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Abstract: Wireless sensor networks are applied in a broad range of applications such as medical, 
industrial and military fields.Therefore, a precise Kalman filter mechanism is needed for fixed 
configuration of topologies in sensor networks in order to ensure accuracy and precision of sensor 
measurements.On the other hand, fractional calculus as a generalization of integer order operators 
enables modeling of physical systems with high accuracy.Hence, a new fractional-order distributed 
Kalman filter algorithm is presented in this study to estimate the states in sensor networks.Therefore, as a 
generalization of filtering algorithm a fractional order Kalman filter algorithm is proposed.For this 
purpose, fractional-order distributed Kalman filter algorithms and fractional diffusion Kalman filters are 
formulated and their performance is evaluated based on mean squares for algorithm feasibility analysis. 
Simulations show that performance of the proposed algorithm is improved in terms of accuracy and 
efficiency compared to previous methods such as conventional fractional Kalman filter. 
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

1. INTRODUCTION 

Recently, our lives have been transformed via increased data 
analysis with applications such as smart city requiring multi-
path data transfer (Xu et al., 2015b) target tracking (Bhuiyan 
et al., 2015; Kuo et al., 2018) environmental monitoring (Kar 
et al., 2018) video-on-demand services (Xu et al., 2015a) and 
distributed data storage. In this regard, Wireless Sensor 
Networks (WSNs) have attracted the attention of academic 
and industrial researchers as a practical and key technology 
(Boselin Prabhu et al., 2016; Biswas et al., 2018; Jagadesh et 
al., 2018). Given the different applications of wireless sensor 
networks, each node can consist of different components 
based on its expected task. 

However, usually each node consists of a number of core 
components, including central processing unit, radio 
transmitter-receiver, power supply and one or more sensors 
that collect data from the environment. Wireless sensor 
networks may be divided into homogeneous and 
heterogeneous groups. In the homogeneous mode, all nodes 
have similar properties in terms of size, power, spectrum, 
connectivity, etc and the heterogeneous mode includes 
different types of sensor nodes. Traditional WSNs are unable 
to share infrastructures and reach a general agreement on 
large-scale systems due to the natural characteristics of 
heterogeneous wireless networks. Fortunately, the rapid 
development of virtual sensor networks (VSNs) has provided 
a new opportunity to solve the problems of traditional 
wireless sensor networks (Liang and Yu, 2015; Khan et al., 
2016; Nkomo et al., 2018; Luo et al., 2018). A prominent 
feature of VSNs is their ability to provide a suitable 

framework for coordinating heterogeneous WSNs in a shared 
physical structure. This feature makes VSNs  scalable and 
flexible. Thus, these networks offer a promising solution for 
monitoring large-scale systems. Despite the unique 
opportunities offered by VSNs, it is still vital to ensure 
accurate and precise sampling since mobile sensors in VSNs 
are highly dynamic, fully distributed and have no central 
controllers. Therefore, fractional-order distributed Kalman 
filter algorithms which consist of a combination of 
distributed algorithms and Kalman algorithms based on 
fractional-order computation are proposed in this research 
study to solve this problem. 

In distributed algorithms, a set of nodes can accurately 
estimate target state through a collaboration method. These 
nodes can be personal computers, laptops, cell phones, 
sensors, or triggers (Abadi and Shafiee, 2018).   

Distributed estimation algorithms with desirable features 
such as robustness, ease of development and low 
consumption are applied in various fields (Azpicueta-Ruiz et 
al., 2017; Al-Sayed et al., 2018). 

Kalman filter algorithms are among the most popular 
methods for estimating dynamic system states through 
measurement. Kalman filter must be implemented with little 
computation and memory space by recursive algorithms for 
use in real-time systems. This type of filter was first 
introduced in the 1960s and it has since been widely used in 
many fields such as navigation, signal processing, control 
systems and information integration (Hong et al., 2018).  
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References (Li et al., 2015; Wu et al., 2018) suggest 
distributed Kalman filters where agents are related with each 
other using the probable protocol (Wu et al., 2015). A 
communication cycle is established between a pair of 
connected sensors at each measurement instance in a 
probabilistic Kalman filter and they change their current state 
estimates. This change in mode estimation results in 
presentation of the covariance matrix of current error by the 
Riccati equation of the local Kalman filter. Although 
probabilistic filters require very little bandwidth, their mean 
square deviations (MSDs) are higher and their convergence 
rates are lower. This is the reason they are less popular and 
have a relatively low efficiency. 

