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Abstract: This paper proposes a new design of discrete-time nonlinear PI (DNPI) controller, which is 
based on the sliding mode (SM) control principle with disturbance observation via integral of the 
switching function. To enhance robustness to uncertainties and external disturbances, sign element is 
inserted between the switching function and the controller’s integrator. Thus, high integral-gain is 
obtained for low-level signals, whereas the output signal has limited amplitude. Such structure looks like 
as discretized variant of continuous-time super twisting algorithm (STA) structure, in which the square 
root element is replaced by a linear one. Furthermore, the standard STA structure is here additionally 
modified in order to adjust the quasi-sliding domain reaching speed and to suppress large overshoots. 
Tuning of the proposed DNPI controller is very simple. Since control system with DNPI controller 
produces steady-state oscillations due to digital implementation, oscillation parameters are determined for 
nominal system. Additionally, in case of a system with unmodeled inertial dynamics, a simple procedure 
is developed for determining parameters or the consequential oscillations, using describing function 
approach. Theoretical explanations are illustrated by simulation results. 

Keywords: PI control. Variable structure systems. Discrete-time sliding mode.  Super twisting algorithm. 



1. INTRODUCTION 

Variable structure control (VSC) systems were introduced by 
Emelyanov sixty years ago (Emelyanov, 1957). In that paper, 
sliding mode (SM) motion was purposely used to obtain 
some new features, such as: order reduction and invariance to 
matched disturbances (Draženović, 1969). In the first decade 
of VSC systems development, single-input single-output 
(SISO) systems were dominantly considered. Mathematical 
model that describes such systems was given in the canonical 
controllable form. In the second decade of development, 
multiple-input multiple-output (MIMO) VSC systems were 
introduced. New mathematical methods for analysis and 
design were proposed by introducing the equivalent control 
method and the Lyapunov stability approach (Draženović, 
1969; Utkin, 1970). All published works within these two 
decades were continuous-time (CT) VSC systems. Most of 
these papers originated in former Soviet Union. Utkin's 
works (Utkin, 1974, 1977) have initiated research of the VSC 
systems in the West. Practically oriented research revealed a 
serious drawback of SMC systems named chattering. 
Namely, SM is obtained by a high frequency discontinuous 
control of switching nature, which excites unmodeled 
dynamics. Unmodeled dynamics occurs in every control 
system by neglecting sensor and amplifier dynamics, and 
other fast modes or small delays in the design procedure. To 

avoid chattering, two approaches were proposed: making a 
boundary layer around the sliding surface (Slotin, 1984) or 
introducing a bypass via an observer (Bondarev et al., 1985). 

Development of discrete-time (DT) VSC systems was greatly 
stimulated by use of microcontrollers and computers in 
control of industrial processes. This invention may be 
regarded as the third phase in VSC systems research. It was 
established that only quasi-sliding mode (QSM) can 
practically exist in DT (Milosavljević, 1985; Gao et al., 
1995). An ideal DT SM, proposed in (Bartolini et al., 1995; 
Bartoszewicz, 1998; Golo and Milosavljević, 2000), becomes 
QSM in case of any real control system with CT plant. 

In the last three decades, some attempts to solve chattering 
problem by using higher order SM (HOSM) were proposed. 
This approach emerged also under supervision of Emelyanov 
(Emelyanov et al., 1986). The HOSM approach was 
originated by Levant (Levant, 1993, 2001). Publications 
considering modern SMC systems often deal with HOSM 
controlled systems. However, some controversy has arisen. It 
is argued by Utkin (Utkin, 2016; Ventura and Fridman, 
2017), that most HOSM algorithms are in fact the traditional 
(the first order) SM and indicated that in some situations 
conventional SM produce less chattering then HOSM. 
Fortunately, there exists a common agreement that so-called 
super twisting algorithm (STA), proposed by Levant (Levant, 
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1993) is a typical representative of HOSM in which the 
second order SM arises. STA in CT (furthermore acronym 
CSTA) systems eliminates chattering since control signal is 
smooth, i.e. of non-switching type. It enforces SM in a finite 
time and provides high robustness to disturbances. Also, STA 
is the basic component of Levant's exact differentiator 
(Levant, 1998). Many articles have been published on STA 
implementation in control of different dynamical processes, 
such as control of: induction motors (IM) (Lascu and 
Blaabjerg, 2014), motion systems (Rivera et al., 2011), 
coupled tanks (Khadrand and Qudeiri, 2015) manipulator 
(Majumdar and Kurode, 2013), observer (Chalanga et al., 
2014). To improve STA characteristics, few adaptation 
approaches were proposed (Kobayashi et al., 2002; Stessel et 
al., 2012 and the references therein). 

It is interesting to note paper (Agular-Ibanez et al., 2014) 
which dealt with nonlinear CT PI controller.This controller 
behaved as if it was a sliding mode controller. This behavior 
approximation was in turn achieved using a combination of 
saturation functions and a traditional PI controller. 

As underlined above, STA was initially developed for CT 
systems. Publications in the area of DT STA (furthermore 
acronym DSTA) controllers are rare. In (Damiano et al., 
2004; Pisano et al., 2008) speed/position control of DC and 
PMSM is considered by using STA controllers and Levant's 
differentiators. In (Salgado et al., 2014) DSTA-like observer 
is proposed. Paper (Yan, et al., 2015) analyses steady-state 
process of the DSTA controller in control of pure integral 
plant. This system is DT analogy of Levant's CT exact 
differentiator. It is underlined that state equilibrium may 
never be theoretically achieved in DT realization of STA. 

On the other hand, in (Milosavljević et al., 2004, 2013; 
Veselić et al., 2008; Petronijević et al., 2017) DT SM control 
with disturbance estimator, which is based on the switching 
function measurement only, was investigated in  position or 
speed control of DC or IM motors. The obtained 
performances were chattering free. DT controller in 
(Damiano et al., 2004; Pisano et al., 2008; Yan, et al., 2015) 
essentially differs from those in (Milosavljević et al., 2004, 
2013; Veselić et al., 2008; Petronijević et al., 2017) only in 
the presence of sign element in front of the disturbance 
estimator. This fact motivates authors of this paper to 
investigate contribution of the introduced sign element. 
During investigation by simulation and experiments, it was 
observed that DSTA control system produced large 
overshoots in tracking of square wave references. These 
overshoots were the consequence of the applied integrator as 
disturbance estimator. To eliminate or mitigate this drawback 
it is necessary to introduce some anti-windup action. An 
original approach is proposed in this paper that combines 
DTSM control to reach the equilibrium neighbourhood 
without disturbance estimator and then activate PI controller 
with its nonlinear disturbance estimator.  The later control 
structure can be regarded as DNPI controller, which is 
created by modifying DSTA. Since conventional PI 
controller tuning methods assumes that control plant response 
can be satisfactorily described by a first order model, the 
same assumption was used in the design of the proposed 
DNPI controller, enhanced by the analysis of the presence of 

unmodeled dynamics. Some preliminary results of this design 
approach were reported in (Milosavljević et al., 2017). 

