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Abstract: The paper deals with L2-norm order reduction, i.e. with approximation
of a given LTI continuous time system S = (A,B, C) by a lower order system
Ŝ = (Â, B̂, Ĉ) such that the L2-norm of the error system is small. The development
is made for input balancing but a dual solution for output balancing can be easily
obtained. A lot of numerical experiments performed validate the proposed numerical
procedures.
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1. INTRODUCTION

This paper is a continuation of our previous
research works concerning the model order re-
duction problem, see for example [6].

Consider a (continuous time) linear system

(S)
{

ẋ = Ax + Bu
y = Cx,

of order n with m inputs and l outputs which
is stable, controllable and observable.

To begin with, let S = (A, b, cT ) be a SISO
system, i.e. with m = l = 1. The controlla-
bility gramian P satisfies

AP + PAT + bbT = 0 (1)

and is given by

P =
∫ ∞

0
etAbbT etAT

dt. (2)

Now, if we denote

etAb =


g1(t)
g2(t)

...
gn(t)

 , cT =
[

c1 c2 · · · cn

]
,

then we have

h(t) def= cT etAb =
n∑

i=1

cigi(t), (3)

i.e. ci are the coefficients in the expansion
of h(t) along the set of the ”basis” functions
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gi(t), i = 1 : n generated by (A, b). Moreover,
this set is orthonormal in L2(0,∞) with re-
spect to the following (standard) scalar
product

(gi, gk) =
∫ ∞

0
gi(t)gk(t)dt

if and only if S is ”input balanced”, i.e.
P = In, see (2). Now, let

ĥ(t) =
n̂∑

i=1

ĉigi(t), (4)

be an approximant of order n̂ < n for h(t). If
gi(t) in (3) and (4) are orthonormal, then the
optimal coefficients in the least squares (LS)
sense

min
ĉ
‖h− ĥ‖2 (5)

are given by ĉi = ci, i = 1 : n̂, see [4]. But,
to get in (4) the same gi(t) as in (3) we need
the whole pair (A, b), therefore from the sys-
temic point of view (4) gives no (real) order
reduction.

On the other hand, if we use in (4) a different
(orthonormal) basis ĝi(t), i = 1 : n̂, then the
equality ĉi = ci, i = 1 : n̂ does not generally
hold. To sum up, we need a more adequate
”systemic” approach in order to obtain a sim-
ple and effective order reduction procedure.

Remark 1. The classical least square (LS)
approximation of a given function h(t) by (ge-
neralized) polynomials (4) is well known. In
our case we want to choose a good (adapted)
orthonormal basis ĝi(t) generated by a stable
and controllable pair (Â, b̂) of order n̂ < n
as well as the coefficients ĉi, i = 1 : n̂ such
that the LS error (5) (reformulated in sys-
temic terms) is as small as possible.

2. INPUT BALANCING

In the multi-input, multi-output (MIMO) case
let us solve the Lyapunov equation

AP + PAT + BBT = 0 (6)

and compute a Cholesky factorization

P = RRT (7)

for the controllability gramian P , where R is
a (upper or lower) triangular matrix. (Both
jobs are realized at once by using a Hammar-
ling-like algorithm, but this point is no so im-
portant at the moment). Now (6) can be writ-
ten as

ARRT + RRT AT + BBT = 0. (8)

Therefore if we perform the similarity trans-
formation{

A← Ã = R−1AR, B ← B̃ = R−1B,

C ← C̃ = CR,
(9)

then the linear system S = (A,B, C) is input
balanced [3], i.e. has P = In and the new (up-
dated) system matrices given by (9) satisfy

A + AT + BBT = 0. (10)

In the single-input case (m = 1) this means
the corresponding functions gi(t), i = 1 : n,
are orthonormal. In the general case the same
is true for the rows of the matrix etAB.

Remark 2. The linear transformation R
which makes P = In is by no means unique,
e.g. we may use the (ordered) eigenvalue de-
composition

P = UΛUT , (11)

where U is orthogonal and

Λ = diag(λ1, λ2, . . . , λn)

with
λ1 ≥ λ2 ≥ . . . ≥ λn > 0,

by letting R = UΛ
1
2 or the symmetric square

root R = P
1
2 = UΛ

1
2 UT . In fact, it is easy

to see that R is unique up to an orthogonal
transformation R← RV , i.e. input balancing
is conserved by orthogonal similarity transfor-
mation

(A,B, C)← (Ã, B̃, C̃) = (V T AV, V T B,CV ).

