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Abstract: A position tracking control approach is presented for quad-rotor unmanned aerial vehicles 
(UAVs) with multiple state time-delays and external disturbances based on an event-triggered 
mechanism. This approach achieves the desired performance by using less control execution, which 
results in a reduction in the usage rate of the onboard embedded microprocessor. First, the basic control 
structure is formed by a weighted multiple-model method. Next, the event-triggered mechanism is 
designed in such a way to achieve an aperiodic control approach. This is done by embedding the 
mechanism into the existing control structure. Additionally, the negative influence of time-delays and 
external disturbances are considered using a linear matrix inequality (LMI) technique based on a 
Lyapunov function. This allows the coefficients of the controller and event-triggered mechanism to be 
obtained. Consequently, the system can be stabilized and performs robustly. The position tracking control 
approach is applied to a quad-rotor UAV and the simulation results confirm its effectiveness. 
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

1. INTRODUCTION 

Quad-rotor unmanned aerial vehicles (UAVs) are used 
extensively in aerial photography, exploratory operations, 
and disaster relief, since they have the advantages of these 
contraptions: high manoeuvrability, capability for controlled 
vertical ascent and descent, and long hover times. On the one 
hand, UAV systems generally display nonlinearity, 
uncertainties and coupling. On the other hand, the control 
performance is often influenced by external disturbances, 
signal transmission time-delays, and actuation failures during 
flight (Amin et al., 2016; Amoozgar et al., 2013; Bateman et 
al., 2011). So numerous control methods have been presented 
in the academic literatures to deal with the problem 
mentioned of UAVs. In addition, another challenge is to 
improve the usage rate of computation and communication 
resources to satisfy the operational requirements with limited 
power. This problem is generally solved by using a high-
performance onboard microprocessor and a higher power 
system (Yang and Liu, 2017; Idres et al., 2015). 
Alternatively, an event-triggered mechanism can be used, 
which is able to reduce usage rate of computation and 
communication resources with less control execution. 

Control of UAVs is achieved with an onboard embedded 
microprocessor unit. When higher control performance is 
required, more complex control algorithms must be 
implemented. This results in the onboard microprocessor 
having to deal with larger volumes of data and being limited 
to do more missions. Consequently, a method to improve 

control performance with low computation resource 
consumption in the embedded or networked system must be 
realized. For example, event-triggered control (ETC) for 
networked and embedded control systems is widely 
recognized for its aperiodic control mechanism, which 
optimizes the usage of communication and computation 
resources in the system (Mazo and Tabuada, 2008; Heemels 
et al., 2012). 

ETC differs from traditional control because its control 
execution depends on the occurrence of an event, which is 
triggered under certain conditions. The number of control 
execution can be reduced along with satisfactory closed loop 
response (Dhar et al., 2018). ETC problems have been widely 
researched. The ETC model-based approach was proposed by 
(Heemels and Donkers, 2013) for linear system’s stability. 
(Tabuada, 2007) proposed an event-triggered algorithm for 
nonlinear systems to ensure global asymptotic stability. ETC 
was applied in decentralized systems by (Mazo and Tabuada, 
2011). The application of ETC in hybrid systems was 
presented by (Postoyan et al., 2011). ETC is very popular for 
networked control systems (NCSs). For example, (Wang and 
Lemmon, 2011) use ETC for NCSs to guarantee the 
asymptotic stability of the entire system. Application of ETC 
is investigated for systems with time-delays and 
uncertainties, as presented by (Wu et al., 2015; Sahoo et al., 
2016). In this paper, ETC is used to guarantee satisfactory 
control performance of a quad-rotor UAV and reduce 
computation demands on the onboard embedded 
microcomputer. 
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The dynamic characteristics of UAVs result in nonlinearity 
and uncertainties in the control system (Besnard et al., 2012). 
Generally, UAVs are controlled based on linear models of 
their dynamics, as obtained at the equilibrium points (within 
allowable approximation error). The linear model is sufficient 
for control of the UAV when cruising or hovering. However, 
the linear model would not ensure the desired control 
performance when the UAV is accelerating from certain 
equilibrium (because of increased nonlinearity). When the 
model nonlinearity cannot be ignored (in certain cases), 
position tracking control for the UAV becomes difficult. We 
adopt a weighted multiple-model control method to address 
the model nonlinearity. The control algorithm, designed 
based on a weighted multiple-model structure, is formed by 
combining several linear models at different equilibrium 
points with the corresponding weight functions (Zhang, 2013; 
Xiao et al., 2010). The control system can be stabilized by 
adjusting the control parameters, with the flight state altering 
to match the current dynamic model. 

In fact, the whole UAV control system consists of one or 
more UAV bodies, a base station computer and a set of space 
position sensors. The base station computer monitors the 
flight status and sets the flight path. The position sensors 
measure and transmit the position signals via a wireless 
network. The flight states are directly controlled by the 
onboard embedded microcomputer, which receives and 
processes the signals from the base station computer and the 
position sensors to determine the necessary control 
command. This is computed using the control algorithm and 
then sent to the actuator (Yang et al., 2017). The UAV 
control system is different from a traditional flight control 
system. The former must use a wireless network to transmit 
signals during flight, while the latter does not. Wireless 
communication causes time-delays in the control system, 
which can influence the control performance and even cause 
the system instability. It would be difficult to achieve the 
satisfactory control performance for an actual UAV without 
accounting for the time-delays in the control system design. 
For a practical control approach, it is necessary to design the 
control law to reduce the negative influence of time-delays. 
Additionally, the UAV control must overcome external 
disturbances, which occur for any flight vehicle (Bouadi et al., 
2015; Xiong and Zheng, 2014). In this paper, a robust control 
method based on LMI technology is used to overcome both 
external disturbances and time-delays (Mobayen, 2015; 
Zhang et al., 2015). 

Specifically, a position tracking control approach for quad-
rotor UAVs based on an event-triggered mechanism is 
proposed in this paper. A weighted multiple-model control 
structure is designed for nonlinear tracking control systems. 
The LMI technology is used to obtain the coefficients of the 
controller and the event-triggered mechanism (using 
Lyapunov functions) to stabilize the tracking system within 
the given bounds for the external disturbances and state time-
delays. Lower computation resources with less control output 
updating than that of traditional periodic control is attained. 
Consequently, the usage rate of onboard microprocessors is 
improved, resulting in more powerful data-handling capacity. 

This paper is divided into four parts and is organized as 
follows. Section 2 presents the problem formulation. Section 
3 describes the design of tracking controller based on the 
event-triggered mechanism. Finally the simulation results are 
presented followed by the conclusions in Section 4. 

2. PROBLEM FORMULATION  

2.1  System modelling 

This paper focuses on the position tracking control of quad-
rotor UAVs, and their mathematics model is discussed first of 
all. Without generality, some hypotheses are listed as below. 

(1) The UAV has a symmetric homogeneous rigid body, and 
keeps mass constant during its flight; 

(2) The air resistance and gyroscopic effect can be ignored; 
(3) The distance between the center of aircrew and that of 

body mass can be ignored; 
(4) The aircrew is light enough and its rotary inertia can be 

ignored; 
(5) Earth-fixed frame is the inertia frame, and the effect of 

earth curvature and gravitational acceleration alteration 
with altitude can be ignored; 

(6) The centre-mass is the origin of body-fixed frame. 

According to the above hypotheses of flight dynamics, the 
dynamic position system of UAVs can be obtained as 
follows, 

(cos sin cos sin sin )

(cos sin sin sin cos )

(cos cos )

mX U

mY U

mZ mg U

    
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
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


,                     (1)  

where m = body mass, g =gravitational constant, = yaw 

angle,  = pitch angle, and  = roll angle. （ ZYX ,, ）= 

body location in the earth-fixed frame; U = total thrust force 
generated by four rotors and each of thrust force eF  can be 

defined as follows, 

u
s

LFe 



 ,                                                                     (2) 

where s = Laplace transform variable, u  = input of each 
actuator,   = actuator bandwidth, and L  = positive gain. v  
= state variable represented the actuator dynamics of each 
rotor, which can be described as follows, 

u
s

v





 .                                                                          (3) 

The actuators are four brushless DC motor whose speed is 
controlled by the duty cycle of PWM, and so the inputs of 
these motors are the inputs of the UAV control system. Here, 
this paper takes X-axis position as the controlled variable, 
designing the specific control algorithm. According to the 
dynamic analysis, the body movement on X-axis is mainly 
influenced by the total thrust and the pitch angle . Hence, it 
assumes that the yaw angle and roll angle are both zero, i.e. 

