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Abstract: In this paper, we put forward the development of a solution allowing modeling and 
exploitation of real time synthesized images of the globe.  This is used for presenting the weather 
forecast bulletin of Tunisian television Channel 7. This presentation requires a smooth panning to 
any part of the world, while having the necessary level of detail. To store and handle geographical 
data, most of the used methods implement a tree structure of data where various threads come out 
of each node (four in the case of quadtree).  Recursively, one goes down the tree until a 
satisfactory level of detail is reached. Our contribution consists in the adaptation of this algorithm 
to a sphere and the exploitation of various filtering, storage and optimization techniques in 
connection with the available material 
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1. INTRODUCTION 
 
In order to control the events which depend on 
the weather conditions (agriculture, aviation, 
tourism...), the user becomes increasingly 
demanding concerning the quality of the 
synthesis of geographical information and its 
dynamics.  The technological development 
(satellite transmission, graphics boards, 
processor, memory size...) offers today a 
considerable mass of data in real time related to 
space.  
 
The globe representation to which we associate 
useful information (weather, demography, 
economy...) must be as faithful and practical as 

possible exploiting middle ranged PCs and 
graphic cards.  
 
We recommend illustrating the terrestrial sphere 
in navigation in real time for the presentation of 
a weather forecast bulletin (ground, sea level, 
sky, clouds, rain, snow, fog, weather symbols) 
with a level of detail, image and elevation, going 
up to 250 m/pixel for Tunisia and 1km/pixel for 
the rest of the world.  Because of the great mass 
of raw data related to the 3D representation of 
the parameters of the globe (texture and 
elevation), their storage requires a great capacity 
of 4.618 Gb (for a resolution of 1km/pixel) 
distributed as follows:   
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Texture: 43800 x 21600 x 3 (RGB) = 2.771 Go  
Elevation: 43800x21600 x 2 (16bits) = 1.847Go 
 
For the elevation presentation with a variable 
level of detail "LOD" and with a realistic 
appearance, it is necessary to take into account 
the real time constraints.   
 
As PCs and graphic processors present limits in 
terms of size of the data and vertex and that the 
access disk should not significantly block the 
rendering speed, it is necessary to carry out an 
optimization of the useful information display, 
and judicious storage of the data. 
 
 

2. PROCEDURE 
 
The followed procedure consists in adopting an 
algorithm of a spherical field rendering then 
ensuring the filtering of the branches of the tree 
structure. 
 
 
2.1 Algorithm of spherical field rendering 
 
The parts of the field which are not close to the 
camera do not necessitate the same detail level 
as the near ones. They can be treated using a 
lower resolution in order to significantly reduce 
the number of vertex and thus increase the 
rendering speed. We have exploited this 
technique “LOD” in order to reduce the vertex 
number to submit to the graphic card and which 
consists in dynamically subdividing the field 
into hierarchical detail levels ]2[P . 
 
 
2.2 Adaptation of the Geomipmapping 

algorithm on a sphere 
 
In order to represent the earth using a variable 
detail level, we adopted the geomipmapping 
algorithm (traditionally applied on a flat surface) 
on a sphere. Hence, we exploit the spherical data 
(ρ, Ө, φ) instead of the Euclidian ones (x, y, z). 
The subdivision recursion makes us use a square 
data matrix (2nx2n). The spherical data (φ : -
180…+180 et θ : -90..+90) are shown in a 
rectangular matrix 2 x (2nx2n), hence the idea of 
exploiting each half of the sphere separately. ] 18[  

 

 
 

Fig. 1. Correspondence between a square 
surface and a half of sphere 

 
The iterations enable us to model the globe 
having an increasing number of sides (2x41, 
2x42, … 2x4n) 
 

 
 

Fig. 2. Iteration 1: Subdivision of the sphere into 8 
sides 

 

 
 
Fig. 3. Iteration 2: Subdivision of the sphere into 32 

sides 
 

 
Fig. 4. Iteration 3: Subdivision of the sphere into 128 

sides 
 
 
2.3 Filtering the invisible branches of the tree 

structure 
 
2.3.1 Filtering per frustum culling 
 
When an important part of the globe lies outside 
camera range, it is filtered through the use of the 
frustum culling technique which enables us to 
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rapidly eliminate patches that will not be 
displayed in the final rendering of the visible 
part of the globe. Thus, it avoids calculating 
useless data and sending them to the graphic 
card, and thus saves CPU and GPU resources as 
well as the memory bandwidth. 
 