Especially, we may use the ordered decompo-
sition (11) with the aim to concentrate the
largest L2-energy in the first rows of etAB.

Remark 3. In the single-input (m = 1) case
there exists an almost unique (”canonical”)
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form of the input-balanced pair (A, b), namely
the Schwartz form, given by

A0 =


−a1 −h2 · · · 0 0
h2 0 · · · 0 0
...

. . . . . . . . .
...

0 0
. . . 0 −hn

0 0 · · · hn 0

 ,

bT
0 =

[
h1 0 · · · 0 0

]
, (12)

where h1 = ±
√

2a1 with a1 > 0 the second
coefficient of the characteristic polynomial of
A, i.e.

det(sIn −A) = sn + a1s
n−1 + . . . + an,

and hi, i = 2 : n are unique (up to signs)
determined by (A, b). Taking in account the
previous Remark, the Schwartz form can be
easily computed as follows:

1. Perform the input balancing of the system
by solving the Lyapunov matrix equation
(8) and performing the transformations (9).

2. Reduce the balanced pair (A, b) to upper
Hessenberg form by orthogonal transforma-
tions (A, b)← (A0, b0)=(UT

0 AU0, U
T
0 b) (see

[5] for the algorithm).

The computed pair (A, b) is in Schwartz form
because it must satisfy (10).

Example 1. Let be a single-input pair (A, b)
in standard controllability form, with A hav-
ing the eigenvalue spectrum

λ(A) = {−1,−2,−3,−4,−5},

i.e.

A =


−15 −85 −225 −274 −120

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

bT =
[

1 0 0 0 0
]
.

The Schwartz form obtained by using the
above algorithm is

A0 =


−15.0 −8.36 0 0 0

8.36 0 3.34 0 0
0 −3.46 0 −1.75 0
0 0 1.75 0 0.84
0 0 0 −0.84 0

 ,

bT
0 =

[
−5.47 0 0 0 0

]T
.

In the multi-input case, by using a similar al-
gorithm (statement 2 is the reduction of the
controllable pair (A,B) to the upper
block-Hessenberg form - see [5] for the algo-
rithm), one obtains a similar block Schwartz
form

A0 =


A1 −HT

2 · · · 0 0
H2 A2 · · · 0 0
...

. . . . . . . . .
...

0 0
. . . Aq−1 −HT

q

0 0 · · · Hq Aq

 ,

BT
0 =

[
HT

1 0 · · · 0 0
]
, (13)

where H1 is an epic m1 × m block (m1 =
rankB), A1 is a m1×m1 block satisfying A1+
AT

1 + H1H
T
1 = 0, Ai, i = 2 : q are antisym-

metric diagonal blocks and Hi, i = 2 : q are
blocks of corresponding dimensions.

Example 2. Let be a two-input, stable, con-
trollable pair (A,B) with the same A as in
example 1 and

B =
[

1 0 0 0 0
0 1 0 0 0

]T

.

The block Schwartz form obtained by using
the above algorithm is

A0=


−14.78 −7.97 −1.77 0 0

7.97 −0.21 −3.34 0 0
1.77 3.34 0 −1.79 0

0 0 1.79 0 −0.85
0 0 0 −0.85 0

,

B0 =
[

1.19 −0.63 0 0 0
5.30 0.14 0 0 0

]T

.

In the multi-input case the uniqueness pro-
perty mentioned in the single input case does
not hold. For example, by computing first the
block-Hessenberg controllable form the pair
(A,B) and then performing the input balanc-
ing one obtains another block Schwartz form

A0=


−11.58 −14.01 0 0 0

1.93 −3.41 −3.78 0 0
0 3.78 0 −1.79 0
0 0 1.79 0 −0.85
0 0 0 0.85 0


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B0 =
[

1.35 0 0 0 0
4.61 2.61 0 0 0

]T

.