0  , only considering the influence of the pitch angle 
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  to obtain the following dynamic description of X-axis 
position from equations (1)-(3), 
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Choose the position and velocity in X-axis, and the actuator 
dynamics to form the state vector, i.e. T[ , , ]X X vx  ; Letting 

u  = control input and y  = output, the position control 

system(4) can be rewritten in standard form, 

( ) ( ) ( )

( ) ( )
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y t Cx t
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,                                                          (5) 

where 
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2.2   Time-delays in the control system 

The control system of quad-rotor UAVs contains: one or 
more UAV bodies, the space position sensors, and a control 
based station. When the UAV flights, it has to receive the  
signals of space position, flight commands and control 
parameter settings via a wireless network, so that to generate 
the control input by the onboard embedded microprocessor 
computing designed control algorithm. At the same time, it 
sends all kinds of the flight state signals to the ground control 
base station via the wireless network. Obviously, the wireless 
network is necessary, and the time-delays caused by the 
network transmission cannot be ignored. In most cases, the 
delay signals can be described as certain state time-delay 
variables in the system mathematic description. 

Define the output error as ( ) ( ) ( ) ( ) ( )d de t y t y t Cx t y t    , 

where ( )dy t  = given desired output. Taking the external 

disturbances ( )d t  and multiple state time-delays k  into 

consideration, the following augmented system as the 
tracking control system can be obtained from (5), 

1

( ) ( ) ( ) ( ) ( )
h

k k
k

x t Ax t A x t Bu t t 


     ,                   (6) 
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t
x e s ds x t     , and ( )d t is the  

bounded external disturbance. 

3. DESIGN of TRACKING CONTROLLER BASED ON 
EVENT-TRIGGERED MECHANISM 

This section presents the position tracking control design 
base on the method that combines the weighted multiple-

model control and the event-triggered mechanism.  The block 
diagram of the overall control system is shown in Fig. 1.   

( )dX t

( )d t ( )X t

( )u t

( )kx t
…

1I

NI 



1( ) ( )k N kt t 

 

Fig. 1. Block diagram of the control system. 

3.1  Weighted multiple-model control structure 

In many literatures about UAV control, it is used to adopt the 
approximation  sin  to make the system linearized. This 
paper focuses on the position tracking control in X-axis, and 
in this case, the pitch angle   has the possibility to alter 
within a wide range. Consequently, the model nonlinearity 
becomes more powerful, which cannot be ignored in the 
design of the tracking control law. In order to address this 
problem, a weighted multiple-model approach is utilized as 
the basic control structure for the tracking system. First of all, 
several system models at different pitch angles are 
established, and among them, the i -th model at pitch angle 

i  can be described as follows. 

iI ：
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The weighted multiple-model structure adopted in the paper 
includes N  subsystems. Each subsystem is denoted 

as  N
iiI 1 , and all of them are operating simultaneously. At 

every instant, the error ci yye ~  caused by comparing the 

output y of the model iI  with that cy  of the current 

controlled system is evaluated to generate i -th quadric 
performance index iJ  that denotes the match level between 

the model iI  and the current system.  

Obviously, the weighted multiple-model approach can update 
the weight coefficient of each model adaptively via weight 
evaluating. Different from the normal multiple-model 
structure which has several controllers switched, the 
weighted multiple-model approach has only one controller to 
make the system controlled continuously, avoiding the 
performance deterioration due to high frequent switching. 
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Define the following quadratic index to evaluate the 
matching degree between the model iI  and the current 

system,   

2 2

0
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i i iJ t a e t b t s e s ds     ,                   (8) 

where ( 0a , 0b ) = given constants, and ( 0  ) = 

memory factor. Then the weight coefficient of the model iI  

is designed as, 
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where  = given positive scalar. Obviously, 0 ( ) 1i t  , 

and 
1

( ) 1
N

i
i

t


 . When ( )i t  achieves the maximal value, 

the model iI  matches the current actual system most 

perfectly. According to (7) and (9), the whole controlled 
system can be expressed as follows,  
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 For (10), the weighted multiple-model controller is 
presented, 

1

( ) ( ) ( )
N

f i i
i

u t t K x t


  ,                                                      (11) 

where iK = control gain matrix. 

3.2   Tracking control based on the event-triggered 
mechanism 

In this section, an event-triggered mechanism is presented to 
improve the weighted multiple-model control structure, 
forming the aperiodic tracking control law. The event-
triggered mechanism can judge whether the triggering 
condition is met or not through using the received state 
information. If the condition was met, the event-triggered 
mechanism would release the signal to the controller, 
triggering the control execution, otherwise, it would not 
release the triggering signal and the control output would 
remain unchanged with the zero-order holder. Assuming that 
 = sampling period and },,,{ 210 ttt  = triggering instant set 

, kt  = current triggering instant at which the control output 

updates, therefore, the next triggering instant 1kt  can be 

designed as follows, 

T T
1 inf{ ( ) ( ) ( ) ( )}k k k kt t t e t e t x t x t      ,            (12) 

where kt t n   , 3,2,1,0n ,   = given bounded 

positive real number, and  = symmetric positive matrix.  
Comparing the state vector at the last triggering instant with 
that at the current instant, the error is defined as

( ) ( ) ( )k ke t x t x t  . The event-triggered mechanism 

proposed as (12), makes the outputs of the controller being 
updated at the time kt  that the error ( )ke t becomes “too 

large” beyond the state-dependent range for the first time. 
Otherwise, it remains the outputs unchanged.  

It is clear that the control execution time set, i.e. the event-
triggering instant set },,,{ 210 ttt , is the subset of the 

sampling time set {0, , 2 , }  . Since the control executes 

according to the event rather than the sampling period, the 
control computation can be reduced under the presented 
event-triggered mechanism. Especially, when 0 , the 
event-triggered mechanism becomes the traditional periodic 
control mechanism, i.e. },,,{ 210 ttt = {0, , 2 , }  . 

According to (11), the controller based on the event-triggered 
mechanism (12) can be expressed as, 

1
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N

i k i k
i
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

  .                                                      (13) 

If ),[ 1 kk ttt , the closed loop expression of the system can 

be described as follows from (10) and (13), 
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(14) 

Based on the approach proposed by Peng et al. (2014), the 
following equation (15) holds, assuming that there are real 
numbers j  and Δ j , 

( ) ( )j k j jt t   , ( ) ( ) Δj k j jt t   .                              (15) 

So that, if ),[ 1 kk ttt , the controller (13) can be further 

converted to, 
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And the system (14) can be rewritten as  
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Letting i i iK K , (17) becomes 
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Lemma 1 (Gu et al., 2001): For arbitrary 1
mx  , 2

nx  , 
m nM  , and arbitrary positive definite matrix n nN  , 

there is  

T T T T 1 T T
1 2 2 1 1 1 2 2x Mx x M x x MN M x x Nx   .                       (19) 
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Next, the influence of the external disturbances and state 
time-delays will be considered in the following content. Here 
choose the following H  performance index, 

T T

0 0

1
( ) ( ) ( ) ( ) 0

f ft t
J x t Rx t dt t t dt  


    ,              (20) 

where ft  = finished time of control,   = given constant 

which denotes the effect of ( )t  on ( )x t , and R  = given 

positive definite weighted matrix.  

Theorem 1: If there are a symmetric positive definite 
matrix 4 4P  , a set of matrix T 4

iK  ( qi ,,1 ), and a 

set of scalars 0k  （ hk ,,1 ）, so that the following 

LMI (21) holding, the controller (13) can make the system 
(10) stable within the given H  bound  . 
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, i iE BK . n nI  = n -dimensional unit matrix, and  = 

transposed elements corresponding to the symmetric position 
in the matrix. 

Proof: Choose the Lyapunov function as 
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where i i iH A BK  . According to Lemma 1 and the event-

triggered condition (12), the following inequality can be 
obtained from (23), 
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1
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N

i i i di di
i

V x t x t H P PH PA A P κ  
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     .   (24) 

Then consider the performance index (20), 
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It is obvious that 0)0( V , 0)( ftV . Substituting (24) into 

(25), it yields 
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where T 1 T T +i i di diS H P PH PA A P I I κ      . If  

                      1 T 1 1
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the inequality 0J  holds. 

Consequently, multiplying (26) by Q  both in left and right, it 
yields
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T(1 )R I I κ     . Based on Schur complement theorem, 

(27) can be converted to 
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, which 

is the LMI in Theorem 1. The proof is completed. 
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4. SIMULATION RESULTS  

This paper applies the proposed tracking control to the quad-
rotor “Qball-X4” developed by Quanser Inc, and carries out 
the simulation of the position tracking along X axis, in order 
to illustrate the effectiveness of the control approach. 

Set the original states are: 0X , 0X , 1v , and the 
external disturbance ( )d t  is the random noise with the mean 

value is 0 and the variance is 0.1. The desired position in X-
axis is given as 5dX , i.e.  5 0 1dy   . The other 

parameter values are given as follows: 

1 0.8  , 2 1  , 1  , 0.1κ  , 1 ba , 6  , 01.0 ,

11 12 21 22
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0 0 1

A A A A
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, 
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, 

T
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R
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 
 
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. According to the parameters of 

Qball-X4, the following matrix can be obtained, 

When 5 , 1

0 1 0

0 0 43

0 0 15

A

 
   
  

; When 15 , 

2

0 1 0

0 0 128.99

0 0 15

A

 
   
  

. Therefore, the weighted multiple-

model structure can be formed by using the model in the case 

of 5  and that in the case of 15   . 

Through solving the LMI in Theorem 1, the values of the 
control feedback matrixes and the symmetric positive matrix 
in (12) can be derived as follows, 

 1 3.78 6.89 5.5 0.73K     , 

 2 11.33 20.68 16.51 0.38K     , 

1.92 0 0 0

0 1.92 0 0

0 0 1.92 0

0 0 0 1.92

 
 
  
 
 
 

.  

Consequently, the control algorithm (16) and the event-
triggered mechanism (12) applied to the control system of 
Qball-X4 can be determined with the above coefficients. The 
simulation results are shown as follows. 

From Fig. 2, it is shown that the X-axis position can achieve 
tracking the control command within 5 seconds and keep the 
position with the satisfied control performance. Fig. 3 shows 
the response of the actuator dynamic and Fig. 4 shows the 
response of the control output during the tracking period. 

There are a little vibration in these two figures, which may be 
caused by the external disturbances and the long interval 
between neighbouring triggering instants. 
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Fig. 2. X-axis position response curve. 
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Fig. 3. Actuator dynamic response curve. 
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Fig. 4. Control output. 

Fig. 5 shows the event-triggering instants by X-axis and the 
interval of neighbouring triggering instants by Y-axis. 
Furthermore, Fig. 6 and Fig. 7 give the enlarged details for 
the two parts in Fig. 5. They illustrate clearly that the event-
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triggering instants do not appear periodically, i.e., the control 
output does not update periodically. And sometimes the 
control algorithm executes even after a long interval from the 
last execution. 
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Fig. 5. Event-triggering instants. 

triggering instants  t (s)
0

ne
ig

hb
ou

ri
ng

 tr
ig

ge
ri

ng
 in

st
an

ts
  t

 (
s)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

Fig. 6. Enlarged detail for the first circle part in Fig.4. 
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Fig. 7. Enlarged detail for the second circle part in Fig.5. 

Though the system is controlled aperiodically, the desired 
robust control performance can be still achieved with less 
control executions, which is shown in the simulation result 
figures. That means the onboard embedded microprocessor 
could do less computation for the satisfactory control 
performance, if the proposed control method has been used in 
actual. 

5.  CONCLUSIONS 

This paper presents a tracking control approach for the quad-
rotor UAV system with the time-delays based on the even-

triggered mechanism. For the nonlinear dynamic feature, the 
weighted multiple-model control method is used as the basic 
system structure. And then the event-triggered mechanism is 
augmented to the structure, forming the aperiodic tracking 
control system. The robust stability is analyzed for the 
external disturbances and state time-delays with the LMI 
technology based on a Lyapunov function, making the 
system meet the desired robust performance index. Finally, 
the simulation is taken by applying the proposed control 
approach to Qball-X4. From the simulation results, it is 
shown that the UAV can track the given position signal and 
achieve the satisfactory performance with less control 
executions. That is to say, this control law based on the 
event-triggered mechanism is feasible and effective, which 
can not only meet the satisfactory control performance but 
also save the computation resources consumption. 
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