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Abstract: This paper presents an integral backstepping integral sliding mode (IBISMC) based robust 
control scheme to asymptotically stabilize a class of underactuated nonlinear electromechanical systems 
(UNEMSs) at desired equilibria. Prior to the control design, the dynamic model of the aforesaid class is 
first transformed into a regular form which is more convenient for control design. This transformation 
subdivides the overall system's dynamics into a series cascaded form which are termed as internal 
dynamics and visible dynamics blocks while proceeding from the left side. A proportional integral based 
nonlinear virtual control laws are designed in a backstep manner and an integral sliding mode is 
introduced in the last step of the design. In this way, the overall system is controlled via a robust 
nonlinear control algorithm which results in zero steady state errors in each step and also provides 
robustness against step disturbances and matched uncertainties. The global asymptotic stability of each 
step is proved via Lyapunov candidate function. The applicability and benefits of this strategy are 
demonstrated via the simulation results of a cart-pendulum system. The results of the proposed strategy 
are also compared with the standard literature results to highlight its appealing nature for such class.  
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

1. INTRODUCTION 

Mechanical systems that are characterized by the fact that 
they have less dimension of space spanned by the applied 
stabilizing inputs than that of the space spanned by the 
configuration variables are called underactuated systems (ud 
Din et al., 2018). This class has very interesting applications 
in the field of robotics, unmanned aerial vehicles, underwater 
vehicles, surface vessels, satellite and locomotive systems 
(Gruszka et al., 2011; Khan et al., 2017; Huang and Yan,  
2017; Ghommam et al., 2006; Spong et al., 2007). Moreover, 
this class offers certain advantages like reduction in energy 
consumption, cost, weight and the sufficiently low failure 
rate of their components. Because of its substantial 
applications in the existing era, the nonlinear control design 
of the underactuated nonlinear electromechanical systems has 
been the key focus of the researchers during the recent 
decades (see for instance, Fantoni and Lozano, 2002; Lu et 
al., 2018; Nafa et al., 2013). As reported in Riachy et al. 
(2008), the smooth control approaches may not be applied to 
control the UNEMSs because of the existence of some 
nonintegrable constraints with some theoretical and practical 
challenges (Berkemeier and Fearing, 1999, Zhang and Tarn,  
2002). In the context of advanced control algorithms, an 
extensive number of researchers synthesized different 
nonlinear control techniques to provide appealing results 

along with closed-loop stability. Some of these efforts are 
reported here.  

A passivity-based control (PBC) scheme, utilized the entire 
power, in a considerable range to acquire the equilibrium 
values for the system dynamics which are very often needed 
in stabilization problems (Romeo et al., 1998; Fierro et al.,  
1999). Many researchers have successively employed the 
PBC scheme for the set-point regulation of UNEMSs, for 
example, bipedal locomotion robot in (Spong et al., 2007), 
translational oscillator with rotational actuator (TORA) in 
(Jankovic et al., 1996), etc. The conservativeness of this 
technique lied in the facts that its range of realistic 
implementation in the field of robotics and aerospace 
engineering is so limited. In addition, it was only valid for the 
stability of those systems which display relative degree one. 
To overcome the limitation of relative degree one, a 
nonlinear control technique, known as backstepping, is 
proposed. It converts the nth order system into a new 
recursive form that contained on n number of subsystems 
(each one of relative degree one). In recent years, this control 
scheme is mostly used for the global stabilization of the 
UNEMSs, like unmanned aerial vehicle in (Gruszka et al., 
2011), spacecraft in (Huang and Yan, 2017) and surface 
vessel in (Ghommam et al., 2006). Unfortunately, when the 
degrees of freedom of the aforesaid class increases then the 
design procedure of such a control scheme becomes very 
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complex and it is very difficult to employ it in a realistic 
application. An energy-optimal control scheme, reported in 
(Yang et al., 2011), solved the problem of energy 
consumption of system dynamics. A differential geometric 
based time optimal control approach is used to control the 
nonholonomic rigid systems along with some specific 
application, like the planar pendulum in (Mason et al., 2008) 
and spacecraft in (Tsiotras and Luo, 2000). However, the 
main shortcoming of (Mason et al., 2008; Tsiotras and Luo,  
2000) was that they had no generalized rules for the control 
of UNEMSs. An artificial intelligent control technique, the 
so-called fuzzy logic control (FLC), deal with imprecise, 
uncertain and qualitative decision-making problems. It has 
been extensively utilized in the practical application of 
UNEMSs (see for instance (Tao et al., 2008; Li et al., 2004). 
FLC is of two types: model-based FLC and heuristics-based 
FLC. In model-based FLC scheme, the regulation of setpoints 
and output tracking on the desired trajectory are presented in 
(Ichida et al., 2006; Raguraman et al., 2009), respectively. 
The combination of FLC with some other control approaches 
have some excellent results in the presence of mismatched 
uncertainties (Nafa et al., 2013; Aloui et al., 2011; Hwang et 
al., 2009). However, the limitations in the existing results of 
FLC are pointed out that: 1). the dynamic variables of 
systems are required to be established in advance, which is 
often unavailable in a practical scenario, 2). the rule failures 
of fuzzy inference occur due to the intersected conflicting 
decision boundaries. 

In the context of robust nonlinear control schemes 
employment, the sliding mode control (SMC) is extensively 
applied in the presence of internal and external uncertainties 
(Soysal, 2014). It finds very interesting results in controlling 
the dynamics of UNEMSs, such as cart-pendulum system in 
(Riachy et al., 2008), UAV in (Zou, 2017), ball and beam 
system in (Din et al., 2017; Almutairi and Zribi, 2010), 
satellite in (Huang and Yan, 2017) and double-pendulum 
crane in (Lee et al., 2013). However, due to the presence of 
strong dynamics coupling and high nonlinear terms in 
UNEMSs, the chattering phenomena becomes more 
prominent (Bartoszewicz, 2017). To overcomes this problem, 
multifarious classical and advanced control a strategies are 
employed (see for instance, (Lee and Utkin, 2007; 
Benallegue et al., 2008; Vazquez et al., 2014; Din et al., 
2017; ud Din et al., 2018; Bartolini et al., 1998; Levant,  
2003)). The control algorithms developed in (Din et al., 2017; 
ud Din et al., 2018) were quite appealing but it suffered from 
less precision because of asymptotic convergence with a 
steady-state error. For higher precessions, a fast terminal 
sliding mode control (TSMC) approach (Khan et al., 2017) is 
presented to compensate the chattering problems. This 
approach not only achieves finite-time convergence in the 
sliding phase but also provided better robustness in 
comparison with traditional linear SMC along with high 
precision (presented in (Xiong and Zheng, 2014)). However, 
the existence of negative fractional powers in TSMC may 
lead to singularity problems (Zhao et al., 2015) and it also 
experiences the reaching phase which is often proved 
sensitive to disturbances. 

It is necessary to report that the development of the integral 
backstepping based integral sliding mode strategy for the 
understudy class is based on some motivations. The integral 
backstepping results in zero steady state errors as compared 
to conventional backstepping. In addition, integral 
backstepping also improves the robustness against the 
disturbance of step type. On the other hand, the integral 
sliding mode is introduced in the last step of the design to 
provide us the invariance property (an important property of 
sliding modes) from the very start as compared to 
conventional sliding modes which guarantee invariance only 
in sliding phase. In other words, the reaching phase is 
eliminated the system evolves in sliding mode from the very 
start which ensures robustness from the very start. 
Furthermore, this strategy results in suppressed chattering as 
compared to conventional sliding modes.  

The main objectives met in this work are three fold. At first, 
some transformations are made to convert the dynamic 
model, of a class of UNEMSs, into regular form. This 
facilitates the design of the proposed control law. Secondly, 
the employment of integral backstepping strategy to the 
transformed regular form in a very generic way subject to 
very practical assumptions. An integral sliding mode is 
developed in the last step which helps in getting rid of the 
reaching phase. Consequently, the system evolves with more 
robustness from the start of the process as compared to 
conventional sliding modes and conventional nonlinear 
techniques. The closed lope stability in each step is proved 
via Lyapunov stability theory. The chattering phenomena is 
also alleviated via strong reachability condition as well as by 
the introduction of the integral sliding mode which generally 
results in reduced chattering (see for more details, (Utkin, 
1999)). Thirdly, the effectiveness of the proposed algorithm 
is demonstrated via the simulation results of a cart-pendulum 
and its transient and steady state responses are compared with 
the second order sliding mode control strategy (Riachy et al., 
2008). In addition, a quantitative comparison is also made 
with the above referred in table 1.  The rest of the paper is 
structured as follows: the problem statement is presented in 
Section 2 and a generalized integral backstepping based ISM 
control design is given in Section 3. The proposed control 
scheme is verified while simulating a benchmark cart-
pendulum system in Section 4. The last Section includes the 
conclusion followed by references. 

