represented by histograms. For the solution of this problem, 
CoHOG (co-occurrence histograms of oriented gradients), an 
extension of HOG to represent the spatial relationship 
between gradient orientations, has been proposed and its 
effectiveness for medical image analysis (Talu et al., 2013), 
pedestrian detection (Sabzmeydani and Mori, 2007), human 
detection (Phung and Bouzerdoum, 2007) and cat face 
detection (Kozakaya et al., 2009; Do and Kijak, 2012), object 
detection (Ren et al., 2010; Xu et al., 2012) has been 
demonstrated. 

Discussion on a fractional-order derivative (FOD) traced 
back in the seventeenth century (G.W. Leibnitz, no date). 
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Some approximate definitions for the calculation of FOD 
were proposed by Grünwald-Letnikov, Riemann-Liouville 
and Caputo (Oldham and Spanier, 1974; I. Podlubny, 1999). 
Renewed interest in fractional-order calculus due to the 
recent successful applications in engineering and applied 
science (Ross, 1975; Sabatier et al., 2007; Gutiérrez et al., 
2010) is the motivation of our study. In recent years, there is 
also growing interest for fractional-order methods in image 
processing problems (Gan and Yang, 2010; Gao et al., 2011; 
Gao et al., 2012; Jalab and Ibrahim, 2013). Several works 
have been proposed for the use of fractional-order mask and 
gradient definitions in edge detection (Mathieu et al., 2003), 
image registration (Melbourne et al., 2012) and image 
enhancement (Yang et al., 2011): Fractional-order 
differentiation was used for enhanced image registration via 
MR data (Melbourne et al., 2012). Yan et al. demonstrated an 
application proving fractional calculus in image processing in 
a widespread zone (Yang et al., 2011). A multiscale mask 
based on Riemann-Liovullie fractional differential was 
proposed for texture enhancement (Qing, 2012). Another 
texture enhancement application was presented by using 
fractional differential masks in (Jalab and Ibrahim, 2013). A 
fractional calculus operator based on piecewise quadratic 
interpolation equation was also presented for image 
enhancement (Gao et al., 2011). Multiscale texture 
enhancement was proposed by using fractional directional 
differentiation (Gao et al., 2012). Fractional differentiation 
(FD) for edge detection was shown to exhibit better edge 
detection performance for noisy image (Mathieu et al., 2003; 
Tian et al., 2013, 2014; Bento et al., 2017). Iris localization 
application used fractional differential edge detectors (Lu and 
Xie, 2008). Object classification based on fractional HoG 
features were discussed (Liu and Shen, 2011). Investigation 
of fractional order differentiation and its applications in 
digital image processing is proposed in (He et al., 2015).  A 
new medical image enhancement method is presented by 
taking the merits of fractional differential and directional 
derivative in (Guan et al., 2018). Fractional order 
differentiation, fractional order gradient magnitude, and 
difference image information into the well-known local 
Chan–Vese model is used for modeling the local information 
to incorporate image gradient in (Chen et al., 2019). 

In the current study, we aim to investigate impacts of 
fractional-order finite difference gradient operation on image 
classification performance of CoHOG descriptors. We use 
Euler finite difference approximate formulation based on 
Euler discretization for FOD operator performing the derivate 
orders around the values of one.  Main advantage of the finite 
difference fractional-order derivative (FDFOD) formulation 
is that it provides a simplified and low computational 
complexity solution for approximate calculation of fractional-
order derivative in operating ranges. This approximate 
formulation of FOD is particularly proposed for image 
processing applications where computational complexity is a 
key issue for practical realization. In fact, it can be seen as 
very simplified version of Grünwald-Letnikov discrete 
derivative to approximate FOD around the values of zero in 
case of the fractional orders around one. For the derivative

order one, it simplifies well-known backward finite 
difference approximation formula of the discrete first order 
derivatives.  

We formulated a Euler finite difference based approximate 
fractional-order gradient (FDFOG) operator for two 
dimensional spatial data (images) and used it in the gradient 
orientation calculations in CoHOG. The classification 
performance of CoHOG feature descriptor with the FDFOG 
was tested for various fractional derivative orders in the 
image classification problem and classification performances 
are reported. Tests were performed by seven test image sets 
composed of totally 15000 images. Consequently, the 
FDFOG classification results present a possibility of a higher 
classification performance compared to conventional discrete 
gradient operators based on backward finite difference 
approximation of the first derivative. 

Organization of the paper is as follows: Section 2 was 
devoted for the theoretical background for image 
classification by using CoHOG. The finite difference 
fractional-order gradient formulation was presented in the 
Section 3. In section 4, the classification performance of the 
CoHOG feature descriptor using the FDFOG was 
demonstrated by experimental tests performed on totally 
seven image sets. The conclusions are summarized in the 
section 5. 

2. THEORETICAL BACKGROUND 

2.1. CoHOG Feature Extraction 

CoHOG is an effective gray level feature descriptor based on 
gradient orientations (Watanabe et al., 2009). The CoHOG 
methods yield co-occurrence matrices which express the 
distribution of gradient orientations for a given offset.  This 
process is shown in Fig. 1. The combinations of neighbor 
gradient orientations provide reliable features for object 
recognition in images, and therefore it is very beneficial for 
image classification problems.  

 

Fig. 1. A co-occurrence matrix of gradient orientations. For a 
given offset gradient orientations are calculated on image 
regions. 
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where the matrix   represents gradient orientations and the 
parameters x and y represent vertical and horizontal offset 
values. Where u  and v  are the vertical and the horizontal 
components of gradient vectors, respectively. The overview 
of CoHOG calculation is represented in Fig. 2.
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Fig. 2.  Overview of CoHOG calculation. 

The image is divided into tiled regions, co-occurrence 
matrices are calculated for ten different offsets {(0,1), (0,2), 
(1,1), (1,2), (2,1), (1,0), (2,0), (1,-1), (1,-2), (2,-1)} and 
combined into a single vector. Firstly, gradient orientations 
( ) are calculated by Eq. (1) as shown in Fig. 2 (a) and 
orientation angles in the range )2,0[ 

 
are quantized into 

eight labels, which are {1,2,3,4,5,6,7,8}. Each label stands 
for an orientation for each pixel. For instance, orientation 
angle in the range of ( /4,  /2] is labeled by the number 

“2”. The indices ),( ji  represent pixel positions in image 

matrix denoted by ),( jiI . Secondly, the co-occurrence matrix 

C
 

is obtained by gradient orientations of mn   image 
according to Eq. (2) as shown in Fig. 2 (b). A pixel-pair can 
be represented by an offset, which express the spatial 
relationship between two points. Ten different offsets {(0,1), 
(0,2), (1,1), (1,2), (2,1), (1,0), (2,0), (1,-1), (1,-2), (2,-1)} 
were used in the experiments. The offsets are shown in Fig. 
3. The co-occurrence matrix conveys information related 
with the local textures by using short-range offsets and the 
global textures by using long-range offsets (Watanabe et al., 
2009). By using both short range and long range offsets, the 
co-occurrence matrices can express more detail on shapes. In 
addition, relative location and orientation are considered with 
each neighboring pixel, respectively, which is more precise to 
describe the shapes. The co-occurrence matrices are 
computed for each region with all offsets as shown in Fig 2 
(c). Finally, the components of all the co-occurrence matrices 
are concatenated into a single vector. 

 
 
 

 

 

 

Fig. 3. Offsets for co-occurrence matrices. The 10 blue 
circles are pairs for the offsets.  

From one tiled region, CoHOG obtains 10 co-occurrence 
matrices. Each co-occurrence matrix has 88

   
components. 

Therefore the dimension of CoHOG is 2 d n m   , where 
d  is the number of gradient orientation bins, m  is the 
number of tiled regions and n  is the number of offsets.  

2.2. Image Classification Process  

A block diagram of how to perform image classification by 
using CoHOG is illustrated in Fig. 4. Gradient orientations 
( ) are calculated from spatial gradient of image intensity 
matrix ( I ). Then, the CoHOG schema generates the co-
occurrence matrices ( C ) forming the features that are used 
by neural network classifier to recognize objects in images.  

Artificial neural network (ANN), which was inspired by the 
biological nervous systems, is a machine learning tool, and it 
essentially resembles the learning from experiences. Many 
research works demonstrated that ANN can provide robust 
classification performance (Chen and Folly, 2018; Hsu et al., 
2018; Jafari-Marandi et al., 2018; Xiang et al., 2018). Some 
successful classification applications of ANN are bankruptcy 
prediction, breast cancer diagnosis (Jafari-Marandi et al., 
2018), rainfall prediction (Xiang et al., 2018) and Wind 
Power Forecasting (Chen and Folly, 2018). The main 
advantage of ANN in classification problems is its ability to 
detect complex nonlinear relationships between dependent 
and independent variables. We used feed forward back 
propagation neural network (BPNN) for classification of 
extracted features. Feed forward BPNN is a well-known 
ANN model, and it is very effective in classification 
problems. It contains three neuron layer groups which are 
input, hidden and output layers. In the training stage, the 
training data is fed into the inputs. Each neuron in the input 
layer, hidden layer and output layer calculate their output 
values. Then, actual output values are compared with the 
target output values at ANN output. The errors between these 
outputs are calculated and propagated back to hidden layer in 
order to update the weight of neurons in a way that error 
iteratively descents through training process. The training 
process of ANN continues until the error reaches acceptable 
levels. After the training stage, test inputs are fed into the 
input layer, and the feed forward network will generate 
results from trained network (Hsu et al., 2018). In ANN 
simulations, the 10-fold cross validation method was used for 
reliable performance assessment.  
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Fig. 4. Block diagram of image classification task based on CoHOG. 

 

Object recognition performance not only depends on 
classification capabilities of the ANN classifiers but also 
depends on discriminative capability of obtained features. In 
the current study, we modify gradient operator by FOD 
techniques to improve discriminative features of CoHOG 
feature vectors. This modification allows adjustment of 
fractional-order gradient operator and contribute to finding a 
non-integer derivative order that can provide better 
classification performance than the classical gradient 
operator. In other words, FOD makes gradient operators 
tunable for accomplishment of better classification 
performance. The following sections demonstrate 
classification performance improvements obtained by 
fractional gradient order.   

3. FINITE DIFFERENCE FRACTIONAL-ORDER 
GRADIENT APPROXIMATION FOR IMAGE DATA 

Discrete-time filter structure were used to realize fractional-
order derivative operators in practice (Lubich, 1986; Chen et 
al., 2009; Karci, 2013; Nosrati and Shafiee, 2018; Zarei and 
Tabatabaei, 2018). One of the well-known filter structures for 
discrete implementation of derivatives is Euler 
approximation, suggesting generating function of derivative 
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s ,  and fractional-order derivative is 

expressed in discrete filter form  
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to Euler approximation [43,44] and its filter form can be 
written by: 
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where parameter T  is sampling period and  the parameter   
denotes the fractional-order. For 0  values, FOD filter 
with Euler approximation performs an approximate  -order 
derivative of time series signal )(nx . When equation (3) is  

rearranged, Euler approximation for the FOD can be written 
as, 
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This study needs fractional gradient operation the  order 
values of around the value of one. The case of 1  refers to 
the first derivative and results in a conventional gradient 
operation based on finite difference Euler approximation. 

When the   is close to one ( 1 ) and considering 1z  
delay element as the sampling time T , Euler discrete filter 
form of FOD filter approximates the following finite 
difference (FD) implementation of FDFOD in the discrete 
time domain ( n ):  
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As a natural result of being an approximate solution, the 
results of FDFOD filter can diverge from results of exact 
fractional-order derivatives. A similar approach for the 
definition of fractional order derivative was discussed by 
Karci and a fractional order derivate operator was expressed 
based on the limit definition of first derivative operator 
(Karci, 2013). 

Fig. 5 presents a comparison of results of FDFOD filter and 
the exact fractional-order derivative of polynomials, defined 

as 
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because fractional derivative is calculated in a local window 
with small sizes.  
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) of a scalar field RRf n :  is commonly 

expressed depending on the fractional-order derivatives as, 
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where, 
kxe


 is unit vector in the direction of dimension kx . 

Image data defines a two-dimensional scalar field of intensity 
distribution represented by the matrix I . By considering Eq. 
(4) for  -order derivatives, the finite difference based 
fractional-order gradient of image matrix can be calculated 
by, 
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where, ih  and jh  are spatial sampling length of image data 

I  in the vertical directions ( i ) and horizontal directions ( j ), 

respectively. The u  and v  are FDFOG vectors. 