This paper further enhances and improves those results by 
detailed stability analysis and steady state parameters 
determination using DT DFA. The main contributions of this 
paper are: (i) the control structure is improved to outperform 
tracking performance and disturbance rejection of DSTA 
based control system; (ii) a parameter selection method of 
DNPI controller is derived; (iii) steady-state performance in 
case of first-order CT plant is determined; (iv) describing 
function approach (DFA) is introduced in determining 
steady-state performance of a first-order plant with 
unmodeled inertial dynamics (which can be also used to 
estimate steady-state parameters in control of nominal 
second-order plant with the proposed type of controller), and 
(v) all theoretically obtained results are verified by 
simulations. 

The rest of the paper is organized as follows. A short basic 
description of DSTA is given in Section 2. DNPI controller 
design for a first-order model, some stability considerations 
and steady-state performance of the nominal system are given 
in Section 3. Section 4 presents DFA in unmodeled dynamics 
analysis of the proposed control system, supported by a 
design example and simulation results. The paper ends with 
conclusions and the used literature. 

2. PRELIMINARIES 

A brief notation will be given first regarding CSTA and 
DSTA. Then, an illustrative example will be given to 
underline differences between DSTA and the proposed 
DNPI, which stimulate further investigations in Sections 3 
and 4. 

2.1 CSTA controller 

Let a first order linear time invariant plant with bounded 
disturbance d(t), which includes all uncertainties, be 
described by 

ሻݐሶሺݔ ൌ ሻݐሺݔܽ ൅ ܾሺݑcሺݐሻ െ ݀ሺݐሻሻ,	 ሺ1ሻ	

where the control ݑୡሺݐሻ is obtained using CSTA. CSTA can 
be derived from Gao's reaching law approach (Hung et al., 
1993), see (Mujumder and Kurode, 2013). The obtained 
relations are 

ୡݑ 	ൌ െܿܽݔ െ ݇p|݃|ଵ ଶ⁄ sgnሺ݃ሻ ൅ ,ݓ
ሶݓ ൌ െ݇୧୬୲sgnሺ݃ሻ,

	 ሺ2ሻ	

where ݇୮ is the proportional gain, ݇୧୬୲ is the integral gain, 
݃ ൌ  is a scalar. The	is the switching function, where ܿ ݔܿ
control term ܿܽݔ is the equivalent control under assumption 
ܾܿ ൌ 1. The integral term ݓሶ ൌ െ݇୧୬୲sgnሺ݃ሻ is introduced for 
better disturbance rejection. Parameters ݇୮ and	݇୧୬୲	 are 
chosen under recommendations given in (Levant, 1993, 1998, 
2001; Damiano, 2004), or by adaptation procedures (Shtessel 
et al., 2012). One of practical recommendation for choosing 
these parameters is (Kobayashi et al, 2002): 

݇୧୬୲ ൌ ;ܥ1.1 			݇୮ ൌ 	,ܥ√1.5 	 																																															ሺ3ሻ	

where		ܥ	is the Lipschitz constant, ܥ ൌ max ቚ
ௗమ

	ௗ௧మ
 ሻቚ, andݐሺݎ
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 .is the input reference signal	ሻݐሺݎ

Note that in most publications, including the original 
Levant’s works, the term	ܿܽݔ	is not used in realization of 
STA. The control term	ܿܽݔ	in (2) has similar role as the term 
݇p|݃|ଵ ଶ⁄ sgnሺ݃ሻ and may be replaced by an adequate choice 
of gain	݇୮. 

2.2. DSTA controller 

Implementation of STA by a microcontroller requires 
discretization of (2). Time derivative can be approximated by 
Euler backward difference. Then, DT analogy of (2) is 
(Damiano et al, 2004): 

ୡ,௞ݑ ൌ െ݇p|݃௞|ଵ ଶ⁄ sgnሺ݃௞ሻ ൅  ,௞ݓ
௞ݓ ൌ ௞ିଵݓ െ ݇୧୬୲ܶsgnሺ݃୩ሻ,

	 ሺ4ሻ	

where ௞ denotes signal ሺݐሻ discretized (sampled) value at 
ݐ ൌ ݇ܶ, where ܶ is time discretization period.  

Time discretization degrades STA controller performance. 
Namely, switching frequency is theoretically infinite in 
CSTA. It is evident that the term ݇୮|݃|ଵ ଶ⁄ sgnሺ݃ሻ in (2) is not 
a switching type as well as integrator output	ݓ. Exponent 
1/2 provides finite time convergence to the equilibrium	ሺ݃ ൌ
ሶ݃ ൌ 0ሻ. The discretized input of DT integrator produces 

constant output between the sampling instants. The same 
holds for ݇p|݃|ଵ ଶ⁄ sgnሺ݃ሻ control part. Hence, the equilibrium 
theoretically never can be reached, as was established in (Yan 
et al., 2015). The system state will chatter in a boundary of 
the	݃ ൌ 0. Thus, the following question arises: does	|݃|ଵ ଶ	⁄ 	is 
the best solution for DSTA? 

Naturally, sampling period		ܶ should be as small as possible 
to obtain better performance (smaller QSM band). However, 
regardless how small		ܶ is, the control system response has 
overshoots even in the nominal system in tracking of pulse-
type references. To illustrate this behaviour in systems 
governed by DSTA (4), an illustrative simulation example is 
given. 

Example 1. Let parameters of a CT plant (1) be ܽ ൌ
െ0.62857 and ܾ ൌ 388.97. Input saturation of the plant is 
േܷ଴,	with ܷ଴ ൌ 6.	Let the system should track square-wave 
reference. Unfortunately, the Lipschitz constant is unbounded 
for this type of reference. Let the controller parameters be 
chosen as ݇୮ ൌ 15 and ݇୧୬୲ ൌ 100, which correspond to 
ܥ ൌ 90. Since the system is the first-order, parameter for 
CSTA is ܿ ൌ 1/ܾ ൌ 0.0025709. Let the initial condition of 
the system error be ݔሺ0ሻ ൌ െ1 and the system is disturbed by 
݀ሺݐሻ ൌ ݄ሺݐ െ 0.05ሻ. 