2. PROBLEM FORMULATION 

The most general form of the dynamics of uncertain 
nonlinear mechanical system, in vector form, is expressed as 

( ) ( , ) ( ) ( ) ( )c g b e pJ p p F p p p F p F p F p U           (1) 

where n nJ   is a non-singular inertia matrix, 1np  and 
1np    are the position and velocity vectors which makes a 

configuration space of 2n  variables, the force matrices 

 gF p ,  bF p  and  ,cF p p  are known as gravitational, 

fractional, and centrifugal/Coriolis forces, respectively (see 
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(Olfati-Saber, 2001), for more details). In addition, 1nU   

is the applied control input, n n
eF    denotes the matrix of 

external forces and   , ,p p p p t     refers to the lumped 

uncertainty contributed by the coupling of the states, external 
disturbances and unmodeled dynamics. 

The general model (1) for 2-DOF underactuated nonlinear 
electromechanical systems, can be written as follows 

1 11 1 2 1 2 12 1 2 1 1 2

2 21 1 2 1 2 22 1 2 2 1 2

( , , , ) ( , )( ( , , ))

( , , , ) ( , )( ( , , ))

p

p

p M p p p p M p p U p p t

p M p p p p M p p U p p t

   

   

  

  
 

                                                                                         (2) 

where  11 1 2 1 2, , ,M p p p p   and  21 1 2 1 2, , ,M p p p p   

represents combinations of centrifugal, Coriolis, gravitational 
and fractional forces,  12 1 2,M p p  and  22 1 2,M p p  are the 

channels of the feedback control input U. Furthermore, 

 1 1 2, ,p p p t  and  2 1 2, ,p p p t  represents the state 

dependent nonlinear uncertain coupling terms. 

Using non-singular coordinate transformation (reported in 
(Utkin et al., 2009)), the above generalized UNEMSs model 
(2) is transformed to following the equivalent regular form: 

1

2 2

( , , , )

( , , , ) ( , ) ( , , )

r H r r q q

q H r r q q G r q U r q t



   

  
  

   
(3) 

where 2q p and 
2q p  , 1 2 1 2( , ) ( )r p p p p    , 

1 2 2
2

( )r p p p
p


 


   , 12
2

2 22

( )
M

p
p M





,  

1 2 2 2 1
2 2

( ) ( , , , )r p p p p H r r q q
p p


  

     
      , 

2 21 1 2 1 2( , , , ) ( , , , )H r r q q M p p p p     and 

2 22 1 2( , ) ( , )G r q M p p . 

It is worthy to mention that 1( , , , )H r r q q  , 2 ( , , , )H r r q q   

and 
2 ( , )G r q are smooth functions. It is also necessary to 

report that since the overall system is controllable therefore, 

2 ( , )G r q should not be zero in the feasible domain (in the 

working domain). 

At this stage, we assume the following. 

Assumption 1. It is assumed that the uncertainty ( , , )r q t  is 

the norm bounded i.e.,   , where   is a positive 

constant. 

Remark 1. Note that, the transformation does not alter the 
nature of the matched uncertainty. 

The transformed model (3), in state space variable form, can 
be re-written as 

1 2

1 1 2 3 42

3 4

4 2 1 2 3 4 2 1 3 1 3

( , , , )

( , , , ) ( , ) ( , , )

x x

H x x x xx

x x

x H x x x x G x x U x x t


 
 
    







(4) 

where 1 1x r , 3 1x q , 1 1x r   and 3 1x q  . Before the 

control design, the following assumptions are also made. 