3. THE L2 PROBLEM

Having the given LTI system S = (A,B, C) in
the input-balanced form (9) (eventually with
the pair (A,B) in Schwartz form), let us select
a reduced order n̂ < n and write

A =
[

A1 A12

A21 A2

]
, B =

[
B1

B2

]
C =

[
C1 C2

]
,

(14)

where A1 ∈ Rn̂×n̂, B1 ∈ Rn̂×m and
C1 ∈ Rl×n̂. Also define

(Â, B̂) = (A1, B1) (15)

and consider the reduced order system

(Ŝ)
{ ˙̂x = Âx̂ + B̂u

y = Ĉx̂,

where Ĉ is a free l × n̂ real matrix.

Remark 4. The system Ŝ is stable, control-
lable and input-balanced because from (10)
and (13) by taking leading blocks we get

Â + ÂT + B̂B̂T = 0. (16)

In fact we can take Ĉ = C1 (i.e. construct Ŝ
as a simple input-balanced truncation of S)
but this choice is clearly not optimal with re-
spect to the LS criterion (5).

As a matter of facts, we shall state the sub-
optimal L2-norm order reduction problem as
follows.

Let be given S = (A,B, C) and let us con-
sider Ŝ = (Â, B̂, Ĉ), where (Â, B̂) is defined
by (15). Choose Ĉ such that

min
Ĉ
‖S − Ŝ‖, (17)

whith ‖S‖ denoting the systemic L2-norm, i.e.
if S = (A,B, C) is a stable system, then

‖S‖2 = tr CPCT ,

where P satisfies AP + PAT + BBT = 0 .

4. THE OPTIMAL L2 SOLUTION

In order to solve (17), let us consider the error
system Σ = S − Ŝ, defined by

(Σ)



[
ẋ
˙̂x

]
=

[
A 0
0 Â

][
x
x̂

]
+

[
B

B̂

]
u

e =
[

C −Ĉ
] [

x
x̂

]
,

(18)

where (A,B) and (Â, B̂) are as in (9) and
(15). The corresponding input gramian Π,
partitioned as

Π =
[

P Q

QT P̂

]
> 0, (19)

satisfies[
A 0
0 Â

] [
P Q

QT P̂

]
+

+
[

P Q

QT P̂

] [
AT 0
0 ÂT

]
+

+
[

B

B̂

] [
BT B̂T

]
= 0,

i.e.
AP + PAT + BBT = 0,

ÂP̂ + P̂ ÂT + B̂B̂T = 0

where, in according to (10) and (16), we have
P = In and P̂ = In̂. Additionally

AQ + QÂT + BB̂T = 0. (20)

Moreover

‖Σ‖2 = tr
[

C −Ĉ
] [

P Q

QT P̂

] [
CT

−ĈT

]
,

hence

‖Σ‖2 =tr (CCT − CQĈT − ĈQT CT + ĈĈT )

is minimized for

Ĉ∗ = CQ (21)

and the optimal error is determined by the
Schur complement of P̂ in (19), i.e.

‖Σ∗‖2 = tr C(In −QQT )CT . (22)
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5. THE COMPUTATIONAL
PROCEDURE

By following the above developments, we can
present two algorithms to compute a sub-opti-
mal L2-norm reduced order approximation of
a given stable and controllable linear system
S = (A,B, C).

The first one is as follows.

1. Perform the input balancing by solving the
Lyapunov matrix equation (8) and applying
the transformations (9).

2. Choose the reduced order n̂ and determine
the pair (Â, B̂).

3. Solve the Sylvester matrix equation (20) for
the matrix Q.

4. Compute the sub-optimal Ĉ∗ from (21).

On the above algorithm we have to make two
remarks. First, our numerical experiments
show very clearly that in order to compute the
input balanced form (9) the Hammarling-like
algorithms for solving positive definite Lya-
punov matrix equations [2] are much better
than to compute the Cholesky factorization of
the computed solution by standard methods.
Second, it is difficult to quantify the benefits
of the use of Schwartz form instead of unstruc-
tured input balanced pairs (A,B).

The main contribution of the paper consists
in the following second computational proce-
dure, which is numerically sound and highly
efficient.

1. As a preliminary step, we reduce A to the
(real) Schur form S and apply the corre-
sponding similarity transformations to ma-
trices B and C{

A← S = UT AU, B ← B̃ = UT B,

C ← C̃ = CU,
(23)

where U is orthogonal and S is (quasi)upper
triangular.

2. Next, by using a Hammarling-like procedure
(see [2]), we compute the upper triangular

Cholesky factor R, see (7), (8), and perform
the input balancing transformation (9).

Clearly, because R is upper triangular, the
Schur form of A is preserved and, addition-
ally, the pair (A,B) is input balanced.

3. For a given reduced order n̂ < n, let con-
sider the partition

A =
[

A1 A12

0 A2

]
, B =

[
B1

B2

]
C =

[
C1 C2

]
,

,

where A2 ∈ Rn̂×n̂, B2 ∈ Rn̂×m and C2 ∈
Rl×n̂ and select

(Â, B̂) = (A2, B2). (24)

Clearly, by the same argument as before,
(Â, B̂) is stable, controllable and input bal-
anced (see Remark 4).

The reason for which (24) is now the right
choice is obvious, namely the corresponding
Sylvester equation (20) has the simple appa-
rent solution 1

Q =
[

0
In̂

]
. (25)

Therefore, from (21) we immediately get

C = C2 (26)

and moreover, the L2-norm (22) of the cor-
responding (sub-optimal) error system is
symply

‖Σ∗‖ = ‖C1‖F . (27)

The relation (24) toghether with (27) gives
directly the reduced order approximation
Ŝ = (Â, B̂, Ĉ) as a simple tail-truncation
of the system S = (A,B, C), brought to
the input-balanced Schur form. As a conse-
quence of this remarkable fact we may com-
plete with a final optimization step 4.

1Indeed, by multiplying (10) on right with Q given
bellow and taking into account the (block)-upper tri-
angular structure of A we get (20).
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4. Iteratively reorder the Schur form of A by
using orthogonal similarity transformations
(which preserve both Schur form and balan-
cing property) such the corresponding C1

has the smallest Frobenius norm.

Three main points concerning the above com-
putational procedure must be stressed.

a) The proposed procedure is entirely based
and intensively exploits the computational fa-
cilities offered by the (ordered) Schur-form in
conjunction with Hammarling algorithm for
solving the Lyapunov equation for the con-
trollability gramian.

b) The procedure delivers a very simple ex-
pression (26) for the approximation error in-
volved in the order reduction process, which
facilitates the development of the final opti-
mization step.

c) The procedure works with A in Schur form,
therefore keeps track at every step on the sys-
tem poles which are retained or removed in
the reduction order process.

This last point covers an old and yet unan-
swered question in system theory, namely
which are the essential poles of a given (large
order) linear system and which are the best
quantitative indices ascertaining their
dynamic significance.

6. NUMERICAL EXPERIMENTS

We have tested the presented procedures by
performing a lot of numerical experiments
which confirm the theoretical expectations.
Like in other methods, a problem is the choice
of the reduced order n̂ of the approximation
model. Obviously, the greater n̂ lead to bet-
ter approximations. A good choice can be ob-
tained by increasing n̂ and stop when the de-
creasing of the error system L2 norm is too
small. The experimental study of the proce-
dure based on Schur form did not give a def-
initely conclusion on the significance of the
original system poles. The common opinion
that the big time constants are more impor-
tant than the small ones is not generally true
in the context of our problem.

7. CONCLUDING REMARKS

The approximation of a given LTI continuous
time system S = (A,B, C) by a lower order
system Ŝ = (Â, B̂, Ĉ) such that the L2-norm
of the error system is as small as possible is
an interesting alternative to other model order
reduction methods like truncation of entirely
balanced space state models, methods based
on cross-gramians etc. Additionally, our main
procedure, based on the truncation of the or-
dered Schur form, delivers a reduced order
approximation which preserves a part of the
original system poles. This way opens a pos-
sibility to find an answer to the question of
which poles of a given system are significant
and which are not and why.

All the presented solutions are based on the
input balancing but a similar dual develop-
ment based on the output balancing can be
easily obtained. The performed numerical ex-
periments validate the presented numerical
procedures.
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