The system with controller (4) is simulated as DSTA with the 
integration period of 0.1ms and the sampling time of		ܶ ൌ
0.5	ms. The result is given in Fig. 1a, denoted by the red line. 
It is observed from the response in Fig. 1 that there exists an 
approximately 10% overshoot and the maximal error of 60% 
under step type disturbance. 

Naturally, the disturbance rejection capability of DSTA can 
be improved by increasing	݇௣	but QSM domain will be 
expanded. In any case, it is necessary to adjust			݇୮ in order to 

make satisfactory compromise between the two 
characteristics: QSM band and disturbance rejection 
capability.  

A method is proposed in this paper to eliminate overshoot in 
the nominal system and to decrease maximal error of the 
disturbed system, without exceeding the maximal permissible 
plant input and QSM band width. Response of the system 
with the proposed DNPI controller, which will be described 
and investigated below, under the same conditions, is also 
given in Fig. 1 by blue dashed line. It can be seen that fast 
response without overshoot is obtained, while the maximal 
error is about 3 times lesser than in DSTA under the same 
disturbance action. This improvement is obtained using VSC 
principle. Two control structures are used in DNPI controller 
design. The first one is DT reaching control (RC) structure 
which provides finite time reaching of the equilibrium in the 
nominal case. The second control structure is modified DSTA 
structure (4), in which element ݇p|݃୩|ଵ ଶ⁄ sgnሺ݃௞ሻ	is replaced 
by proportional gain	݇୮	only. The next section gives detailed 
analysis including stability, steady state performance and 
tuning of the proposed DNPI control system. 

 

(a) 

 

(b) 

Fig. 1. The system error (a) and control action (b) for DSTA 
(red line) and the proposed DNPI controller (blue dashed 
line). 

3. DNPI-CONTROLLER DESIGN  

3.1 Introductory notations  

DNPI controller should provide finite time reaching of the 
state ݔ ൌ 0 in the nominal case, or its vicinity in perturbed 
case. For the first-order systems, sliding manifold coincides 
with the space origin, i.e.			݃ ൌ cݔ ൌ 0.Taking this fact into 
account, DT equivalent control is equal to the dead-beat 
control as RC. In any case, RC becomes extremely large if 
the sampling frequency is set very high, which is usually the 
case in order to have smaller QSM band. To avoid large RC, 
it is necessary to constrain the control plant 
input	ሺmax|ݑc,k| ൑ ܷ଴,ܷ଴ ൌ const. ሻ. Since in practice plants 
inputs must be bounded, saturation is introduced as 

c,kݑ ൌ ൜
|c,௞ݑ|		if																					c,௞ݑ ൑ ܷ଴
ܷ଴sgnሺݑc,௞ሻ							if		|ݑc,௞| ൐ ܷ଴

,	 ሺ5ሻ	
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where		ݑc,௞ is DT equivalent control, which is obtained from 
the discretized nominal model of the system (1). Such control 
has been suggested for SM control in (Bartolini et al., 1995; 
Golo and Milosavljević, 2000). DT mathematical model of 
system (1) is 

௞ାଵݔ ൌ ܽdݔ௞ ൅ ܾdሺݑc,௞ െ ݀ୢ,௞ሻ,	 ሺ6ሻ	

where	ܽd ൌ ݁௔்; ܾd ൌ ׬ ఛܾࢇ݁
்
଴ d߬, 

݀d,௞ ൌ
ଵ

௕ౚ
׬ ݁௔ఛܾ݀ሺሺ݇ ൅ 1ሻܶ െ ߬ሻ
்
଴ d߬. For small sampling 

periods during which the disturbance can be regarded as 
constant, ݀ୢ,௞ becomes equal to ݀௞, i.e. ݀ୢ,௞ ൌ ݀௞. 

Equivalent control may be easily found from the condition 
݃௞ାଵ ൌ ܿୢܽdݔ௞ ൅ ܿdܾdሺݑc,௞ െ ݀ୢ,௞ሻ ൌ 0, under assumption 
ܿdܾd ൌ 1, as 

ୡ,௞ݑ ൌ ୯,௞ୣݑ ൌ െܿdܽୢݔ௞ ൅ ݀ୢ,௞.	 ሺ7ሻ	

Hence, 

eq,௞ݑ ൌ െܿdܽdݔ௞ ൅ ݀ୢ,௞ ൌ െ݇ୗ୑ݔ௞ ൅ ݀ୢ,௞.	 ሺ8ሻ	

Since ݀ୢ	is immeasurable, low frequency disturbances, 
usually present in industrial processes, may be estimated 
from (7) as 

݀ୢ,௞ିଵୀ	ݑୡ,௞ିଵ ൅ 	                                             ሺ9ሻ	௞ିଵݔୢܽୢܿ

As shown in (Lešnjanin et al., 2011), disturbance 
compensation control based on (9) is equivalent to the 
compensational control obtained as integral of the switching 
function with integral gain proportional to 	ܶିଵ. 

The next example gives basic DTSM design. 

Example 2. For the plant defined in Example 1, conventional 
DT SM control synthesis gives: 

ሾܽd, ܾdሿ ൌ ሾ0.99968, 0.194455ሿ 

ܿd ൌ ܾd
‐1 ൌ 5.143, ݇SM ൌ ܿୢܽୢ ൌ

௔ౚ
௕ౚ
ൌ 5.141. 

Control for the nominal system ሺ݀ሺݐሻ ൌ 0ሻ	becomes 

c,kݑ ൌ ൜
െ݇SMݔ௞													if		|ݑc,୩| ൑ 6;
ܷ଴sgnሺݑc,௞ሻ				if		|uc,୩| ൐ 6. 	

In the next subsection, complete mathematical model and 
structure block diagram which realises proposed DNPI 
control, including control from this example, will be given. 

3.2 DNPI Mathematical Model and Block Structure 

Full mathematical description of proposed DNPI controller 
for the nominal plant (1) is given by set of equations (10), 
which are graphically represented by the block diagram in 
Fig. 2. Note that the model is in error signal space. 