Assumption 2. The equilibrium point of an open loop system 
is assumed to be at the origin, such that 1(0,0,0,0) 0H  and 

2 (0,0,0,0) 0H  . 

Assumption 3. For a feasible practical scenario, assume that 
the nonlinear function 

1H  depends only on the position 

variable of the directly driven system i.e., 

1 1 2 3 4 1 1 2 3( , , , ) ( , , ,0)H x x x x H x x x . 

The structure in Assumption (3) is mostly observed in 
underactuated nonlinear systems such as an inverted-
pendulum system in (Khan et al., 2017), double-inverted 
pendulum system in (Utkin et al., 2009) and TORA system in 
(Olfati-Saber, 2001). 

Assumption 4. Assume that the function 
1 1 2 3( , , ,0)H x x x  can 

be subdivided into the following form 

1 1 2 3 11 1 2 3 12 3( , , ,0) ( , , ) ( ),H x x x H x x x H x  where 

11 1 2 3( , , ,0)H x x x remains positive and inactive in the 

available feasible domain (see  (Khan et al., 2017) in case 
inverted pendulum and  (Utkin et al., 2009) in case of double 
inverted pendulum). Thus, the main interest here is that  

12 3( )H x must be no-vanishing and invertible. 

Assumption 5. Assume that the control input channel 

2 1 3( , ) m mG x x   should be a nonvanishing (i.e., invertible 

in the whole domain). In other words, it is needed that 

2 1 3( , ) 0G x x   
1x and 

3x   to maintain controllability. 

Now, the overall problem is formulated in which the main 
objective is to steer all the states of (4) to the equilibrium 
points. In the next section, an integral backstepping based 
ISMC law is proposed to meet the steering objective. 

3. CONTROL LAW DESIGN 

The design of the control law via integral backstepping ISMC 
is the main topic of this section. In the control design steps, 
the system (4) is interpreted in the following two cases which 
will ease the understanding and development of the design. 

3.1 case-I 

The first two multi-variable differential equations in (4) are 
analogous to internal dynamics whose zero dynamics, with 

3x  as an output, can be obtained by substituting 
3 0x   and 

4 0x  , as follows 



CONTROL ENGINEERING AND APPLIED INFORMATICS                      45 
 

     

 

1 2

1 1 22 ( , ,0,0)

x x

H x xx







        (5) 

When the internal dynamics (5) are stable, then the ultimate 
task is that the following dynamics, under the action of a 
suitably designed, control input U should follow the desired 
reference output. 

3 4

4 2 1 2 3 4 2 1 3 1 3( , , , ) ( , ) ( , , )

x x

x H x x x x G x x U x x t



   




 (6) 

This tracking task can be met by steering the mismatch 3  

between the real output 3x  and the reference output 3rx  

(which is assumed continuously differentiable) to zero. 
Therefore, proceeding towards the control design, the 
mismatch is defined as 

 3 3 3rx x           (7) 

The differentiation of the Lyapunov function 2
3 3 / 2   

along (7) yields 

3 3 3 3 4 3( )rx x              (8) 

Choosing a virtual controller 4 3 3 3( )rx x      and a new 

reference 4 3 3 3 3 3( )rx x        : with 3 3dt   , 

the time derivative of the Lyapunov function will become 

2
3 3 3 3 4 3 3 3                     (9) 

where 3  is the positive control gain and 4 4 4x x    is 

the mismatch for the next step. The steering of 4  

exponentially at zero can be obtained by defining an integral 
sliding manifold   of the form 

4 4x x z    :   where   40

t
z d             (10) 

The time derivative of   along (6) takes the form 

2 1 2 3 4 2 1 3 1 3

3 3 4 3 3 3 3

( , , , ) ( , ) ( , , )

( )r

H x x x x G x x U x x t

x z


     

   
    


 

   (11) 

In this strategy, the control law is considered to be an 
algebraic sum of two components, i.e., 

0 1U U U  , where 

0U  is a continuous control component and 1U  is further 

composed of disU and eqU  terms. The term z  is chosen as 

follows 

   2 1 3 0( , )z G x x U  :   where   0 4 4 4( )U x x          (12) 

Consequently, (11) becomes 

2 1 2 3 4 2 1 3 1 1 3

3 3 4 3 3 3 3

( , , , ) ( , ) ( , , )

( )r

H x x x x G x x U x x t

x


     

   
   




     (13) 

The differentiation of an augmented Lyapunov function 
2 2

4 3 3 3/ 2 / 2        along (9) and (11) becomes 

2
4 3 3 3 4 2 1 2 3 4 3

2 1 3 1 1 3 3 4 3 3 3 3

( ( , , , )

( , ) ( , , ) ( ) )

rH x x x x x

G x x U x x t

    

     

     

     

 


     (14) 

To ensure regularization, the equivalent control law eqU  is 

designed as 

2 1 2 3 4 3
2 1 3

3 4 3 3 3 3

1
( ( , , , )

( , )

( ) )

eq rU H x x x x x
G x x

     

  

  


                    (15) 

and the discontinuous control law is devised as 

4 5
2 1 3

1
( ( ( ))

( , )disU sign
G x x

               (16) 

Considering (15) and (16), the applied control law 1U  is 

designed as 

1 2 1 2 3 4 3
2 1 3

3 4 3 3 4 5 3 3

1
( ( , , , )

( , )

( ) ( ( )) )

rU H x x x x x
G x x

sign         

  

    


        (17) 

Invoking the control laws (17), Eq. (14) becomes 

2 2
4 3 3 3 4 4 4 5

2 2
4 3 3 3 4 4

( )        

       

       

     

 


        (18) 

where   is a positive constant. This inequality remains a 

true subject to 4 5 1 3( , , )x x t     . The controller 

(17) enforces sliding mode from the very start of the process 
which means 0   is met at 0t  . The constraint 0   

implies that 4 2 1 3 0( , ) 0G x x U   . This shows that the 

uncertain and nonlinear terms are compensated by the control 

component 1U  and the nominal system in term of 4 , in 

sliding mode, is governed by 0U . The solution of this 

differential equation is exponentially converging to origin 

i.e., 4 0   exponentially under the action of 0U . This 

shows that the second term in the inequality (18) will vanish 
and it confirms the negative definiteness of the right side of 
(18). 

3.2 case-II 

In the case-I, the stability of the zero dynamics with 3x  as an 

output is discussed. Now, in this case, the stability of the zero 
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dynamics with 1x  as an output will be studied which can be  

obtained by selecting 1(t) 0x   and 2 (t) 0x   i.e., 

1 3 3(0,0, , ) 0H x x             (19) 

If the first order differential equation in (19) is stable, then 
subject to Assumption 3, the nonlinear function 

12 3( ) 0H x   will be treated as a driving force of the 

internal dynamics block. The control law which will be 
designed is based on integral backstepping integral sliding 

mode, therefore, by defining an output tracking error 1  

between the real output 1x  and the reference output rx , one 

may get 

1 1 rx x               (20) 

The differentiation of candidate Lyapunov function 
2

1 1 / 2   w.r.t time is presented as 

1 1 1 1 2( )rx x                  (21) 

Treating 2x  as a virtual controller and choosing a new 

reference 2 1 1 1 1( )rx x        : with 
1 10

t
d    , the time 

derivative of the Lyapunov function will become 

2
1 1 1 1 2 1 1 1                     (22) 

where 1  is the positive control gain and 2 2 2x x    is 

the mismatch for the next step. The differentiation of 2  

along system (4) (subject to Assumption 4) can be defined 

as follows 

2 2 1 1

2 11 1 2 3 11 3 1 2 1 1( , , ) ( ) ( )
r

r

x x

H x x x H x x

  
    

  
   

  
 

          (23) 

For the convergence of error variables 1  and 2  to zero, the 

time derivative of the Lyapunov function 
2 2

2 1 2 1 1/ 2 / 2        along (22) and (23) becomes 

2
2 1 1 2 1 11 1 2 3 12 3

1 2 1 1

( ( , , ) ( )

( ))r

H x x x H x

x

   
   

    

  




        (24) 

From Eq. (24), a virtual control input is designed, to enforce 

2x  to 2x , as follows 

1
11 1 2 3 1 1 2 1 1

1
3 12

2 2 2 2 2 0

( , , )( ( )

) : with 
t

r

H x x x
x H

x d

    

     



 
      
     

        (25) 

which yields 

2 2
2 1 1 2 2 2 3 2 2 2                       (26) 

Since the actual driving force U  is appearing in the second 

block that can be accessed by defining a mismatch 3  

between the real output 3x  and the reference output 3x  i.e., 

3 3 3x x               (27) 

The differentiation of the Lyapunov function 
2 2

3 2 3 2 2/ 2 / 2        along (27), yields 

2 2
3 1 1 2 2 3 4 3 2( )x x                      (28) 

Once again, treating 4x  as a virtual controller and selecting a 

new reference 4 3 2 3 3 3 3( )x x          : with 

3 30

t
d    ,the time derivative of the Lyapunov function 

will become 

2 2 2
3 1 1 2 2 3 3 3 4 3 3 3                         (29) 

where 3  is the positive control gain and 4 4 4x x    is 

the mismatch for the last step. The steering of 4  

exponentially at zero can be obtained by defining an integral 
sliding manifold   of the form 

4 4 4 3 2 3 3 3 3x x z x x z                        (30) 

Now, the actual control input U  is reached whose design 
and stability of the closed loop system will be accomplished 
in the forthcoming theorem. 

Remark 2. The nonlinear control law which will enforce 
sliding mode against (30) will ensure that 

4 4 4 0x x    . Consequently, the expression (28) will 

become trues which will confirm the convergence of 

3 3 3 0x x    . Similarly, moving at backstep will 

confirm, at the last step, the convergence of 

1 1 0rx x    . At this stage, the actual output will be 

tracking the reference even in the presence of uncertainties in 
the applied input channel. 

Theorem 1. The step by step convergence, reported in 
Remark 2, can be obtained if the following control law 
enforces sliding mode against the integral manifold defined 
in (30). 

1 2 1 2 3 4 3 2
2 1 3

3 4 3 3 4 5 3 3

1
( ( , , , )

( , )

( ) ( ( )) )

U H x x x x x
G x x

sign



         

   

    


        (31) 

Proof. To prove the theorem (i.e., the enforcement of sliding 
mode), we proceed by considering the time derivative of  , 
reported in (30), along the dynamics of (6), one has 
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2 1 2 3 4 2 1 3 1 3

3 2 3 4 3 3 3 3

( , , , ) ( , ) ( , , )

( )

H x x x x G x x U x x t

x z



      

   

     


 

      (32) 

Since the control law is considered to be an algebraic sum of 
two components, i.e., 0 1U U U  . The choice of z  as 

follows 

2 1 3 0( , )z G x x U  :   where   
0 4 4 4( )U x x           (33) 

which leads to 

2 1 2 3 4 2 1 3 1 1 3

3 2 3 4 3 3 3 3

( , , , ) ( , ) ( , , )

( )

H x x x x G x x U x x t

x



      

   

    




       (34) 

Substituting (31) in (34), one has 

4 5 1 3( ( )) ( , , )sign x x t                  (35) 

Now considering the differentiation of an augmented 
Lyapunov function 2 2

4 3 3 3/ 2 / 2        along (35), 

one gets 

2 2 2
4 1 1 2 2 3 3 3 4 4

5 1 1

2 2 2 2
4 1 1 2 2 3 3 3 4 4

4 5

2 2 2 2
4 1 1 2 2 3 3 3 4 4

( (

( )) ( , , ))

( )

sign x x t

          

 

         

  

           

      

 

      

  

       










             (36) 

where   is a positive constant. This inequality remains true 

subject to 4 5 1 3( , , )x x t     . The controller (31) 

enforces sliding mode from the very start of the process 
which means 0   is met at 0t  . The constraint 0   

implies that 4 2 1 3 0( , ) 0G x x U   . This shows that the 

uncertain and nonlinear terms are compensated by the control 

component 1U  and the nominal system in term of 4 , in 

sliding mode, is governed by 0U . The solution of this 

differential equation is exponentially converging to origin 

i.e., 4 0   exponentially under the action of 0U . This 

shows that the fourth term in the inequality (36) will vanish 
and it confirms the negative definiteness of the right side of 
(36). This proves the sliding mode enforcement and the back-
step regulation of the mismatches at each step. 