Frustum culling necessitates placing the objects 
of the scene in a hierarchy. If it is decided that 
an element of high hierarchy can be ignored, 
testing and rendering all the subordinate 
elements are avoided. 
 
The quadtree approach consists in dividing the 
scene into four squares (4 childs) and then 
proceeds by considering each one of them as a 
parent. If one does not belong to the frustum, it’s 
ignored; otherwise its four squares are 
subdivided again, and so on. 
 

 
 

Fig. 5. Quadtree: spatial hierarchy 
 
2.3.2 Filtering per culling sides 
 
In a sphere within the camera range, sides whose 
normal vectors are in the same direction as those 
of the camera are invisible. As a consequence, 
they are ignored just like the ones that are 
outside the camera range. 
 
This approach is based on a simple observation: 
if we know the normal of a side n, and the view 
direction v of the observer, it is possible to 
determine if this side would be seen or not. In 
fact, any side whose normal points to an 
opposite direction would be obscured. 
Mathematically, if the normal of a side makes an 
angle of less than 90° in the view direction, the 
side will then be dissimulated. In order to detect 
such a configuration, one has to realize the dot 
product between n and v. 
 

In fact, n • v = ||n|| • ||v|| • cos(θ), θ measuring 
the angle between n and v. the sign of cos(θ) 
determines the sign of the dot product.  If this 
angle is greater than 90°, then cos(θ) is negative, 
otherwise, it is positive. A negative dot product 
means that we can see the side, whereas a 
positive one indicates that it is obscured.  P]11[  

 

 

 
 

Fig. 6. Calculating the normal of a side 
 
 
2.4 Subdivision and choice of a higher detail 

level 
 
At a certain detail level, the use of the quadtree 
techniques require a too long computing time. 
As a consequence, we have to stop the 
subdivision at the 8th iteration that lets out 
512x256 patches. The width of the initial texture 
is 43800 pixels, the closest power of 2 value is 
65536, and the highest level of detail of each 
patch is 128x128 pixels (65536:512=128). If the 
obtained detail level is unsatisfactory, we 
subdivide this portion into a maximum of 128 
equal parts, thus avoiding the interpolation of 
intermediary values and obtaining a visible 
satisfactory result.  P [11] 

 
At the beginning, we have to determine the 
desired detail constant (nd), once the visible 
zone is determined, the tessellation of each 
patch must not be the same. The level of detail 
should thus be proportional to camera distance. 
The patch is then divided by 2n (n=0..7) 
 
The following diagram illustrates the nd value 
with respect to the eye position. (0: maximum 
detail level) 
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Fig. 7. Determination of the desired detail constant 
(nd) 

 
Close to the poles, the number of patches 
increases significantly, hence the necessity to 
multiply the length of the arc by (Cos θ) (-90 < 
θ < +90) to rapidly help converge the algorithm 
and present patches with a reasonable level of 
detail. 
 
2.5 The algorithm  
 
Render_Patch  (θ, φ, delta(θ, φ), Level) 
//frustum culling 
If all the patch corners are outside the camera 
frustum then    
Destroy childrens and exit  
End If 
 
//face culling 
If level >3 and visibility_face_test=false then 
Destroy childrens and exit  
End If 
 
//subdivision 
If level<stoplevel then 
Render_Patch  (θ , φ  , delta(θ, φ)/2, level+1) 
Render_Patch  (θ+plage/2   , φ   , delta(θ, φ)/2, 
level +1) 
Render_Patch  (θ+plage/2   , φ+plage/2   , 
delta(θ, φ)/2, level+1) 
Render_Patch  (θ                 , φ+plage/2   , 
delta(θ, φ)/2, level+1) 
End If 
 
//choise of detail level  
Detail=0 
Perim=(EarthRadius * Cos(θ + delta(θ, φ) 
/2)*2*pi/(2 level))/ cameraDistance  
While (Perim/(2 Detail) > nd ) and (Detail < 7) 
DO  
Detail := Detail+ 1 
While End 

// childs Render 
• Search of texture and elevation of the 
child in the disk  
• Mesh creation (Grid of 2level x 2 level) 
• Submission to graphic board 
 
 

3.  PROBLEMS AND SOLUTIONS 
 
3.1 Optimization and data saving 
 
3.1.1 Optimization the data size 
 
In order to optimize the amount of data stocked 
on disk, we have adopted various techniques : 
 
For the texture: 128x128 pixel textures are 
compressed into DDS format (which is 
decompressed in real time by the graphic card), 
then DDS files are recompressed by Huffman 
algorithm compression, from the memory.  
 
This technique allows us to obtain a 
compression ratio of about 1 : 6. 
 
For the elevation: In addition to using Huffman 
algorithm compression, we exploit the fact that 
nearly ¾ of the globe is covered by water 
(elevation 0); as a consequence, we only note 
the dry land (elevation>0) 
 
The following table contains texture size and 
elevation for the different detail levels. 
 

 
 

Fig. 8. Texture size and elevation for the different 
detail levels 

 
The different compression techniques allowed 
reducing the 16 GB space into 1 GB on the disk. 
 
3.1.2 Data saving technique 
 
In order to optimize disk access time, at a given 
level, we do not save the data blocks 
sequentially. In fact, we save according to the 
camera frustum and their close neighbors.  
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These data have to remain in the cache memory.  
That is why we did not choose a sequential 
storage, of all the data, but only of the nxn 
blocks. After various attempts, we have adopted 
the values: n=8 for level 8, 4 for 7, 2 for 6 and 
n=1 for the remaining levels. 
 

1 2 3 4 5 6 7 8 65 66 67 68 69 70 71 72 ,,,
9 10 11 12 13 14 15 16 73 74 75 76 77 78 79 80 ,,,
17 18 19 20 21 22 23 24 81 82 83 84 85 86 87 88 ,,,
25 26 27 28 29 30 31 32 89 90 91 92 93 94 95 96 ,,,
33 34 35 36 37 38 39 40 97 98 99 100 101 102 103 104 ,,,
41 42 43 44 45 46 47 48 105 106 107 108 109 110 111 112 ,,,
49 50 51 52 53 54 55 56 113 114 115 116 117 118 119 120 ,,,
57 58 59 60 61 62 63 64 121 122 123 124 125 126 127 128 ,,,

,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,

,,,
,,,
,,,
,,,
,,,
,,,
,,,
,,,  

 
Fig. 9. Matrix of data saving technique 

 
The algorithm used for data saving technique is 
as follow: 
 
ai,j = j + (i-1).2k + (p-1).22k + (q-1).(n+2k-1+2k(n-
1)).2k 

 

Where  
 
(q-1).2k + 1 ≤ i ≤ q.2k and (p-1).2k+1≤ j ≤p.2k 

 
1 ≤ p , q ≤ n
 
3.2 Subdivision number regulation 
 
In order to maintain the image display rate at a 
constant value of approximately 25 images per 
second, we work on the parameters of detail 
level Nd. 
 
The capacity of the exploited tools enables 
reaching a number of vertex (Nvtx) equaling 
80000 ± ε%. The regulation consists in 
modifying the value of Nd so that we converge 
as fast as possible to the desired Nvtx. For this 
goal we used a fuzzy controller. 
 
Traditional control systems are based on 
mathematical models in which the control 
system is described using one or more 
differential equations that define the system 
response to its inputs. Such systems are often 
implemented as "proportional-integral-
derivative (PID)" controllers. They are the 
products of decades of development and 
theoretical analysis, and are highly effective.  
 

In our case, the mathematical model of the 
control process is not obvious and may be too 
"expensive" in terms of computer processing 
power and memory, we believe that a system 
based on empirical rules should be more 
effective.  
 
Furthermore, such systems can be easily 
upgraded by adding new rules to improve 
performance or add new features.  
 
In order to control the value of Nvtx, we choose 
a fuzzy regulator of which here the diagram: 
 

 
Fig.10. Fuzzy regulator diagram 

 
The fuzzy controller developed consists of an 
input stage, a processing stage, and an output 
stage. The input stage defines the appropriate 
membership functions and truth values. The 
processing stage invokes rules and generates 
results, then combines the results of the rules. 
Finally, the output stage converts the combined 
result back into a control output value. ]5[P

 
The shape adopted for membership function is 
triangular 
 

 µ

Nvtx

Too much low Too high Little Good Much 

P1 P2 P3 P4 P5  
 

Fig. 11. Membership function 
 
The control unit adopted has the following 
values and shapes.  
 µ(∆Nd) 

∆Nd
∂1 ∂2 ∂3 ∂4 

Decrease Increase Keep the value 

 
 

Fig. 12. Control output value 
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The fuzzy system developed has the following 
rule base:  
 
• If Nvtx < Nvmax – ε then not enough vertices 

for the graphic board 
• If Nvtx > Nvmax + ε then too many vertices 

for the graphic board 
• If Nvtx = Nvmax ± α with α ≤ ε then we have 

a number of adequate vertex to the 
performances of our graphic board 

• If Nvtx is definitely lower/higher than Nvmax 
then increase/ decrease appreciably Nd  

• If Nvtx is slightly lower/higher than Nvmax 
then increase/ decrease moderately Nd 

 
The following process chart positions the 
regulator in the solution suggested 
 

Determination of the number of 
vertex to submit to the 

graphic board 
(Nvtx)

Nvtx>Nbmax - ε

Yes

Nvtx<Nbmax + ε

Yes

Fuzzy Controller

No

No

Vertex submission 
to the graphic board  

 
Fig. 13. Subdivision number regulation 

 
After several trials the values adopted for P1, 
P2, P3, P4 and P5 are respectively 70000, 
75000, 80000, 85000, 90000 and 0.85, 0.95, 
1.05, 1.15 for δ1, δ2, δ3, δ4 respectively. 
 
The fuzzy controller enabled us to maintain an 
fps number between 24 and 27 with an average 
equal to 25 fps at 96% of cases. 
 
3.3 Smooth transition from a level to another 
 
Transition from a level to another requires an 
access to disk that can slow down real time 
browsing. For this reason each time a different 
detail level is necessary, we cast a patch which 
prepares the desired detail level (lower or 
higher). After the execution of this task, rocking 
of the algorithm becomes possible. 

4. OUTCOME AND COMMENTS 
 
In the present work, we have used a Pentium 
4.3Ghz PC with 1Gb RAM, 200GB Raid hard 
disk and an ATI Radeon 9600 Pro graphic card. 
We have used Delphi 6 and Windows XP. 
 

 
 

Fig. 14. Application of frustum culling 
 

 
 

Fig. 15. Application of face culling 
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Fig. 16. Examples of final output 
 
Each technique used contributed to the final 
solution which allowed a quasi-constant flow in 
the final output. 
 

Techniques Min 
fps

Max 
fps

Average 
fps

Basic Rendering 0 20 10
Adding disk saving techniques 10 25 12
Adding convergence at poles (cos multiply) 15 40 22
Adding fuzzy controller 24 27 25  

 
Fig. 17. Contribution of the various techniques 

 
 

5. PERSPECTIVES 
 
5.1 Geomorphing 
 
During the display, the abrupt transition from a 
detail level to another is not always quite 
smooth on the screen. If for a certain detail 
level, the successive elevation values are Z1 and 
Z2, the solution would be loading the data of the 
following elevation level into memory and 
continually moving to an intermediary level 
before applying on screen (Z’ to (Z1+ Z2)/2 or 
from (Z1+ Z2)/2 to Z’). 
 

 
 

Fig. 18. Geomorphing technique 
 

5.2 Exploitation of the vertex shaders and pixel 
shaders 

 
We intend to exploit the possibilities of the new 
generation graphic cards which are less 
demanding in terms of processor resources and 
provide a better detail level. In fact, with the 
DX8, the vertex channel has become totally 
editable. Arbitrary vertex data are arbitrarily 
treated through the vertex shader who then 
writes the exit values in the registry in plain text. 
 
The editable pixel channel has created for 
DirectX a totally new concept of pixel 
rasterization comparable to that of vertex 
shaders. Pixel shaders are going to revolutionize 
a domain in which everything depended on 
sophisticated, hindering practices of checking 
out the compatibilities with a unique function 
channel. 
 
5.3 Pre-calculating the meshes 
 
There is another idea which can contribute to the 
optimization of our solution which consists in 
pre-calculating the meshes, compressing and 
storing them in the space devoted to the 
elevations. This would reduce the computing 
time which is extremely precious and critical in 
real time browsing. 
 
 

6. CONCLUSION 
 
3D real time modeling of the globe in a 
250m/pixel resolution is now possible with 
common PCs. This enables the free browsing of 
any corner of the globe with a realistic 
appearance (texture and embossment). The 
improvements that we wish to make accomplish 
with faster processors and more performing 
graphic cards would allow going further ahead 
with the data size that can be treated and the 
resolutions that can be reached. 
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