݁௞ାଵ ൌ ௞ାଵݎ െ ௞ାଵݔ ൌ ܽୢ݁௞ െ ୡ,௞ݑୢܾ ൅ ݀୰,௞
݀୰,௞ ൌ ௞ݎ െ ௞ିଵݎୢܽ

;                  (10a) 

c,௞ݑ ൌ satሺݑஊ,௞ሻ ൌ ቊ
ܷ଴sgn൫ݑஊ,௞൯ if |ݑஊ,௞| ൐ ܷ଴

ஊ௞  otherwiseݑ
;             (10b) 

ஊ,௞ݑ ൌ SM,௞ݑ ൅ p,௞ݑ ൅ ݇୧୬୲,௞;                                            (10c) 

SM,௞ݑ ൌ ൜
݇SM݁௞ if ݑଶ,௞ ൌ 0
0							otherwise

;                                             (10d) 

ଶ,௞ାଵݑ ൌ  ଵ,௞;                                           (10e)ݑ

ଵ,௞ݑ ൌ ൜
0  if  ݑc,k ് ஊ,௞ݑ
1  if   ݑc,k ൌ ஊ,௞ݑ

;                                                 (10f) 

p,௞ݑ ൌ ൜
0		if		ݑଶ,௞ ൌ 0

ܿd݇p݁௞		if	ݑଶ,௞ ൌ 1;                                              (10g) 

୧୬୲,௞ݑ ൌ ൜
ଶ,௞ݑ		if		୧୬୲,௞ିଵݑ ൌ 0

୧୬୲,௞ିଵݑ ൅ ݇୧୬୲ܶsgnሺ݃௞ሻ		if	ݑଶ,௞ ൌ 1; (10h) 

sgnሺ݃௞ሻ ൌ ൜
1   if ݃௞ ൒ 0
െ1  if ݃௞ ൏ 0.                                               (10i) 

 
Fig. 2. Block diagram of the proposed controller structure. 

Blocks covered by the shadowed part are introduced to 
change the control structure from RC to DNPI control. The 
similar configuration can be used for control of higher-order 
plants. 

It can be seen in Fig. 2 that ݑSM,௞ is active only when ݑଶ,௞ is 
equal to zero (see Eq. 10d). This situation occurs during the 
time when output of the controller is saturated (|ݑஊ,௞| ൐ ܷ଴; 
i.e. the system state is far from the equilibrium). System 
motion will be then driven by the saturation control. When 
the controller output enters the linear zone (|ݑஊ,௞| ൑ ܷ଴), ݑଶ,௞ 
changes from logical zero to one in a sampling period ܶ 
during which the nominal system reaches equilibrium. 

Notice that control ݑஊ,௞ ൌ ଶ,௞ݑ) SM,௞ݑ ൌ 0) is active during 
the saturation and one sampling period	ܶ after leaving the 
saturation. If ݇SM	 is chosen as (8) and the plant is nominal 
and out of saturation, sliding variable ݃௞ (i.e. ݁௞) becomes 
zero after only one sampling period. Then ݑSM,௞		becomes 
zero and further control is	ݑஊ,௞ ൌ ୧୬୲,௞ݑ ൅  ୮,௞. Gain ݇p andݑ
integrator gain ݇୧୬୲	 should be adjusted in controller tuning 
for real plant environment (parameter uncertainties, 
measurement noise, and unmodeled dynamics). Both gains 
have dominant role in suppression of external disturbance 
and the QSM band width, and must be properly tuned. 

3.3 Stability Considerations of the nominal system 

Stability conditions for the nominal system are studied in this 
section. There are two operating regimes. The first one exists 
in the reaching phase, which possibly includes saturation 
effect. The second one occurs when the channel with the 
integrator is active. Due to DT nature of the controller, steady 
state oscillations inevitably arise. To prove the system 
stability, it is necessary to show that the system reaches 
equilibrium in a finite time from any initial state and that the 
established oscillations around the equilibrium are stable. 
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The reaching phase is firstly analysed in Subsection 3.3.1. 
The system motion will be regarded as a consequence of 
nonzero initial condition (ݎ௞ ൌ 0). Then, in Subsection 3.3.2, 
parameters of self-oscillation of the nominal system will be 
determined. Stability of the perturbed system will be 
considered in Subsection 3.3.3. 

3.3.1 Stability of the nominal system in the reaching phase 

Stability of the system in the reaching phase means that the 
system reaches state ݃௞ ൌ 0 (i.e.	݁௞ ൌ 0) in a finite time even 
if the system is saturated. The stability is proved by Theorem 
1. 

Theorem 1: Nominal system (10), operating in the first 
working regime ݑஊ,௞ ൌ SM,௞ݑ ൌ ଶ,௞ݑ) eqݑ ൌ 0), reaches 
equilibrium ݁௞ ൌ 0 in a finite number of sampling periods 
from any initial condition. 

Proof contains two steps. In the first step, we analyse linear 
system. Saturated (nonlinear) system will be analysed in the 
second step. 

Proposition 1: If the nominal system is in linear mode, 
|SM,௞ݑ| ൑ ܷ଴, the system error ݁௞ reaches zero from any 
initial condition ݁௞ ് 0	in only one sampling period, i.e. 
݁௞ାଵ ൌ 0. 

Proof: The system motion in the linear zone is described as: 

݁௞ାଵ ൌ ሺܽୢ െ ܾୢ݇ୗ୑ሻ݁௞.                                                    (11) 

Since, according to (8) ݇SM ൌ ܽୢ/ܾୢ, it follows that	ܾୢ݇ୗ୑ ൌ
ܽୢ	 and ݁௞ାଵ ൌ 0. 

Proposition 2: While in saturation, |ݑୗ୑,௞| ൐ ܷ଴, absolute 
value of the system error will continuously decrease from any 
initial condition ݁௞ ് 0, i.e. every motion reaches linear zone 
in a finite time. 

Proof: Let initial state be such that ܷ଴ ൏ ݇SM|݁௞|. Then the 
system motion is described as 

݁௞ାଵ ൌ ܽୢ݁௞ െ ܾୢܷ଴sgnሺ݁௞ሻ.                                            (12) 

Sira-Ramirez's stability criterion (Sira-Ramirez, 1991) for DT 
SM is 

|݃௞ାଵ݃௞| ൏ ݃௞
ଶ,                                            (13) 

which for the analysed system becomes 

|݁௞ାଵ݁௞| ൏ ݁௞
ଶ,                                            (14) 

implying that the error magnitude continuously decreases. 

Multiplying both sides of (12) by ݁௞ (݁௞ ് 0), it is obtained 

ฬܽୢ െ
௕ౚ௎బ௘ೖୱ୥୬ሺ௘ೖሻ

௘ೖ
మ ฬ ൌ ቚܽୢ െ

௕ౚ௎బ
|௘ೖ|

ቚ ൏ 1                             (15) 

as stability condition.  

Since ܾୢ ൐ 0, ܷ଴ ൏ ݇SM|݁௞| ⇒ |݁௞| ൐ ܷ଴ ݇SM⁄ , condition 
(15) is always satisfied for stable plants (0 ൏ ܽୢ ൑ 1). 