As a strategy of distributed Kalman filter algorithm, the 
distributed Kalman filter algorithm provides better 
performance in state estimation using data diffusion by 
creating a sequence of Kalman repetitions and a data set. 
Diffusion Kalman filter is introduced which includes two 
incremental and intermediate update phases introduced in 
(Cattivelli et al., 2008; Cattivelli et al., 2010). At the 
incremental update stage, each node receives observations 
from its neighboring nodes and combines these observations 
to update the existing estimate and obtain an intermediate 
value. At the diffusion update stage, each node aggregates the 
average estimates of its neighbors generated by the last step 
in order to update its estimate. It should be noted that all 
nodes perform these two steps simultaneously. Therefore, this 
algorithm has excellent performance in tracking a mobile 
target and good convergence performance (Yang et al., 
2016). 

Fractional computing has been the focus of interest for many 
researchers as an    extended model of derivatives and integer 
differentials for use in practical applications in the last decade 
(Sierociuk and Dzieliński, 2006; Stanisławski et al., 2015). It 
has been shown over the years that the use of this emerging 
tool in description and modeling of most real systems 
increases accuracy of modeling and reduces model order 
(Kailath et al., 2000; Sayed, 2003). In addition, some 
systems, such as the lithium-ion battery model or the 
Bertrand super capacitor, cannot be modeled with proper-
order derivatives. However, they can only be modeled by 
using fractional derivatives. Therefore, fractional order 
Kalman filter algorithm was proposed for mode estimation in 
linear fractional systems due to the weak performance of 
Kalman filter algorithms in estimating the state of such 
systems (Stanisławski et al., 2015; Xue et al., 2018). 

Thereby, two fractional-order distributed Kalman filter 
algorithms and fractional-order diffusion Kalman filter 
algorithms with fixed topologies are proposed in this study to 
solve them. However, the mean performance of the algorithm 
must be analyzed under reasonable assumptions in order to 
reasonably analyze the algorithm. Besides proposing a new 
algorithm, performance of diffusion strategies in different 
scenarios is investigated in this study. 

Therefore, performance of steady-state mean and mean 
squares of the order Fractional Kalman filter algorithm is 
proposed in this paper. 

In order to compare performance of the proposed algorithm 
with existing algorithms, position tracking model of a 
projectile is presented. Simulation results show significant 
improvement in the mean squared error of the proposed 
fractional order Kalman filter algorithm compared to the 
common order fractional Kalman filter algorithm without 
cooperation. 

The paper is organized as follows. The linear fractional-order 
Kalman filter algorithm is presented in Section 2. The 
fractional-order distributed Kalman filter algorithm is 
reviewed in Section 3. In Section 4, the fractional-order 
diffusion Kalman filter algorithm is presented. Analysis of 
fractional-order distributed Kalman filter algorithm based on 
mean and performance of square mean of estimation errors is 
presented in Section 5. Section 6 presents the simulation 
results. Conclusions and suggestions for future studies are 
described in Section 7. 

2. LINEAR FRACTIONAL-ORDER OF KALMAN FILTER 
ALGORITHM  

Fractional dynamics system, local observations, and 
modeling assumptions are described in this section. Then, the 
linear fractional order Kalman filter algorithm (Sierociuk and 
Dzieliński, 2006) is presented. 
 

Consider tracking a moving target in WSNs. We use 𝑥௜
௕ to 

define the state of this object with the characteristic b at time 
i, b∈M, M is one of the properties (such as position 
coordinates, speed, or direction). Then, a discrete control 
process of the system will be introduced in order to describe 
this. The system can be derived from a linear stochastic 
difference equation with M-stack variables in a state-position 
vector 𝑥௞ ൌ ሾ𝑥௞

ଵ, … , 𝑥௞
ெሿ் based on the Grunwald–Letnikov 

fractional derivative (Stanisławski et al., 2015; Xue et al., 
2018) as follows: 
 

ቐ
Δϒx୩ାଵ ൌ F୩x୩ ൅ G୩u୩ ൅ w୩                 

x୩ାଵ ൌ Δϒx୩ାଵ െ ෍ ሺെ1ሻ୨ϒ୨x୩ାଵି୨

୩ାