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Abstract: In this study, we presented a nonlinear integral positive position feedback controller (NIPPF) 
approach method that combines the advantages of both integral resonant controllers (IRC) and positive 
position feedback controllers (PPF) to control nonlinear systems. We adjusted the equation of a Hybrid 
Rayleigh – Van der Pol- Duffing oscillator by adding the nonlinear integral positive position feedback 
(NIPPF) to control the vibrating system. The system is presented by a three-degree-of-freedom (3-DOF) 
containing the cubic nonlinear term and an external force. For getting the solution from the first 
approximation, we applied the multiple scales method (MSM). Graphically and numerically, we studied 
the system before and after adding the NIPPF controllers at the worst resonance case 1:1 internal and 

primary ( 1  , 1 2  ). We used the MATLAB program to simulate the efficacy of different 

parameters on both the main system and NIPPF controllers. 

Keywords: Van der Pol - Duffing oscillator; Nonlinear integral positive position feedback; Multiple 
scales method; Resonance case; Fixed point. 



1. INTRODUCTION 

The Duffing oscillator is used as a main type model for 
different engineering and physical problems such as electric 
circuit, oscillation of plasma, optical stability and the buckled 
beam (Guckenheimer et al., 1984; Siewe et al., 2006; Ueda, 
1979, Trueba et al., 2003; Siewe et al., 2004; Lazzouni et al., 
2006). Wen et al., 2016 presented two kinds of van der pol 
oscillator containing fractional order terms. The averaging 
method is used for obtaining the approximation solution. The 
additional stiffness coefficient is almost zero and the 
additional damping coefficient damping is almost the 
maximum value when the two kinds of van der pol fractional 
existed. Huang, 2018 used the nonlinear time delayed 
feedback controller to suppress the vibrations of van der pol 
oscillator. He studied the effectiveness of the feedback gain 
on bifurcation point numerically. Eissa and Amer, 2004 used 
a cubic displacement feedback control to control the 
vibrations of a cantilever beam to 33% from its uncontrolled 
value. The strategy of control is investigated in two different 
resonance cases primary and sub-harmonic cases.  

The delayed feedback used to control bifurcation of a 
fractional predator-prey system by Huang et al., 2019. 
Barron, 2016 investigated the dynamically stable and 
unstable behaviour of the ring of coupled van der pol 
oscillators. He discussed numerically also, the amplitude of 
the oscillator increased if the stability conditions are not 
satisfied. Kimiaeifar et al., 2009 used the Homotopy analysis 
method to obtain the analytic solution for the first time on a 
single – well, double – well and double – hump van der pol – 
Duffing oscillator. Cveticanin et al., 2008 presented the 

Rayleigh equation with a cubic nonlinearity oscillator and 
they studied the following cases: positive linear and cubic 
coefficients, positive linear and negative cubic coefficients 
and negative linear and positive cubic coefficients. (Kumar et 
al., 2016; Kumar et al., 2017; Kumar et al., 2018), modified 
and studied the bifurcation of Van der Pol – Duffing – 
Rayleigh oscillator. Of great importance to restrained the 
vibrations of van der pol oscillator. The NIPPF controllers 
are considered as one of the important types of controllers, 
which used for controlling the vibrating systems. Refs. 
(Omidi and Mahmoodi, 2015; EL-Sayed and Bauomy, 2018), 
presented three kinds of control to suppress the vibrations of 
vibrating systems such that, the Integral resonant controllers 
(IRC), positive position feedback controllers (PPF) and the 
non-linear Integral Positive Position feedback (NIPPF). The 
eminent type of decreasing the vibrations is NIPPF type. PPF 
controller and multimode modified positive position feedback 
(MMPPF) controllers are used for deceasing the vibrations of 
a flexible beam and a collocated structure respectively (Jun, 
2010; Omidi and Mahmoodi, 2015). Amer et al., 2018 used 
the non-linear saturation controller to suppress the vibrations 
of vertical conveyor on the simultaneous resonance case 
primary and internal 1:1. For the first and the second modes, 
the amplitude of controlled system is reduced about 240% 
and 600% from the amplitude of uncontrolled system. He et 
al., 2018 presented the flapping-wing robotic aircraft 
(FWRA) equations that are ODES and PDES with boundary 
conditions. The boundary control is used for suppressing the 
vibrations with out-put constraint of the (FWRA). 

In this article, the vibrations of a hybrid Rayleigh – Van der 
Pol- Duffing oscillator exciting by external force are 
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suppressed by using NIPPF controllers. A three-degree-of-
freedom system is resolved by applying (MSM). The 
behaviour of the system without and with NIPPF controllers 
is simulated numerically. The influences of some chosen 
coefficients are illustrated numerically and analytically. The 
rapprochement between numeric and analytic solution is 
offered. 

2. MATHEMATICAL MODELLING 

Kumar et al., 2018, presented the equation of a hybrid 
Rayleigh – Van der Pol- Duffing oscillator as: 

2 2 2 3 2
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2 (1 u ) 2 0u u u ku u
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
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We adjusted the hybrid Rayleigh – Van der Pol- Duffing 
oscillator by adding an external force and NIPPF controller as 
shown in Fig.1 to minimize its vibrations as the following: 
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where, the displacement of Van der Pol oscillator is u . The 
NIPPF controller's displacements are v and z . The 

coefficients of nonlinear terms are  ,  and k . 1  , 2  are 

the natural frequencies of van der pol oscillator and NIPPF 
controller. The excitation amplitude and frequency are f , . 
  ,  are the damping coefficients. The control signals are 

1  , 2 . The gains are 1  , 2 .   is the lossy integrator’s 

frequency. 

3. PERTURBATION TREATMENT 

We applied the multiple scales method (Nayfeh and Mook, 
2008) to obtain the solutions of equations (2)-(4): 

0 0 1 1 0 1( ; ) ( , ) ( , )u t u T T u T T                                               (5) 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig.1. the flowchart diagram of the main system with NIPPF 
controllers. 
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The first and second derivatives take the forms: 
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For the first approximation solution, we performed a two 

time scales r
rT t where, r

r

D
T





(r 0,1) . Appending 

equations (5)-(9) into equations (2)-(4) and equating the 
coefficients of the same power of  . 
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The formats of the solution of equations (10) and (11) are, 
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2 0( )
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To obtain the solution of equation (12), using equation (16) 
then, 
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denote that ( 1,2)nA n  and 1H , are complex functions in 1T . 

The complex conjugate parts collected in the term CC. For 
computation the right hand sides of equations (13) and (14), 
we will replace 0 0,u v  and 0z by its values in equations (16)-

(18) so that, 
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For getting the particular solutions of equations (19) and (20), 
we will remove the secular terms such that, 
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For the solution of equation (15), we will use equations (18) 
and (21) so that, 
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where ( 1,...,8)M    and 1K offering complex functions 

in 1T  are mentioned in the appendix. From the first 

approximation, we concluded the following resonance cases:- 
i) Primary resonance: 1   

ii) Internal resonance: 1 2   

iii) Simultaneous resonance: One-to-one internal and 
primary resonance. 

 

4. PERIODIC SOLUTIONS 

On this treatise, the selected one is simultaneous resonance 
( 1  , 1 2  ) is used to discuss the solvability 

conditions, we will introduce two detuning 
parameters 1 2( , )   so that: 
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Including equation (24) into equations (19) and (20) for 
compiling the solvability conditions as: 
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Exchanging all ( 1,2)A   by the polar form as: 
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where  and ( 1,2)a   are the motion's steady state phases 

and amplitudes. Subjoining equations (27) and (28) into 
equations (25) and (26). For any two equal complex numbers, 
the real and the imaginary parts are equals so that: 
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where 1 1 1 1 2 2 1 2 1,T T           . 

4.1 Fixed Point Solution 

For steady-state solution, we maybe find the fixed point of 

the equations (29)-(32) by putting 0a   and 0   so, 
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Squaring then adding both sides of equations (35) and (36) to 
obtain the following equation: 
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By the same method with equations (33) and (34), one 
obtains the following: 
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4.2 Equilibrium Solution of a Fixed Point 

While in movement to evolve the steady state solution's 
stability, start with the following procedures: 
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Inserting equation (39) into equations (29)-(32) then, the 
following system is obtained: 
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Rewrite the preceding system as: 
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where the Jacobian J of the pervious system given by,  
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where, ( 1,..., 4 1,..., 4)kr and k   are mentioned in the 

appendix. The eigen values of the Jacobian J  are given by 
resolving the following determinant:  
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which, are the roots of the following polynomial: 

4 3 2
1 2 3 4 0                                                   (47) 

where ; ( 1,..., 4)i i  are the coefficients of equation (47) 

that, defined in the appendix. For the above system's solution 
to be stable, the Routh-Huriwitz criterion must be satisfied 
such that: 

2
1 1 2 3 3 1 2 3 1 4 40, 0, ( ) 0, 0                   (48) 

5.  NUMERICAL TREATMENT 

We apply Runge-Kutta 4th order method using the MATLAB 
program for solving the main system's differential equation 
numerically after adding the NIPPF controllers. This study 
occurs in the worst resonance case (One-to-one internal and 
primary resonance). Fig. 2 (a), clarifies the amplitude of 
uncontrolled main system which, Approaching for three. For 
controlling the vibrations of main system, we used three 
types of controllers, PPF, IRC and NIPPF. The NIPPF 
controllers is the best type for controlling the vibrating 
system which, reduce the vibrations of the main system in a 
short time. It achieved success for diminishing the amplitude 
of the main system to reach 0.0002 that means the 
effectiveness of the NIPPF controller Ea =15000 (Ea 
=amplitude without controller/amplitude with controller) as 
shown in Fig.2 (d). In figure 3, the influence of the main 
system parameters (damping coefficient   and nonlinearities 

coefficients  ,  and k ) have been presented. From this 

figure, we note that, the amplitude of the main system is 
monotonic decreasing in the damping coefficient   and 

nonlinearities coefficients  and k but monotonic increasing 

in the nonlinear coefficient . More increasing of the 
damping coefficient   leads to saturation phenomena and 

the amplitude value equal to 0.9 so that, the system might 
need a control. The uncontrolled system investigated at three 
different values of the external force as shown in Fig. 4 from 
it, the main system will destroy by increasing the force 
amplitude therefore the main system must be controlled. 
Fig.6 represents the main system amplitude without and with 
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NIPPF controller, which is the suitable kind of controllers to 
suppress the vibrations of the main system. 

Uncontrolled system 
 

 

 

 

 

 

 

 
PPF controlled 

 

 

                                                         

 

 

 

 

IRC controlled 

 

 

 

 

 

NIPPF controlled 

 

 

 

 

 
Fig. 2. Main system amplitude at the resonance case, (a) 
Uncontrolled system, (b) PPF Controlled, (c) IRC Controlled 
and (d) NIPPF Controlled. 

 

 

 

 

  

 

 

Fig. 3. The influence of the parameters of the main system 
without control. 

 

 

 

 

 
 
 

Fig. 4. The effect of the external force on the uncontrolled 
system. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5. The response curves of the main system without and 
with controller. 

5.1 Frequency Response Curves of Controlled System 

In this part, we illustrated the amplitudes of the main system 
and NIPPF controller against to the detuning parameter 1  

for all parameters within the simultaneous resonance (one-to-
one internal and primary resonance). The solid line refers to 
the stable solution while, the dash one refers to an unstable 
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solution as shown in Fig.6. For increasing values of the 
external excitation force f , the amplitudes of the main 
system and NIPPF controller is also having increasing values 
as represented in Figs. 7a and 7b. For the small values of the 
natural frequency 1 , the bandwidth of the main system is 

wider. In addition, the amplitudes of the main system and 
NIPPF controller are monotonic decreasing on the natural 
frequency 1  as shown in Figs.8a and 8b. Confirmed on Figs 

9a and 9b, the bandwidth of the main system amplitude is 
wider and NIPPF controller amplitude increasing for larger 
values of the feedback signal 1 . The amplitudes are 

decreased when the feedback signal 2  is increasing as 

illustrated in Figs. 10a and 10b. For large values of the 
control signal 1 , the bandwidth of the main system 

amplitude is wider as represented in Fig. 11a. The NIPPF 
controller's amplitude decreasing when the control signal 1  

increasing as illustrated in Fig.11b. Fig. 12a illustrated that, 
the main system amplitude is increasing for the small values 
of control signal 2 . The NIPPF controller's amplitude is 

monotonic decreasing in the control signal 2 as shown on 

Fig. 12b. For increasing values of the lossy integrator’s 
frequency , the amplitudes are also increasing as shown in 
figure 13. 

 
 
 

 
 
 
 
 
 
 

Fig. 6. Graphics of the response curves (a) the main system 
(b) the NIPPF controller. 

 
 
 
 
 
 
  

 

 

Fig. 7. External force efficacy on (a) the main system (b) the 
NIPPF controller. 

From figure 14, the main system amplitude reaches to its 
minimum values when 1 2   as presented on Fig.14a and 

the amplitude of the NIPPF controller increasing and shift to 
right for increasing values of 2 according to Fig.14b.We 

confirm the numerical solutions of Eqs. (2)-(4) and the 
analytical solutions of Eqs. (29) - (32) as shown in figure 15. 
This rapprochement is orderly at the optioned resonance case 

when 0n   (n=1, 2) (i.e. 1 1  and 1 2  ). The sold 

lines elucidated the numerical solution of Eqs. (2)-(4) while, 
dash lines elucidated the amplitude adjustments 1a and 2a for 

the generalized coordinates u andv . Finally, There is a good 

agreement between the numerical and analytical solutions of 
the main system from t=300 and for the NIPPF controller 
from t=100 and there is a good agreement between the 
numerical and analytical solutions for the response curves as 
presents in Fig.16. 

 

 

 

 

Fig. 8. Natural frequency efficacy on (a) the main system (b) 
the NIPPF controller. 

 

 

 

 

Fig. 9. Feedback signal 1  efficacy on (a) the main system (b) 
the NIPPF controller. 

 

 

 

 

 

Fig. 10. Feedback signal 2  efficacy on (a) the main system 
(b) the NIPPF controller. 

 

 

 

 

Fig. 11. Control signal 1  efficacy on (a) the main system (b) 
the NIPPF controller. 
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Fig. 12. Control signal 2  efficacy on (a) the main system (b) 
the NIPPF controller. 

 

Fig. 13. Lossy integrator’s frequency   efficacy on (a) the 
main system (b) the NIPPF controller. 

 

Fig. 14. Detuning parameter 2  efficacy on (a) the main 
system (b) the NIPPF controller. 

 

Fig. 15. Comparison between the numerical solution (ــــــــــــ) 
and the perturbation analysis (--------) for the closed loop. 

 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 16. Comparison between the FRC Solution and RK- 4 
Solution. 

6. CONCLUSION 

Nonlinear integral positive position feedback (NIPPF) was 
introduced as a novel method that combines the advantages 
of both integral resonant controllers (IRC) and positive 
position feedback controllers (PPF) to control nonlinear 
systems. Moreover, one of its main advantages is to reduce 
vibrations in a short time as shown in Fig.2 (d) so, NIPPF 
controller was illustrated for the simultaneous resonance 
( 1  , 1 2  ) of the Hybrid Rayleigh – Van der Pol- 

Duffing oscillator. The solution of the nonlinear system from 
the first approximation is obtained by applying the method of 
multiple scales. We succeed to reduce the vibrations of Van 
der Pol oscillator from three to 0.0002 by using NIPPF 
controllers that means the effectiveness of the NIPPF 
controller Ea =15000. The study divulged that: 

1)  Increasing the external force destroys the 
uncontrolled system and increasing the damping 
coefficient of the main system not enough to 
suppress the vibrations so, we used the NIPPF 
controllers. 

2)  Increasing the value of external excitation leads to 
increasing in the system and NIPPF amplitudes. 

3)  The amplitudes of the system and NIPPF are 
monotonic decreasing functions on the natural 
frequency 1 , signal feedback 2  and control signal 

2 . 

4)  By increasing the value of the lossy integrator’s 
frequency , the amplitudes of the main system and 
the NIPPF controllers are increasing. 

5)  The minimum amplitudes of the vibrating 
suspended cable occur when 1 2  . 

b 

b a 

a 

a 

a

b 

b
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For the response curves, there is a good agreement between 
the FRC Solution and RK- 4 Solution. 
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APPENDICES 

Coefficients of equations (21)-(23):  

3 1
1 1 1 2 2 12 2

1 2
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1 2 1
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1 1
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1 1
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i i
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 
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

 
 

    
         

           

 

From the system of equations (33)-(36), the trigonometric 
functions can be written as: 

2 2 2 1 2 2
2 2

1 1 1 1
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sin ,cos ,
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32 2
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The coefficients of equations (44)-(47), take the following 
forms:
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The polynomial's coefficients in equation (51), take the 
following forms: 
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