Note that at the border between the linear and nonlinear 
zones, ݁௞ ൌ ݁ୠ,௞, ܷ଴ ൌ ݇ୗ୑|݁ୠ,௞|, which belong to the linear 
zone, and |ܽୢ െ ܾୢ ܷ଴ |݁ୠ,௞|⁄ | ൌ 0. Since in the saturation 
mode ܷ଴ ൏ ݇SM|݁k,	sat|, then ൫ܾୢܷ଴ |݁௞,	sat|⁄ ൯ ൏ ܽୢ. Therefore, 

absolute value of the system error will decrease. At some 
time instant ݐk, the system leaves saturation and enters the 
linear zone. Then the system reaches the equilibrium in one 
sample period. Thus, it is shown that the system in the first 
working regime reaches equilibrium in a finite time. � 

3.3.2 Steady-state stability of the nominal system 

Now, before we investigate the second working regime, let 
the element sgnሺ݁௞ሻ	in Fig. 2 be replaced by the unity-gain 
element, and let	݇ଶ ൌ ܿୢ݇୮, while the system is not saturated. 
Such simplification of sgn element represents a case 
approximation of the nonlinear system in stability analysis. 
The obtained parameters for which the linear system is 
asymptotic stable guaranties that the amplitude of oscillation 
of original nonlinear system will be bounded. In such 
structure, integrator with the gain ݇୧୬୲ plays the role as one 
step delayed disturbance estimator (Lešnjanin et al., 2011). 
Stability of such system can be easily determined by classical 
control theory using Jury's stability test. Characteristic 
equation is 

ଶݖ െ ሺ1 ൅ ܽୢ െ ܾୢ݇ଶ െ ܾୢ݇୧୬୲ܶሻݖ ൅ ܽୢ െ ܾୢ݇ଶ ൌ 0.							ሺ16ሻ	

Jury's stability test gives the following conditions: 

a) ܾୢ݇୧୬୲ܶ ൐ 0 ⇒ ୧୬୲ܭ ൐ 0     (17) 

b) 

2 ൅ 2ܽୢ െ 2ܾୢ݇ଶ െ ܾୢ݇୧୬୲ܶ ൐ 0 ⇒

݇୧୬୲ ൏
2ሺ1 ൅ ܽୢ െ ܾୢ݇ଶሻ

ܾୢܶ
ൌ
2൫1 ൅ ܽୢሺ1 െ αሻ൯

ܾୢܶ
;

α ൌ
݇ଶ
݇ୗ୑

     (18)	

c) |ܽୢ െ ܾୢ݇ଶ| ൏ 1 ⇒ ݇ଶ ൏ 2 ቚ
௔ౚ
௕ౚ
ቚ ൌ 2݇ୗ୑       (19) 

According to (17)-(19), it follows: 

1. For ݇ଶ ൌ ܿୢ݇୮ ൌ ݇SM, the system has one pole at zero, i.e. 
the system is defined as DT SM control system. The second 
pole is ݖଶ ൌ 1 െ ܾୢ݇୧୬୲ܶ and for the stability it is necessary 
to have |1 െ ܾୢ݇୧୬୲ܶ| ൑ 1, i.e. ݇୧୬୲ ൑ 2ሺܾୢܶሻିଵ. Usually, a 
negative real pole is not preferable in practice. Then, it may 
be recommended	݇୧୬୲ ൑ ሺܾୢܶሻିଵ. For ݇୧୬୲ ൌ ሺܾୢܶሻିଵ, the 
both system poles are zero. 

2. For ݇୮ ൌ 0 ⇒ 0 ൏ ܽୢ ൏ 1, 0 ൏ ݇୧୬୲ ൏
ଶ

௕ౚ்
ሺ1 ൅ ܽௗሻ, i.e. 

unstable plant cannot be governed by pure integral controller. 

The above given stability conditions can be used as a guide 
for choosing parameters ݇p, ݇୧୬୲ of DNPI controller. In 
practical applications where measurement noise exists, it is 
recommended ݇ଶ ൌ ܿୢ݇୮ ൏ ݇SM. 

Introduction of sign	element in the controller destroys 
asymptotic stability of the system but the system remains 
stable in the Lyapunov sense, since it oscillates with limited 
amplitude around the equilibrium. Further it will be shown 
that in the nominal system with ݇୮ ൌ ݇ୗ୑/ܿୢ, amplitude of 
the oscillations depends only on	݇୧୬୲ and has minimal value. 

After the reaching phase, QSM motion arises in the 
considered system, whose properties dependent on the chosen 
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parameters. Now, the system is governed by DNPI controller 
under conditions ݑଶ,௞ ൌ 1, c,௞ݑ ൌ ஊ,௞ݑ ൌ p,௞ݑ ൅  ୧୬୲,௞. It isݑ
interesting to study three cases depending on the value of the 
proportional gain ݇୮. Case 1:	݇୮ ൌ ݇SM/ܿୢ; Case 2: ݇୮ ൌ 0; 
Case 3: 0 ൏ ݇୮ ൏ ݇SM/ܿୢ. Case ݇SM/ܿୢ ൏ ݇୮ ൏ 2݇SM as a 
possible stable case is not considered because then the 
oscillation amplitude increases comparing to the minimal 
amplitude (Case 1). 

Proposition 3: If the nominal system works in: 

Case 1, its motion is periodical with period 2ܶ. Oscillation 
form is square wave with amplitude ܣ ൌ ܾୢ݇୧୬୲ܶ/2, and bias 
െܣ. 

Case 2, its motion is periodical with period 4ܶ. Oscillation 
form is square wave with amplitude	ܣ ൑ ܾୢ݇୧୬୲ܶ/2 and bias 
exponentially changes from െ2/ܣ		at the start to zero in the 
steady state. 

Case 3, its motion is periodical with period	4ܶ. Oscillations 
have complex form with amplitude	ܣ ൏ ܾୢ݇୧୬୲ܶ and zero 
bias in the steady state. 

Proof: Let ݁଴ ് 0,	݇SM݁଴ ൑ ܷ଴, ݑଵ,଴ ൌ 1, ଶ,଴ݑ ൌ 0 when the 
system starts its operation. Then ݑ୧୬୲,଴ ൌ ୮,଴ݑ ൌ ୡ,଴ݑ ,0 ൌ
݇SM݁଴ that provides	݁ଵ ൌ 0. Then the integrator input 
becomes ൅1,	ݑ୧୬୲,ଵ ൌ ݇୧୬୲ܶ. In the time instants		݇ ൌ 2,3,⋯ 
the system error and the integrator output become as depicted 
in Table 1, according to (10a) and (10h) respectively. 

