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Abstract: Model predictive controller predicts the system performance and accordingly
improves the controller performance. So it works well for time delayed systems. But the problem
is that, it is not robust under certain cases. Sliding mode controller is robust but with a very
slow response rate. Its limitation is its delay handling capacity. In this paper, a predictive
controller with good delay handling capability is combined with robust sliding mode controller.
It is found to have a quick rise time and settling time with minimum overshoot. It is more robust
and produced no offset, or oscillation. In this work, predictive sliding mode control is designed
for cylindrical, conical and cylindroconical bio-fermenter systems and their performances are
analysed. The controller is implemented in real time for a cylindrical system and a conical
system and it is found that the controller could handle delays and is also robust to parameter
variations.
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1. INTRODUCTION

Fermentation technology involves studying, controlling
and optimizing fermentation process. Fermenter are vessels
designed and built to grow high concentration of cells.
They are different from chemical reactors in the way
that, they should handle living organisms, and so they
should be designed in such a way that, they overcome the
difficulties of process upsets and contaminations as these
living organisms are more sensitive and less stable says
Jagani et al. (2010).

Continuous fermenter, is a closed loop system, where ex-
ponential growth of microbes is maintained for long period
by the addition of fresh liquid medium continuously and
the product is extracted from the fermenter continuously.
In this type of fermenter, the environmental conditions are
kept constant, and the growth rate of the microbes is also
maintained. To perform all these, the reactor requires more
complex controls to be carried out, for which all possible
measurements are to be made.

The physical parameters that are measured and controlled
in a bioreactor are temperature, pressure, reactor weight,
liquid level, foam level, agitator speed, power consump-
tion, gas flow rate, medium flow rate, feed flow rate,
viscosity of the culture, and gas hold up. The chemical
parameters measured and controlled are pH, dissolved oxy-
gen, dissolved carbon-dioxide, redox potential, conductiv-
ity and broth composition. The biological parameters such
as biomass concentration, enzyme concentration, biomass
composition, viability and morphology are also measured
and controlled.

The major parameters that affect the growth of the organ-
ism are (i) temperature, which is maintained constant by
means of a coolant jacket, (ii) pH of the liquid which varies
based on the acid or base which is added to the reactor to
support fermentation, (iii) concentration of nutrients, and
(iv) dissolved oxygen which are continuously added to the
fermenter.

The mixture of cell culture and raw materials which is the
broth is allowed to settle. As broth settles, fermentation
begins and cells start to grow. Fermentation is often
accompanied by the formation of foam due to the presence
of biomaterials like protein in the solution. Controlling the
formation of foam in a bioreactor is important because
it leads to the control of fermentation itself and also
the equipment involved could be protected from damage
leading to decrease in production cost. The formation of
foam could be decreased by adding anti-foaming agents.
But the main disadvantage is the proper selection of anti-
foaming agent which is based on previous experience as
said by Etoc et al. (2006).

When this foam formation is left unnoticed, it may pave
way for the foam to enter into the gas suction pump, and
damage the pump. This results to frequent replacement
of pumps and shut down of the process for cleaning
and replacement, which are undesirable in the case of
continuous fermenters. So an alternate way of controlling
foam is by varying the level of liquid broth in the fermenter
well below the location were the pipe for suction pump
is fixed. This ultimately prevents the foam reaching the
pump and damaging it.
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Fermentation is generally carried out either in cylindri-
cal, conical or cylindroconical containers. The cylindrical
fermenters are most commonly used for small scale ap-
plications where batch fermentation is carried out. The
problem here is the cleaning of the container after each
batch of fermentation. The sediments at the bottom are
to be properly and fully removed and the container has to
be sterilized, failure of which may cause contamination of
the next batch of substance.

Conical fermenters overcome the difficulty in complete
drainage of extract from bottom of the fermenter. Here
the methods of liquid transfer are gravity feeding or
vessel pressurization which avoid the usage of pump for
media transfer. The layer of sediment at the bottom of
the cone continuously disengages gas, which throws the
fermentation substances into the fermentation medium,
and so the highest proportion of fermentation substance
in suspension occurs. But the volume of fermentation
substance is less when compared to the space occupied
by the fermenter.

So a cylindroconical fermenter is used in the industries.
This shape was patented by Leopold Nathan in 1927, and
he claims that, this fermenter supports faster fermentation
rate. It has a cylindrical region at the top, which facilitate
the increase in capacity and a conical bottom, which
supports easy drain of the product. As these fermenters
are covered, contamination is minimized reducing the cost
of sterilization.

Model Predictive Control (MPC) is an algorithm by which
a sequence of control signals are calculated in such a way to
minimize a cost function defined over a prediction horizon.
To implement MPC, a model of the plant is used to predict
the future plant outputs based on the past and present
values of input and output of the plant. It handles delays
effectively.

Layerle et al. (2008) has reported MPC for non-minimum
phase systems. Pawlowski et al. (2012) says it is similar
to a feedback plus feed forward control and perfect control
is possible if weight is set to zero. It lists the nonlinear
MPC applications and discusses about modelling, control,
optimization, and implementation issues like infinite pre-
diction horizon which is much needed in control theory
for nominal stability. Lee et al. (2002) discusses receding
horizon concept of MPC to nonlinear systems. Bleris et al.
(2005), Bolognani et al. (2009), Srinivasan et al. (2013)
compares IMC and DMC for pH process and reports DMC
performs better than IMC.

Model predictive control is not robust and so when the
requirement is that the controller must be robust, sliding
mode control is used. Utkin et al. (2002) explains the
fundamentals of SMC with examples of motors and other
electromechanical systems. Szell et al. (2014) deals with
the mathematics behind sliding mode control. Ying-Jeh
et al. (2008) have done a survey on the fundamental
theory, and practical applications of SMC. The paper con-
solidates the characteristics of SMC as invariant, robust,
providing order reduction, controlling chattering, and pro-
viding satisfactory performance. Gouaisbaut et al. (2002);
Lei et al. (2013) have reported on SMC for time delay
system.

Sliding mode control (SMC) involves defining a structure,
selection of parameters for the structure and defining the
travelling path. The switching surface represents the plant
behaviour during the transient period. The control law is
designed such that, any state outside the sliding surface is
driven to reach the surface in a finite time and stay there
forever. The design of sliding mode has two controls to
be designed. One is the equivalent control and the other
is switching control. The performance of the controller
can be varied by varying the switching control. Abbas
et al. (2012) deals with sliding mode control for liquid
level systems using reaching law in switch control. It is
found to be robust, but it suffers from chattering.

Houda et al. (2012) reports on a hybrid control structure
called Predictive Sliding Mode Control (PSMC), which
combines the advantages of MPC and SMC, which would
overcome the drawbacks of both the controllers. Here,
prediction of the sliding surface is introduced into the
objective function. Even in the presence of disturbance and
parameter variations, PSMC keeps the controlled variable
at its set point without oscillation. The authors claim the
controller robust. Garcia et al. (2009) has described the
application of PSMC for solar air conditioning system.
Marco et al. (2018) has reported work on PSMC for a wind
turbine. Garcia et al. (2005) have reported this algorithm
for time delayed system. Layerle et al. (2008) has reported
PSMC results for MIMO non minimum phase system.
Mansour et al. (2015) tested PSMC for multivariable
systems and claims the controller to be robust in hard
parameter variation cases and eliminating chattering. The
controller’s stability was discussed by Houda et al. (2015).
Camacho et al. (2002) carried out simulation for time
delayed system in which, smith predictor architecture
is combined with SMC. Garcia et al. (2013) reports
PSMC for non-minimum phase systems and claims that
the controller avoids instability of MPC, and stays robust
to model uncertainties and disturbance. In Rubagotti et al.
(2011), integral sliding mode is designed, MPC is used for
adding constraints, and the overall controller is an additive
sum. Lingfei et al. (2006), also reports on PSMC in which,
by introducing the sliding mode model, the trajectory
of the sliding mode follows the expected track to the
proposed reaching law exactly.

Here, the Predictive Sliding Mode Control (PSMC) is
designed for cylindrical, conical and cylindroconical bio-
fermenter systems and their performances are analysed.

2. CONTROLLER DESIGN

There is always a mismatch between the mathematical
model and the actual plant. There are several reasons
for the mismatches like not considering the transportation
delay in the system, not considering the actuator valve
dynamics etc. These mismatches will always affect the
controller design. Though MPC has a very good capability
of handling delays and improving the system performance,
it is not able to handle mismatches in model dynam-
ics. But controllers should always be designed such that
these mismatches does not affect the system performance.
Controllers designed with this quality are called robust
controllers and one such robust controller is sliding mode
controller.
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2.1 Sliding Mode Controller

Sliding Mode Control is a non-linear control technique
which alters the behaviour of the system by applying a
discontinuous signal. The application of this control signal
forces the system to slide along the cross section of the
system’s usual behaviour. It is designed to drive the system
states to a particular surface in state space called sliding
surface. Its salient features are accuracy, robustness, easy
tuning and implementation. Also in SMC, no precise
information about the original system dynamics is required
and the controlled system is a completely uncertain black
box object. The dynamic behaviour of the system may
be tailored by the choice of the sliding surface and the
closed loop behaviour is totally insensitive to uncertainties
like model parameter uncertainty, disturbance and non-
linearity.

The controller design involves 2 parts: the equivalent
control design to keep the system state on the sliding
surface and the switching control design to force the
system to slide on the sliding surface.

At first, the sliding surface, which is a scalar function of
the system states has to be defined and it can take the
following forms.

s = ė+ c0e (1)
or

s = ë+ c1ė+ c0e (2)
where, s is the sliding surface, e is the error, c0, c1 are
constants, ė is the first derivative of error, ë is the second
derivative of error.

The values of c are to be selected such that it supports
the aim of making s zero at the earliest. The equation
s = 0, defines a surface in error space called the sliding
surface. The choice of the sliding surface by the above said
functions have a drawback that, the number of constants
to be tuned are more and the complexity increases as the
order of the system increases. So the choice of the sliding
surface can be made such that,

s =

(
d

dt
+ c

)ki

e (3)

where, ki defines the order of the equation and s depends
on a single scalar parameter c. The choice of c must be
such that it is always positive, because it defines the poles
of the resulting reduced dynamics of the system when it is
sliding.

The next step is the design of control law, which aims to
bring the sliding surface to zero in a finite time. Based
on the choice of the control law used for designing the
switching, the SMC is differentiated into various types.
Here, the sliding mode based on reaching law is used.

The reaching law increases the reaching speed when the
state is far away from the switching manifold and reduces
the rate at which the state is reached when it is near the
manifold. Using this technique, the system’s approaching
speed decreases which leads to weakening of the chattering
effect.

This law constrains the switching variable to reach the
switching manifold at a constant rate. The merit of this

law is its simplicity. The reaching law is defined as,

ṡ = −ε sgn(s), ε > 0 (4)

The system is considered to be of the form,

l̈(t) = f(l, t) + b1u(t) (5)

where, f(l,t) and b1 are known and b1 is a constant greater
than 0. Here, l is the level of liquid which varies with
respect to time and u is the controller output. The sliding
mode function is chosen as in equation (1). Using general
feedback mechanism,

ë = r̈ − l̈ (6)

Taking the first derivative of equation (1),

ṡ = ë+ c0ė (7)

ṡ = r̈ − l̈ + c0
(
ṙ − l̇

)
(8)

Substituting equation (5) in equation (8),

ṡ = r̈ − f(l, t)− b1u(t) + c0
(
ṙ − l̇

)
(9)

Equating equation (4) and equation (9),

r̈ − f(l, t)− b1u(t) + c0
(
ṙ − l̇

)
= −ε sgn(s) (10)

From this, the sliding mode controller using reaching law
is obtained as,

u(t) =
1

b1

(
r̈ − f(l, t) + c0

(
ṙ − l̇

)
+ ε sgn(s)

)
(11)

2.2 Predictive Sliding Mode Controller

In this control technique, the sliding surface is predicted
with the present values of input and future values of
control signals. Here, MPC is used to force the state into
the required region within a finite horizon while the state
is away from the region and SMC is used while the state
is within the region. Here, the prediction of the control
surface is included as one factor in control objective. Using
future control moves allows better prediction of future
control values in the sliding surface and so, it is very useful
in implementing control action for systems with dead time.

The main function of this controller is to make the con-
trolled variable track the set point, which is supported
by the objective of predicting the future sliding surface
and making the state reach to zero at the earliest. This
controller has two parts: a continuous part, the MPC,
which is responsible for making the controlled variable
track the set point, and a discontinuous part which is the
non-linear predictive element that includes the switching
element of the control law.

The system sampled at k intervals is considered as,

xm(k + 1) = Amxm(k) +Bmu(k) (12)

where, Am is the state matrix, Bm is the input matrix,
xm is the state vector and u(k) is the input vector to the
system, which is the controller output at the kth instant.

The sliding function is defined as,

s(k) = Csxm(k) (13)

where, Cs is the vector of sliding constant. The necessary
and sufficient condition assuring sliding motion and con-
vergence to the sliding surface is,

|s(k + 1)| − |s(k)| < 0 (14)
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According to sliding mode function represented by equa-
tion (13), the sliding value at the (ki + Np) instant can be
obtained as,

s(ki +Np) = Csxm(ki +Np) (15)

where, Np is the prediction horizon.

To confirm the convergence of the sliding function s(k)
to zero, reaching law is introduced. According to reaching
law,

s(k + 1) = −ε sgn(s(k)) (16)

where, ε is the switch gain constant.

To enable fast convergence, the equation is modified as,

s(k + 1) = s(k)− ε sgn(s(k)) (17)

where, sgn is the sigmoidal function defined as,

sgn(k) =

{
−1, if x < 0,

1, otherwise.
(18)

For prediction of the sliding mode, a reference sliding mode
trajectory is chosen based on equation (17) as,

sr(ki+Np) = sr(ki+Np−1)−ε(sgn(sr(ki+Np−1)) (19)

The objective is to design a sliding mode predictive con-
trol. As this is a prediction mechanism, it involves predic-
tion of future sliding mode trajectory based on the present
values of the system states. Using equation (15), the sliding
function at any future instant (ki + Np) can be obtained
in terms of present and past values of the system state and
future control input as,

s(ki +Np|ki) = CsA
p
mx(ki)+
p∑

j=1

CsA
j−1
m Bmu(ki +Np − j) (20)

Equation (20) can be represented in vector form as,

Sp(k + 1) = Fpsmcx(k) + φpsmcU(k) (21)

where,

Sp(k + 1) = [s(ki + 1|ki) . . . s(ki +Np|ki)]T (22)

U = [u(ki) u(ki + 1) . . . u(ki +Nc − 1)]
T

(23)

Fpsmc =


(CsAm)T )
(CsA

2
m)T )
.
.
.

(CsA
Np
m )T )

 (24)

and,

φpsmc =


CsBm . . 0

CsAmBm . . 0
. . . .
. . . .

CsA
Np−1
m Bm . . CsA

Np−Nc
m Bm

 (25)

The predicted sliding mode value can be represented in
terms of practical sliding mode value as,

ŝp(ki +Np) = s(ki +Np) + hpe(ki) (26)

where, e(ki) is the error and hp is correction coefficient.

Using equation (20),

ŝp(ki +Np|ki) = CsA
p
mx(ki) + hpe(ki)

+

p∑
j=1

CsA
j−1
m Bmu(ki +Np − j) (27)

In vector form, it can be represented as,

Ŝp(k + 1) = Sp(k + 1) +HpE(k)) (28)

where,

Ŝp(k + 1) = [ŝp(ki + 1) . . . ŝp(ki +Np)]
T

(29)

Hp = diag
[
h1 h2 . . . hNp

]
(30)

Optimization is done using the cost function,

J =

Np∑
j=1

[ŝp(k+j)−sr(k+j)]2 +

Nc∑
j=1

[g[u(k+j−1)]]2 (31)

where, Nc is the control horizon.

To find the optimal ∆u that will minimize J, partial
differentiation of J with respect to ∆u is done and equated
to zero.

∂J

∂U
= 0 (32)

On solving,

U(k) = −(φTpsmcφpsmc +G)−1φTpsmc[Fpsmcx(ki)

+HpE(k)− Sr(k + 1)] (33)

where,

Sr(k + 1) = [sr(ki + 1) . . . sr(ki +Np)]
T

(34)

Gpsmc = [g g . . .g] (35)

and g is the tuning parameter.

Receding horizon control can be implemented by using
the first value of the sequence of control signal calculated
which is given by,

U(k) = − [1 0 . . .0] (φTpsmcφpsmc +G)−1

φTpsmc[Fpsmcx(ki) +HpE(k)− Sr(k + 1)] (36)

3. RESULTS AND DISCUSSIONS

3.1 System Model

The transfer functions of the cylindrical and conical sys-
tems are obtained by experimentally modelling them using
the set ups shown in Fig. 1 and Fig. 2. The physical dimen-
sions of the systems are given in table 1.From the open loop
responses obtained, the systems transfer functions were
found and approximated to a first order system with dead
time.

Table 1. Dimensions of the physical setup

specification cylindrical conical cylindroconical

Tank height 43 cm 60 cm cylindrical 50 cm
conical 50 cm

Maximum diameter 25 cm 42 cm 40 cm
slide angle 70 degree 66 degree
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Fig. 1. Experimental setup of cylindrical system

Fig. 2. Experimental setup of conical system

Case 1: For cylindrical system
The transfer function G(s)is given by,

G(s) =
11.165

1185.185s+ 1
e−40s (37)

It is approximated using first order Pade approximation
as,

G(s) =
−223.3s+ 11.165

23703.7s2 + 1205.185s+ 1
(38)

It is represented in state space as,

ẋ =

[
0 1

−4.22 ∗ 10−5 −0.0508

]
x+

[
0

4.22 ∗ 10−5

]
u (39)

y = [11.165 −223.3]x (40)

Case 2: For conical system

G(s) =
0.3013

21.11s+ 1
e−17s (41)

It is approximated using first order Pade approximation
as,

G(s) =
−2.56105s+ 0.3013

179.435s2 + 29.61s+ 1
(42)

It is represented in state space as,

ẋ =

[
0 1

−0.00557 −0.165

]
x+

[
0

0.00557

]
u (43)

y = [0.3013 −2.56105]x (44)

Case 3: For cylindroconical system
The model of the cylindroconical system is obtained by
considering the system into two regions, based on the
dynamics of the system: the top region is the cylindrical
region and the bottom region is the conical region. The
dimensions were chosen from Kesavan (2014).

Gcy(s) =
1.27

1597.28s+ 1
e−42s (45)

Gc(s) =
0.68

90s+ 1
e−42s (46)

It is approximated using first order Pade approximation
as,

Gcy(s) =
−22.67s+ 1.27

33542s2 + 1617.28s+ 1
(47)

Gc(s) =
−14.28s+ 0.68

1890s2 + 111s+ 1
(48)

The cylindrical region is represented in state space as,

ẋ =

[
0 1

−2.98 ∗ 10−5 −0.0482

]
x+

[
0

2.98 ∗ 10−5

]
u (49)

y = [1.27 −22.67]x (50)

The conical region is represented in state space as,

ẋ =

[
0 1

−5.29 ∗ 10−4 −0.0587

]
x+

[
0

5.29 ∗ 10−4

]
u (51)

y = [0.68 −14.28]x (52)

3.2 Controller Response

The level of broth in the fermenter is to be maintained
constant by manipulating the raw material inflow to the
fermenter and varying the speed of the agitator which is
also a cause for producing foam. This prevents the foam
level from rising and damaging of pumps.

The predictive sliding mode control is designed for all the
three bio-fermenter systems using the parameters values
shown in table 2. Same set of controller parameters except
the Cs were chosen for sliding mode controller for the
purpose of comparison. The closed loop responses of the

Table 2. Controller Parameters

Parameters cylindrical conical cylindroconical

Cs [3 1] [3 1] [3 1]
Np 12 12 12
Nc 2 2 2

epsilon 10 10 10

systems when PSMC controller is used are obtained as
shown in Fig. 3, Fig. 4 and Fig. 5 respectively.

When the prediction horizon is decreased, the oscillations
increase. When the value of the tuning parameter g is
increased, offset decreases. As the size of control horizon
is increased, the computational complexity increases. The
parameter has very less impact on the offset of the system
response. Offset variations are less as ε value increases.
From all the three responses, it is evident that, there is a
quick rise in the system response with minimum overshoot
when PSMC is used than SMC thus preventing the foam
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Fig. 3. Response of cylindrical bio-fermenter
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Fig. 4. Response of conical bio-fermenter
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Fig. 5. Response of cylindroconical bio-fermenter

entering into the pump. The set point tracking capability
and disturbance rejection capability of the system is good,
which helps the system to accommodate to any variations
and react efficiently.

3.3 Stability Analysis

Stability of the closed loop system is analysed based on the
direct method of Lyapunov. It is based on the concept of
energy and the relation between stored energy and system
stability.
If the system of the form,

dx

dt
= f(x(t)) (53)

has a solution x(x (t0), t), then the energy function associ-
ated with it may be represented as VL(x) . If dVL(x)/dt is
negative for all f(x(t0), t), except the equilibrium point,
then it means that the energy of the system decreases
as time increases and finally, the system will reach its
equilibrium point. This holds because, the energy is a non-
negative function of system state which reaches a mini-
mum, only if the system motion stops. The effectiveness
of determination of stability by this method is based on
the choice of VL(x).

Considering that the system is linearized around its oper-
ating point, state equation of the system is given by,

ẋ = Ax (54)

The system is asymptotically stable in the large at the
origin, if and only if, given any symmetric, positive definite
matrix Q, there exists a symmetric positive definite matrix
P which is the unique solution of

ATP + PA = −Q (55)

Assuming Q to be an identity matrix, the P matrix is
calculated for the system. Using Sylvester’s theorem, the
positive definiteness of P matrix is checked. If the P matrix
is positive definite, then the origin of the system under
consideration is asymptotically stable in the large.

If the state matrix is

A =

[
A1 A2

A3 A4

]
(56)

P matrix is,

P =

[
P11 P12

P21 P22

]
(57)

and Q matrix is an identity matrix,

Q =

[
1 0
0 1

]
(58)

then, P matrix is calculated by solving the equation,

ATP + PA = −Q (59)

Case 1: For cylindrical system
The stability of the systems are checked using Lyapunov
stability criteria.
When SMC is implemented for a cylindrical system, the
closed loop system matrix and its P matrix are obtained
as,

A =

[
−0.0258 −0

1 0

]
(60)

P = 105
[
5.9977 0.0550
0.0550 0.0042

]
(61)

Here, the determinant of P and all its submatrices are
positive. Therefore, the system is stable.

When PSMC is implemented for a cylindrical system, the
closed loop system matrix and its P matrix are obtained
as,

A =

−0.0945 −0.0116 −0.0005 −0
1 0 0 0
0 1 0 0
0 0 1 0

 (62)

P = 108

1.4292 0.1350 0.0121 0.0002
0.135 0.0171 0.0016 0.0001
0.0121 0.0016 0.0002 0
0.0002 0.0001 0 0

 (63)

Here, the determinant of P and all its submatrices are
positive. Therefore, the system is stable.

Case 2: For conical system
When SMC is implemented for a cylindrical system, the
closed loop system matrix and its P matrix are obtained
as,

A =

[
−0.1062 −0.0003

1 0

]
(64)
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P = 104
[
1.5696 0.0916
0.0916 0.0062

]
(65)

Here, the determinant of P and all its submatrices are
positive. Therefore, the system is stable.

When PSMC is implemented for a conical system, the
closed loop system matrix and its P matrix are obtained
as,

A =

−0.5354 −0.0875 −0.0045 −0
1 0 0 0
0 1 0 0
0 0 1 0

 (66)

P = 106

4.1702 2.2327 0.3649 0.0182
2.2327 1.1969 0.1961 0.0098
0.3649 0.1961 0.0324 0.0017
0.0182 0.0098 0.0017 0.0001

 (67)

Here, the determinant of P and all its submatrices are
positive. Therefore, the system is stable.

Case 3: For cylindroconical system
When SMC is implemented for a cylindrical system, the
closed loop system matrix and its P matrix are obtained
as,

A =

[
−0.0349 −0.0003

1 0

]
(68)

P = 104
[
4.9254 0.1719
0.1719 0.0074

]
(69)

Here, the determinant of P and all its submatrices are
positive. Therefore, the system is stable.

When PSMC is implemented for a cylindroconical system,
the closed loop system matrix and its P matrix are
obtained as,

A =

−0.0967 −0.0092 −0.0004 −0
1 0 0 0
0 1 0 0
0 0 1 0

 (70)

P = 108

2.6826 0.2595 0.0206 0.0006
0.2595 0.0291 0.0024 0.0001
0.0206 0.0024 0.0002 0
0.0006 0.0001 0 0

 (71)

Here, the determinant of P and all its submatrices are
positive. Therefore, the system is stable. So, both the
controllers designed produce stable output for all the
systems.

3.4 Robustness Analysis

Here, the robustness of the controllers are checked by
altering the values of the system matrix. For the purpose
of analysis, uniformity in altering the system dynamics
is maintained. The value of A21 of state matrix and B21

of input matrix are increased ten times in all the sys-
tems uniformly to introduce variations in dynamics of the
system. Fig. 6 shows the response of the bio-fermenter
systems when the system dynamics is altered. The actual
system dynamics and the altered system dynamics are as
mentioned from equation(72)to equation(83).
Case 1: For cylindrical system

a. Actual dynamics

Am =

[
0 1

−4.22 ∗ 10−5 −0.0508

]
(72)

Bm =

[
0

−4.22 ∗ 10−5

]
(73)

b. Altered dynamics

Am =

[
0 1

−4.22 ∗ 10−4 −0.0508

]
(74)

Bm =

[
0

−4.22 ∗ 10−4

]
(75)

Case 2: For conical system
a. Actual dynamics

Am =

[
0 1

−0.00556 −0.1646

]
(76)

Bm =

[
0

−0.00556

]
(77)

b. Altered dynamics

Am =

[
0 1

−0.0556 −0.1646

]
(78)

Bm =

[
0

−0.0556

]
(79)

Case 3: For cylindroconical system
a. Actual dynamics

Am =

[
0 1

−0.00556 −0.1646

]
(80)

Bm =

[
0

−0.00556

]
(81)

b. Altered dynamics

Am =

[
0 1

−0.0556 −0.1646

]
(82)

Bm =

[
0

−0.0556

]
(83)

The responses show that the closed loop dynamics does
not vary much in the case of PSMC when compared to
SMC even when the system and input parameters are
varied. This shows that the controller is robust.

3.5 Real Time Implementation

The experiment is carried out in real time in cylindrical
and conical set ups shown in Fig. 1 and Fig. 2. The
physical system was put in closed loop through control
algorithm in a embedded processor. Based on the online
level measurements made by the level transmitters, the
corrective actions were generated by the controller which
is given to a pneumatic control valve connected at the
inlet pipeline, to vary the flow of liquid thereby controlling
the level of liquid. Also the speed of the agitator was
varied so as to limit the agitation rate, thereby varying
the foam formation to some extent, which also contributes
to variation in level of liquid.

Fig. 7 shows the real time responses of the cylindrical and
conical system respectively, for a set point of 25 cm. Delay
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Fig. 7. Real time response of systems

is intentionally introduced into the system using delay
coils. In the case of PSMC, there is no much deviation of
the real time system responses from that of the responses
simulated, which again proves the robustness of the system
which has overcome the modelling mismatches. The offset
produced is almost zero for PSMC, which means that the
basic requirement of a bio-fermenter that the volume of
broth has to be maintained constant is achieved. Also,
both systems have a quick rise and settling time for PSMC
when compared to SMC, which shows that the controller
responds quickly and efficiently.

4. SUMMARY

The response of the bio-fermenter systems when subjected
to SMC and PSMC are observed and their performance
are analysed. Based on their performance, it is found that,
the rise time, settling time, overshoot, offset, oscillations
are very minimum and its set point tracking and dis-
turbance rejection capabilities are high for PSMC. Real
time implementation of SMC and PSMC are made in a
cylindrical system and a conical system and their responses
are also analysed. The disturbance rejection capability,
fast convergence, with oscillation makes PSMC superior to
SMC. The predictive sliding mode controller is also found
to be robust.
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Appendix A. PROGRAM FOR PSMC IN LABVIEW