Magnitude and angle of  
IG
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 were expressed as: 
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Fig. 5. Results of FDFOG ( 1.0T , 2.1 ) and exact 
fractional-order derivative (FOD) fractional order derivative 

of the polynomial, 55253)( 234  xxxxxP . 

When working on image matrixes, 1 ji hh  are regularly 

configured for discrete derivative operation. In fact, the 

orientation information derived from    IG


  given by Eq. 

(11) can be rewritten as in Eq. (12). 

The orientation angles of pixels were shifted   rad in order 
to limit angles between )2,0[  .  

   ),(),( jijiI                                       (13) 

For a better classification performance, feature descriptors 
should reduce unnecessary information from the raw data and 
keep information associated to desired features. Fig. 6 shows 
orientation images calculated by FDFOG for various  . The 
figure reveals that   parameter has an effect on the value 
diversity in orientation data. The information theory suggests 
that the amount of information can be assessed by the 
Shannon entropy. As known, entropy rate of information was 
defined as m2log  for m -level quantization of a zero-order 

source model in information theory (Shannon, 1949; Balian, 
2004; Alagoz and Alisoy, 2014). 

 

Fig. 6.  A positive person image from Inria dataset and the fractional order gradient orientation images with FDFOG for 
various  . 
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We observed that the entropy rate of gradient orientation data 
decreases as values of   diverge from the value of one. This 
effect is apparent in Fig. 7. Fig. 7 illustrates 8-level 
quantization of orientation angles (Labeling) for the person 
positive image, which contains a person in the image, and the 
person negative image, which does not contain any person in 
image. For 0.1 , eight labels {1,2,3,4,5,6,7,8} were used 
to quantize gradient orientations  and the entropy rate is 

38log2  . However, for 4.0 , three labels {4,5,6} in 

eight label set are enough for quantization of gradient 
orientations and therefore the entropy rate of quantized 
gradient orientations is 58.13log2  . This shows that 

gradient orientation data for 0.1  presents a higher 
entropy compared to the case of 4.0 . This decrease of 
entropy in orientation image data purifies the feature 
description, particularly for the object region and this effect 
can improve the classification performance. Because, it 
provides richer co-occurrence matrices for neural network 
classifier. High entropy in orientation images causes rather 
flat co-occurrence matrices with very low values and it is 
indeed a factor reducing the performance of neural classifiers. 
On the other hand, if entropy rate is too low, it may cause the 
loss of useful feature information and therefore, this situation 
can also reduce classification performance. So, there is a need 

for finding a suitable  -order that can provide enhanced 
overall classification performance in all datasets. Our 
simulation results show that 4.0  provides the best 
overall performance for seven datasets. 

4. APPLICATION OF FINITE DIFFERENCE 
FRACTIONAL-ORDER GRADIENT IN COHOG FOR 

IMAGE CLASSIFICATION 

This section discusses the effects of derivative order and 
compares image classification test results.  

We used six datasets: INRIA, Caltech4, Caltech5, Caltech 
Cars, Light and Caltech Airplanes. Section 4.1 briefly 
explains each test dataset used in our experiments. In Section 
4.2, we present computer experiment results and the 
corresponding performance evaluations. 

4.1 Datasets 

Following datasets was used in computer experiments. 

Inria: This dataset is used to classify an image on whether it 
contains a person or not. 2416 normalized images for positive 
samples, and 1218 images for negative samples were used in 
training process. In test process, a total of 1208 images 

resized to 12864  (Dalal, 2006).  
 

 

Fig. 7.  Person positive and person negative images from Inria dataset and the 8 level quantized fractional order gradient 
orientation images (orientation labeled images) with FDFOG for 4.0  (The best overall performance) and 0.1 (The 
conventional gradient performance). Bar graphs at the bottom show histogram of 8 level quantized orientation of person 
positive images. 
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Caltech256: This dataset consists of images from 256 object 

categories. The size of each image is roughly 200300  
pixels. For each independent experiment, different image 
categories were used. For example, to build a dataset with 
four classes, the images in the categories such as motorbikes, 
leopards, bonsai and watch were gathered and this dataset 
was renamed as Caltech4. In the same manner, Caltech5 
(motorbikes, faces, toaster, binocular, cars rear) dataset was 
formed. In training process, 1155 images from Caltech4, 
1607 images from Caltech5 dataset were used. In test 
process, 200 images from Caltech4 and 208 images from 
Caltech5 were classified (Griffin et al., 2007). 