Remark 3. Note that, in this design, the authors have designed 
the virtual control laws (both in case-I and case-II) by 
integral backstepping which will results in improved transient 
dynamics as well as reduced steady state errors. In the final 
stage of the controller, the controller is designed via the 
integral sliding mode strategy which confirms sliding mode 
from the very start. In other words, this result in enhanced 
robustness which, consequently, proves the plant insensitive 
to disturbances which often cause instability in the reaching 

phase of conventional SMC. Thus, the proposed methodology 
is very much appealing for the control design of 
underactuated nonlinear electromechanical systems. 

Now, in the next section, a counter example of a cart-
pendulum system is considered to clarify the design strategy 
and to demonstrate its effectiveness in term of simulations 
results. 

4. EXAMPLE OF CART-PENDULUM SYSTEM 

4.1 System description 

The cart-pendulum system is presented as a benchmark 
example of UNEMSs which have one input and two outputs. 
The pole of the inverted pendulum freely swings about the 
pivot point, while, on the other hand, the cart can move on 
the horizontal plane. Consider the following uncertain 
dynamics of the aforesaid system. 

   

 

1 4 1
cos sin , ,

3

1 cos
( ) sin , ,

xx mg U x t

M m g U x t
l l



  


  

    
 

    
 




                (37) 

Where   2

3

4
cos

3
M m m x    , 2 sinU u ml     u  is 

the applied control input, l  is the rod length, g  is the 

gravitational acceleration, m  is the mass of rod and M  is 
the mass of cart. As mentioned in Section 2, the coordinate 
transformation will convert the dynamics of the cart-
pendulum system (37) into the following equivalent regular 
form 

  

1 2

2
2 4

3 32
3

3 4

3
4 3 1 3

4 4 4
cos M tan

3 3 3 cos

cos1
sin ( , , )

x x

lxg
x xx

x

x x

x
x M m g x U x x t

l l



             


    
 









         (38) 

where 1x x , 2x x  , 3x   and 4x   . Note that this 

model follows all the characteristics of the Case-II. Now, the 
cart-pendulum system (38) is ready for the control scheme 
presented in section 3. 

4.2 Controller design 

Now the control design, via integral backstepping ISMC, is 
carried out by defining a miss-matched between the reference 

position rx  and the real position 1x  of the cart, as follows 

1 1 rx x                            (39) 

For positioning 1x  at the desired reference rx , treating 2x  

as a virtual control input, the new reference 2x  is defined as 



48                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

2 1 1 1 1rx x                   (40) 

In the second step, again treating x3 as a virtual control input 

to steer 2 2 2x x   to zero. Consequently, another new 

reference 3x  is designed as follows 

2
2 41

33
3

1 1 2 1 1 2 2 2 2

1
(

4 4 4
cos Mtan

3 3 3 cos

( ) )

rx
lxg

xx
x

        

    


    

 
     

        
  


         (41) 

Similarly, a new virtual control input 4x is defined to enforce  

3 3 3x x    at zero with the following new reference 

4 3 2 3 3 3 3( )x x                    (42) 

For steering of 4 4 4x x    at zero in the presence of 

matched uncertainties 1 3( , , )x x t , a robust control law will 

be designed which will enforce sliding mode against the 
following the integral sliding manifold 

4 4x x z     

The relevant integral dynamic appears as follows 

3
0

cos x
z U

l



             (43) 

The control law ( 2
0 4 3sineq disu U U U mlx x    ) for the 

overall dynamics comes out to be 
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3 2 3 4 3 3 3 3

3
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4 4 4 4 3

{ ( ( )
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( ( ))) sin }
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1
u l x

x

sign M m g x

x x mlx x

      

   







      

   

  



        (44) 

This control input u will provide us the benefits and results 
reported in Case-II. The block diagram of the proposed 
control scheme is depicted in the adjacent figure 1. 

 

Fig. 1. Diagram of the cart-pendulum system. 

Now, the MATLAB/Simulink simulation results will be 
presented in forthcoming subsection to demonstrate the 
effectiveness of the proposed control scheme. 