Table 1. The system error and integrator output ࢚࢔࢏࢛ 

ek Case 1 Case 2 Case 3 

e1 0 0 0 

e2 െܭ െܭ െܭ 

e3 0 ߜܭ െୢܽܭ 

e4 െܭ ܭሺ1 െ ሺ1ܭ ଶሻߜ െ ܽୢ
ଶሻ 

e5 0 ܭߜሺ1 െ ሺܽୢܭ ଶሻߜ െ ܽୢ
ଷሻ 

e6 െܭ ܭሺߜଶ െ ସߜ െ 1ሻ ܭሺܽௗ
ଶ െ ܽௗ

ସ െ 1ሻ 

e7 0 െܭሺߜଷ െ ହߜ െ ሺܽୢܭ ሻߜ
ସ െ ܽୢ

଺ െ ܽୢ
ଶ ൅ 1ሻ 

uint,1 ݇୧୬୲ܶ	 ݇୧୬୲ܶ ݇୧୬୲ܶ 

uint,2 0	 0 0 

uint,3 ݇୧୬୲ܶ	 െ݇୧୬୲ܶ െ݇୧୬୲ܶ 

uint,4 0	 0 0 

uint,5 ݇୧୬୲ܶ	 ݇୧୬୲ܶ ݇୧୬୲ܶ 

uint,6 0	 0 0 

uint,7 ݇୧୬୲ܶ	 െ݇୧୬୲ܶ െ݇୧୬୲ܶ 

ߜ ൌ ݇୮ െ ܽୢ;	െܽୢ ൏ ߜ ൏ ܭ;0 ൌ ܾୢ݇୧୬୲ܶ  

Comparing Table 1 values with the simulations given in Fig. 
3 and Fig. 4, it can be concluded that all statements in 
Proposition 3 are valid. 

The above explanations show that oscillation amplitude is 
determined by integral gain	݇୧୬୲, sampling period 	ܶ and gain 
݇୮ for Case 3. Amplitude does not depend on ݇୮	in Case 1 
since full gain in error channel becomes equal to	݇ୗ୑ 
introduced by deadbeat control component. Also, the system 
has minimal QSM band in Case 2 but it has long settling 
time. In practice, it is recommended to choose integral gain 
݇୧୬୲	according to the desired width of QSM band, defined 
approximately by ܣ ൌ ܭ ൌ ܾୢ݇୧୬୲ܶ, i.e. ݇୧୬୲ ൌ  .ሺܾୢܶሻିଵܣ
Then, choose ݇୮ in the range defined in Case 3. 

a) Case 1: ݇୮ ൌ ݇ୗ୑/ܿୢ 

b) Case 2: ݇୮ ൌ 0 

c) Case 3: ݇୮ ൌ 0.5݇SM/ܿୢ 

Fig. 3. Evolution of the error signal (above) and its details 
along with the control component 		ݑ୧୬୲		(below, dashed 
lines). Parameters are from Example 1 and Example 2.  

The previous study of the system quality is given for the 
nominal case under assumption that, after the systems start 
up, its state obligatory reaches zero error after one sampling 
period. This ideal case is impossible in practice, so it is 
necessary to investigate stability of the perturbed system. 
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Fig. 4. Steady-state errors for different	݇ଶ ൌ ܿୢ݇୮. 

3.3.3 Stability of the perturbed system 

For the considered first order plant, disturbed model is 
obtained as (Milosavljević et al.,2013): 

ሶ݁ ሺݐሻ ൌ ܽ݁ሺݐሻ െ ܾሺݑୡሺݐሻ െ ݀ሺݐሻሻ
݀ሺݐሻ ൌ ݂ሺݐሻ െ ܾିଵܽݎሺݐሻ ൅ ܾିଵݎሶሺݐሻ

,	 ሺ20ሻ	

where	݀ሺݐሻ, |݀ሺݐሻ| ൑ ݀௠ ൏ ܷ଴, is the sum of the external 
disturbance	݂ሺݐሻ, and disturbances caused by the 
reference	ݎሺݐሻ. 

Assumption: All disturbances are low frequency signals that 
do not change significantly during sampling period. 

Discrete-time model becomes:  

݁௞ାଵ ൌ ܽୢ݁௞ െ ܾୢሺݑୡ,௞ െ ݀௞ሻ																																																	ሺ21ሻ	

Control of the plant (21) is as in (10). It is necessary to note 
that the disturbance is matched in (21), but in reality it does 
not pass through ZOH. 

It is easy to establish that steady-state error of the equivalent 
linear system (sgnሺ݁௞ሻ is replaced by unity gain element) 
becomes zero for constant-type disturbance. For ramp-type 
disturbance, ݀ሺݐሻ ൌ ݀଴ݐ, steady-state error is equal to 
݁ሺ∞ሻ ൌ ݀଴/݇୧୬୲. Therefore, in this case, equivalent system 
may be seen as a system in which constant type disturbance 
݀௞
௘ ൌ ݀଴/݇୧୬୲ acts at the integrator input. Therefore, the 

equivalent control structure becomes as depicted in Fig. 5. 

 

Fig. 5. Equivalent block-structure of the system with 
disturbances. 

From another viewpoint, since integrator has the role of 
disturbance estimator (observer), its output tracks ramp 
disturbance with the constant error (Fig. 6, trace 2). The 
introduced sgnሺ݁௞ሻ element realizes zig-zag like estimate 
around actual disturbance (Fig. 6, trace 3), which results in 
decreasing the steady-state error. On the other hand, since 
transformed real ramp disturbance becomes constant type 
disturbance acting in front of the integrator, and in front of 
this virtual disturbance entering point high gain element 
(such as sgnሺ݁௞ሻ) is located, system error will drastically 

decrease but at a cost of chattering occurrence. It is clear that 
the system will lose QSM if absolute value of		ห݀ଵ,௞ห ൐ 1. 
Therefore, it can be inferred that a constant disturbance has 
no influence on the steady-state oscillation (chattering) 
parameters. This is not the case for ramp-type disturbance.  

Stability of the perturbed system will be preserved if 
disturbance satisfies conditions: |݀ሺݐሻ| ൏ ܷ଴	 and ห݀ଵ,௞ห ൏ 1. 

Plant parameters uncertainties, if they are low frequency, 
have impact as external disturbance. Plant model uncertainty, 
such as unmodeled dynamics of sensor and/or actuator, 
significantly increase oscillation amplitude if neglected time 
constant is much higher than one-thousandth of the dominant 
time constant. In the next section this problem will be 
outlined. 

 

Fig. 6. Integrator output as disturbance estimator. 1- ramp 
type disturbance ݀; 2 - estimation of ݀ without sgn element 
with ݇୧୬୲ ൌ 1000; 3 - Estimation of ݀ with using sgn 
element and ݇୧୬୲ ൌ 100. 

 

4. STEADY STATE PARAMETERS DETERMINATION 
VIA DESCRIBING FUNCTION 

4.1 Introductory considerations 

The above considered first-order model in many practical 
applications is only approximation of a real plant, which 
usually has unmodeled first order dynamics introduced by 
neglecting fast dynamics of actuators and/or sensors. 
Unmodeled dynamics lead to deviation of process dynamics 
in the control system. The approach given in Section 3 can be 
extended for control of second-order nominal plant but it is a 
lot more complicated. Since the second-order plant has better 
filter properties than the first-order plant, describing function 
approach (DFA) can be used as an approximate method to 
determine parameters of self-oscillations. 

Consider a second-order plant 

ܹሺݏሻ ൌ
௞

ሺଵା௦ఛభሻሺଵା௦ఛమሻ
, τଶ ൏൏ τଵ                                      (22) 

controlled by DNPI controller, which is designed for the first 
order plant by assuming ߬ଶ ൌ 0. The objective is to 
determine steady-state performance of the proposed control 
system as a function of the plant parameters and the chosen 
controller parameters. Since the considered system is 
nonlinear due to presence of an ideal relay, the motion in a 
vicinity of the steady state is oscillatory. Oscillation 
parameters may be determined: (i) analytically (with 
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significant effort), (ii) by simulation, or (iii) approximately 
by using DFA. In this section we use DFA to determine self-
oscillation parameters of the autonomous system. Non-
autonomous system has similar behaviour. 

DFA in analysis of a system controlled by CSTA has been 
employed in (Piloni et al., 2012, and the references therein) 
where two nonlinearities are connected in parallel: sign 
function with serially connected integrator and square root 
function. In the proposed DNPI controller square root 
nonlinearity is not used, so it is easier to determine oscillation 
parameters in the obtained system. Since term ݇ୗ୑ (Fig. 2) 
has role only in the reaching phase, the equivalent system in 
the steady-state may be transformed into structure with 
nonlinearity and the equivalent linear part (หݑஊ,௞ห ൏ ܷ଴ is 
assumed). The linear part is composed of serial connection of 
the integrator and a feedback structure that contains: zero-
order hold (ZOH) and real plant in the direct path and 
gain	݇ଶ ൌ ܿୢ݇୮ in the feedback, Fig. 7. 

 

Fig. 7. Equivalent DNPI control system structure for using 
describing function approach. 

4.2 Calculation of Self-oscillations parameters 

Note that gain ܿୢ in front of the sign element has no influence 
on oscillation parameters. DT transfer function of the 
equivalent linear part is obtained as 

ܹሺݖሻ ൌ
݇୧୬୲ܶݖ
ݖ െ 1

௭ିଵ

௭
ࣴ ቄ

௞

௦ሺଵା௦ఛభሻሺଵା௦ఛమሻ
ቅ

1 ൅ ݇2
௭ିଵ

௭
ࣴ ቄ

௞

௦ሺଵା௦ఛభሻሺଵା௦ఛమሻ
ቅ

ൌ
݇݇୧୬୲ܶݖ
ݖ െ 1

ܽଵݖ ൅ ܾଵ
ܿଵݖଶ ൅ ݀ଵݖ ൅ ݁ଵ

ൌ
݇݇୧୬୲ܶሺܽଵݖଶ ൅ ܾଵݖሻ

ܿଵݖଷ ൅ ሺ݀ଵ െ ܿଵሻݖଶ ൅ ሺ݁ଵ െ ݀ଵሻݖ െ ݁ଵ

 (23) 

where: 

ܽଵ ൌ ݇௡ሺ1 െ ݁ି௔೙்ሻ െ ܽ௡ሺ1 െ ݁ି௞೙்ሻ; 

ܾଵ ൌ ሺ݇௡ െ ܽ௡ሻ݁ି
ሺ௞೙ା௔೙ሻ் ൅ ܽ௡݁ି௔೙் െ ݇௡݁ି௞೙்; 

ܿଵ ൌ ሺ݇௡ െ ܽ௡ሻ; 

݀ଵ ൌ ݇ଶ݇൫݇௡ሺ1 െ ݁ି௔೙்ሻ െ ܽ௡ሺ1 െ ݁ି௞೙்ሻ൯

െሺ݇௡ െ ܽ௡ሻሺ݁ି௞೙் ൅ ݁ି௔೙்ሻ;
 

݁ଵ ൌ ሺ1 ൅ ݇ଶ݇ሻሺ݇௡ െ ܽ௡ሻ݁ି
ሺ௞೙ା௔೙ሻ்

൅݇ଶ݇ሺܽ௡݁ି௔೙் െ ݇௡݁ି௞೙்ሻ
; 

ܽ௡ ൌ ߬ଵିଵ, ݇௡ ൌ ߬ଶ
ିଵ, ݇ଶ ൌ ݇௣ܿௗ.	

Nonlinear element (NE) of the system has DF

୒ܹ୉ ൌ ;	ܣߨ/ߛ4 ߛ ൌ 1,	 	 	ሺ24ሻ	

where ܣ	is the oscillation amplitude. Using DFA, 
characteristic equation of the harmonically linearized 
nonlinear system becomes 

1 ൅ ୒ܹ୉ܹሺݖ ൌ ݁௝ன்ሻ ൌ 0,	 	 ሺ25ሻ	

which can be rewritten as 

ܹሺݖ ൌ ݁௝ன்ሻ ൌ െ ୒ܹ୉
ିଵ,	 	 ሺ26ሻ	

According to (26), the solution can be graphically found by 
constructing the Nyquist diagram of the equivalent linear part 
and inverse plot of DF of NE. Intersection points of these two 
plots give solutions. Since NE trace coincides with the 
negative part of real axis in the complex plane of the Nyquist 
diagram, solutions are represented by points in which the 
Nyquist diagram crosses the negative part of the real axis. In 
this case, there are two intersection points. One is in the 
origin, which is disregarded since it is not a stable solution. 
Hence, the other intersection with the negative real axis is the 
valid solution, Oscillation parameters can be obtained by 
decomposition of ܹሺݖሻ|௭ୀ௘ೕಡ೅ into the real ܴ ൌ Reሼܹሺ݆ሻሽ 
and imaginary ܫ ൌ Imሼܹሺ݆ሻሽ	parts. Oscillation frequency 
ω ൌ Ω can be found from ܫ ൌ 0. For such Ω	 and ܴሺ݆Ωሻ, 
oscillation amplitude can be calculated using (26) as 

ܣ ൌ െቀ
ସ

గ
ቁܴሺ݆Ωሻ.	 	 ሺ27ሻ	

Example 3. Consider the system with nominal plant 
parameters as in Example 1 and basic DTSM controller from 
Example 2. ݇୧୬୲	is chosen to have oscillation amplitude 
A=0.01 in the nominal DNPI system, i.e. ݇୧୬୲ ൌ
0.01/ሺܾୢܶሻ ൌ 102.85 (the adopted value is ݇୧୬୲ ൌ 100 as in 
Example 1). 

Let unmodeled plant dynamics in Example1 be determined 
by inertial time constant	߬ଶ ൌ 1.7 ms. Therefore, real plant 
(22) has the following parameters: ݇ ൌ ܾ/ܽ ൌ 618.82, 
߬ଵ ൌ 1.59s, ߬ଶ ൌ 1.7 ms. 
Using (23) with the given parameters and MATLAB, Nyquist 
diagrams for different values of ݇p ൌ ሾ0.75, 1, 1.25ሿ are 
depicted in Fig. 8. It can be observed that the oscillation 
amplitude is minimal for ݇୮ ൌ 1 i.e. ݇ଶ ൌ ݇ௌெ and increases 
if	݇୮ ് 1. Also, oscillation frequency increases with 
increasing	݇୮. From Fig. 8 amplitudes and frequencies of 
oscillations are: 

݇୮ 0.75 1 1.25 
ܣ 0.08 0.0754 0.0790 
Ω 923 rad/s 1058 rad/s 1179 rad/s 

In Fig. 9a, MATLAB/Simulink simulation results of the 
system error for previous values of ݇௣ ൌ ሾ0.75, 1, 1.25ሿ are 
depicted. It can be seen that the simulation is with accordance 
to the obtained by DFA analysis. The previous results and 
conclusions regarding influence of ݇୮ on amplitudes and 
frequencies of dominant oscillatory components are 
illustrated in Fig. 9b with signal spectrum.  
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Fig. 8. Nyquist plot of the equivalent DNPI control system 
structure for different gains ݇ଶ ൌ ݇୮ܿୢ. 

 

Fig. 9. Simulation results: a) Output signal of autonomous 
system for different values of ݇୮, b) Frequency spectrum of 
dominant harmonics in output signal of autonomous system. 

To complete verification of the proposed design, nominal 
system is simulated for ݇୮ ൌ 1, ݇୧୬୲ ൌ 100, ݇ୗ୑ ൌ 5.141 for 
DNPI and ݇୮ ൌ 15, ݇୧୬୲ ൌ 100 for DSTA, as well as in the 
perturbed case (Example 3) with the readjusted parameter 
	݇ୗ୑ to ݇ୗ୑/5 for the DNPI in tracking of pulse train and 
sinusoidal reference with disturbance 

௅ܶ ൌ 5ൣ݄ሺݐ െ 2ሻ െ ݄ሺݐ െ 4ሻ൯ ൅ ݄ሺݐ െ 6ሻsinሺ2ݐߨሻሿ.	 		ሺ28ሻ	

Simulation results are depicted in Figures 10-12, respectively. 

From Fig. 10 and 12a it can be seen that, for the nominal 
case, the proposed DNPI controller gives much better results 
than the corresponding DSTA controller, since DNPI does 
not give overshoots and has much better disturbance rejection 
capability. 

 

Fig. 10. Tracking of pulse train with disturbance (28) in the 
nominal case (with zoomed details). 

 

Fig. 11. Tracking of pulse train with disturbance (28) (with 
zoomed details). 

 

Fig. 12. Tracking of sinusoidal reference 10 sinሺݐሻ10 with 
disturbance (28) (with zoomed details). 

In the perturbed case Figs. 11 and 12b, the proposed DNPI 
has similar overshoot as DSTA, similar QSM band width but 
better settling time and disturbance rejection capability. 

6. CONCLUSION 

The following conclusions can be made from this research: 

 Super twisting control approach (STA) has great 
potential in control due to great robustness and 
simplicity, but it is prone to large overshoots, particularly 
in DT realization.  

 Large overshoots can be avoided by the proposed 
modifications by means of VSC principle, whose essence 
is in deactivating integral action of STA in the reaching 
phase with simultaneously applying SM control. 

 Basic design principles of the proposed DNPI control 
system are demonstrated in details in nominal case as 
well as in case of existing of unmodeled inertial 
dynamics. 

 By replacing the nonlinear square root component in 
DSTA with the linear one, more suitable structure is 
obtained for determining QSM domain by using DFA in 
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discrete-time domain. 

 Simulation results show that the proposed DNPI 
controller has much better performance than DSTA in 
tracking pulse type references and rejecting pulse type 
loads in the nominal case. 

 It is underlined that the proposed DNPI controller 
without signum function becomes the controller 
described in (Milosavljevic et al, 2013), in which 
chattering does not exist, but there is a steady state error 
for ramp type disturbances, which is drastically 
decreased by DNPI controller but with introducing of 
chattering. 

 If neglected modes of actuator or/and sensor are 
relatively high, the proposed design approach can lead to 
considerable steady state oscillatory behaviour, which 
may be unacceptable in high performance systems, 
particularly for tracking of low level references. 

 Good disturbance rejection capability, robustness to 
parameters variation and simple realization are 
significant recommendations for using the proposed 
design in industrial application in electrical drives. 

The future work will be oriented to investigate proposed 
approach in control of speed/position of electrical drives and 
evolved this idea for control of higher-order plants. 
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ABBREVIATIONS 

CT Continuous-time 
CSTA Continuous-time super twisting algorithm 
DC Direct current 
DF Describing function 
NE Nonlinear element 
DFA  Describing function approach 
DNPI Discrete-time proportional-integral 
DSTA Discrete-time super twisting algorithm 
DT Discrete-time 
HOSM Higher-order sliding mode 
IM Induction motor 
MIMO Multiple-input multiple-output 
PI Proportional integral 
PMSM Permanent magnet synchronous motor 
QSM Quasi-sliding mode 
RC Reaching control 
SISO Single-input single-output 
SM Sliding mode 
STA Super twisting algorithm 
VSC Variable structure control 
ZOH Zero-order hold 
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