Light: This dataset consists of 2400 light microscope images 
of liver cell, which contains the tissues healthy or not. In 
training process, 864 images for positive samples, and 1296 
images for negative samples were used. Training images have 

192256  size. In test process, a total of 240 images were 
used (Griffin et al., 2007). 

4.2. Experimental Results 

Computer experiments for image classification were 
conducted by an Intel Core i7-3520M processor, 2.9GHz with 
8GB of RAM running 64-bit Windows operating system. The 
method was implemented by using Matlab. In computer 
simulations, 10 different offsets {(0,1), (0,2), (1,1), (1,2), 
(2,1), (1,0), (2,0), (1,-1), (1,-2), (2,-1)} were used. The 
dimensions of CoHOG were equal to 640 for per tiled region 
(10 (number of offsets) x 82 (number of orientation bin)). A 
back propagation neural network was used to implement 
classifier. Input of neural network classifier is fed by co-
occurrence matrix in vector form as in Figs. 2 and 3. Output 
of the classifier yields classification results coded as 1 for 
positive and 0 for negative. The neural network composed of 
1280 inputs, 640 hidden layer neurons and relevant numbers 
of output neurons depending on number of classes (5 neurons 
for Caltech5, 4 neurons for Caltech4 and 1 neuron for Inria, 
Caltech Cars, Caltech Airplanes and Light datasets). Image 
classification tests were repeated only once for each dataset. 

Image classification tests for  , changing from 0 to 2 with 
0.1 steps, were performed on six datasets {Inria,  Caltech4 
(Calt4), Caltech5(Calt5), Caltech Cars (CaltCar),  Caltech 
Airplanes (CaltPlane), Light} containing about 15000 images 
totally. Fig. 8 shows correct classification performance 
(accuracy) of datasets for varying   order.  

A common way to evaluate experimental image classification 
results is to use the accuracy ( cp ). The accuracy is the 

proportion of true results (both true positives and true 
negatives) to all results in the test population and gives us a 
statistical data for evaluation of the correct classification 
performance. 

In order to figure out the   value, which exhibits the highest 
overall classification performance for all datasets, the average 
of correct classification percentages were drawn versus   in 
Fig. 9 (a). This figure shows that the best average 

classification performances for all datasets were obtained for 
2.0  and 4.0  with average correct classification 

percentages of 1.90))2.0(( cpAvg  and 

1.91))4.0(( cpAvg . Conventional gradient operator 

( 0.1 ) presents an average correct classification 
percentage of 86.1 ( 1.86))0.1(( cpAvg ). So, the 

FDFOG with 2.0  and 4.0  exhibited a better image 
classification performance compared to the conventional 
gradient operator ( 0.1 ) that is indeed implements well-
known Euler backward difference approximation formula. 

 

Fig. 8. Percentage of correct classification (accuracy- cp ) for 

6 datasets depending on the fractional order  . 

 
Fig. 9. (a) Average of correct classification percentages ( cp ) 

(b) Variance of correct classification percentages ( cp ). 

Fig. 9 (b) shows the variance of correct classification 
percentages in order to see the consistency of overall 
performance improvement in datasets. Lower variance 
indicates that average correct classification percentages are 
consistent among datasets. The figure reveals that the 
classification performances obtained for 2.0  and 

4.0  are also consistent among six datasets 
( ))2.0(( cpVar =43 and ))4.0(( cpVar  =40). One can 

conclude that 2.0  and 4.0  can preserve their 
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efficiency from a dataset to another in the different six 
datasets, compared to the performance of conventional 
gradient ( 0.1 ), ( 66))0.1(( cpVar ). 

In application, the use of a fixed value of  , such as 
2.0  or 4.0 , provides about 5% in average 

improvement in the classification performance. If the dataset 
oriented variable   selection is used in the orientation 
calculation, better performance per dataset is obtainable as 
shown in Table 1. The correct classification percentages in 
the case of the best   selection are compared with 
percentages of 4.0  and 0.1  in the table. Variable   
selection per dataset improves about 6.8% in overall. This is 
about 2.2% higher than the performance of the fixed 

4.0 . 

Table 1 also reveals that a better classification performance is 
mostly possible for the low values of   such as  0.2 and 0.4. 
One of the reasons of this effect is the lower entropy in 
gradient orientation images for 2.0  and 4.0  
(Entropy: 58.13log2  ) as seen in Fig. 7. Because, 

possibility of repeating quantized orientations pattern 
(repeating label pattern) increases in the case of low entropy, 
this provides richer co-occurrence matrices to feed neural 
network classifier. 
When 1 , FDFOD calculation (Equation (4)) performs a 
well-known backward finite difference linear approximation, 

that is commonly used for the discrete first derivative. When 
1 , it performs backward finite difference operation in a 

nonlinear fashion. However, use of FDFOG method results in 
too much increase in computational complexity only for 
gradient vector calculations. Because, it needs three 
additional power operations for an  -order derivative as 

seen in the term of  



















11

)()( Tnxnx , when compared 

to the conventional backward finite difference approximation 
of the discrete first derivative, using the term of 
( )()( Tnxnx  ). In our tests, image classification time per 

204134  pixels image is about 0.131094 seconds by using 
FDFOG and 0.130973 seconds by using conventional 
gradient with backward finite difference Euler 
approximation. This results in 0.0092% (about 0.000121 
second) increase in image classification for an image with 

204134  size. In practice, this increase in computation time 
is negligible. 
 

Table 1. Variable   selection per dataset and performance improvements. 

 Inria Caltech4 Caltech5 Caltech 
Cars 

Caltech 
Airplanes 

Light Overall 

cp  

Best   and cp  2.0  
90.2% 

3.0  
95.3% 

4.0  
90.2% 

3.1  
98.3% 

3.0  
99.1% 

2.0  
86.1% 

93.2% 

cp  for 0.1  75.4% 93.2% 85.4% 97.8% 85.4% 81.0% 86.3% 

cp  for 4.0   85.4% 92.8% 90.2% 96.8% 98.6% 82.4% 91% 

Improvement 
rates of the best 
  according to 

0.1   
14.8% 2.1% 4.8% 0.5% 13.7% 5.1% 6.8% 

 

Fig. 10 shows ROC curves for Light and Caltech Airplanes 
datasets. The ROC curves validate that FDFOG for 4.0  
provides improved image classification performance 

compared to conventional CoHOG ( 0.1 ).  Table 2 
summarizes some important performance parameters and 
confirms performance improvement provided by 4.0 . 

Table 2. Sensitivity, specificity, precision, fall-out and F1 scores obtained for Light and Caltech Airplanes datasets at 
4.0  and 0.1  

 Light dataset Caltech Airplanes dataset 
 4.0  0.1  4.0  0.1  
Sensitivity (Recall) 0.85 0.65 0.98 0.96 
Specificity 0.88 0.87 0.98 0.95 
Precision 0.82 0.77 0.98 0.95 
Fall-out 0.11 0.12 0.01 0.04 
F1 Score 0.83 0.71 0.98 0.96 
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Fig. 10. ROC curve generated for Light and Caltech Airplanes datasets: (a) Light dataset for 0.1  ; (b) Light dataset for 
4.0 ; (c) Caltech Airplanes dataset for 0.1 ; (d) Caltech Airplanes dataset for 4.0   

5. CONCLUSIONS 

This paper presents FDFOG operator for images and 
demonstrates its advantages for image classification with 
CoHOG descriptor. We observed that FDFOG operator can 
provide 5% improvement in average for the fixed   
selection ( 4.0 ) and 6.8% improvement in average in the 
case of the dataset oriented variable   selection. The 
computer experiments conducted for 15000 images reveals 
that it is possible to improve the performance of image 
classification accuracy by using FDFOG which increase 
average accuracy from 86% (using conventional gradient 
operator) to over 90%s (using proposed gradient operator) in 
this study. 

FDFOG provides a low computational complexity, finite 
difference nonlinear approximation for  -order gradient 
operation around zero value and the order one. When 1 , 
it performs well-known backward finite difference linear 
approximation for the discrete first derivative. When 1 , 
it, indeed, performs a nonlinear backward finite difference 
operation. We demonstrated that FDFOG with 1  can 
improve CoHOG performance in image classification 
problems.  

As a consequence, this study confirms the reports that 
fractional calculus can be useful to improve the performance 
of image processing methods. 
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