4.3 Results discussion 

In this section, the simulation results are performed via the 
proposed control scheme in comparison with (Riachy et al., 
2008) in MATLAB/Simulink environment. The experiment is 
evaluated to control the dynamics of the cart-pendulum 
system via a nonlinear integral backstepping ISM control 
technique in the presence of perturbation 

1 3 1 3( , , ) x 3sinx x t x  
 which is matched in nature. The 

values of the typical parameters of the cart-pendulum system 

are chosen to be: 0.23m kg , 9.81 /g m s , 2.5M kg  
and 0.36l m . The initial conditions and reference values of 

the system's states  1 2 3 4x x x x
  are given by 

 0.2 0 45 0  and  0 0 0 0 , respectively. The 
values of virtual controller and actual controller gains are set 

to 1 5.65, 
 2 2.65, 

 3 4.35, 
 4 2.09 

 and 

5 0.003 
 on trial and error procedure.  

Figure 2 depicts the asymptotic stabilization of cart position. 
It is obvious that the proposed control law regulation is quite 
fast with far appealing precision as compared to the results of 
(Riachy et al., 2008). Similarly, the tracking of the rod angle 
at the upright position is shown in figure 3.  

 

Fig. 2. The plot of linear cart position compared with the 
standard literature result of (Riachy et al., 2008). 

The rod angle stabilization at the equilibrium via the 
proposed control scheme is far interesting and practical as 
compared to its counterpart (Riachy et al., 2008). Both the 
figures 2 and 3 show that the transient response of the 
proposed control scheme is quite fast with minimum 
overshoots and settling time than that in (Riachy et al., 2008). 
In addition, the proposed method offers zero steady state 
error subject to step disturbances because of the proportional 
integral type surface and also because of the integral 
backstepping scheme. Furthermore, the convergences of the 
system trajectories are unaffected by the matched uncertainty 
and the system quickly approaches the equilibrium. This 
confirms the robustness of the new strategy.  

The control efforts of both strategies are displayed in figure 
4. It is clear that the control effort of the newly proposed 
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technique experiences no chattering phenomenon and 
behaves in a very feasible manner. In other words, the results 
of (Riachy et al., 2008) suffers from substantial chattering 
which causes damage to the systems in practical 
implementations. Moreover, IBISMC significantly attenuated 
the high frequency oscillations while the control scheme in 
(Riachy et al., 2008) could not handled this problem 
efficiently.  Hence, it is evident from the figures 2-4 of the 
cart-pendulum system that the proposed stabilizing law offers 
a very appealing dynamic response for a class of 
underactuated nonlinear electromechanical systems (that can 
be converted to regular form).  A detailed quantitative 
comparison between the proposed strategy and that of 
(Riachy et al., 2008) is made in table 1. 

 

Fig. 3. The plot of angular pendulum position compared with 
standard literature result of (Riachy et al., 2008). 

 

Fig. 4. The plot of control inputs compared with the standard 
literature result of (Riachy et al., 2008). 

Table 1. stabilization results comparison 

Parameter Cart-Position Pendulum-Position 

SOSMC IBISMC SOSMC IBISMC 
Rise time (s) 0.1663 2.7753 0.1283 0.1813 
Settling time (s) 8.752 3.1214 2.5847 2.0427 
Peak time (s) 0.5192 0.5630 0.5291 0 
Peak overshoot 0.6159 0.5477 45.8366 45.8366 
Peak undershoot -0.952 -0.56e5 -49.96 -17.09 

5. CONCLUSION 

A highly states coupled class of underactuated nonlinear 
system was considered in this paper. Prior to control design, a 
proper regular form conversion was presented and then a step 
by step integral backstepping control design was carried out 
in two interesting cases while taking care of the zero 
dynamics. The stability at each step was confirmed via 
Lyapunov stability approach. In the final step, an integral 
surfaced based robust integral sliding mode control law was 
designed. Finally, a cart-pendulum system was simulated in 
an uncertain scenario and the provided results were compared 
with the existing literature results of (Riachy et al., 2008). 
The results confirmed that our designed strategy is an 
appealing candidate for underactuated nonlinear 
electromechanical systems. 
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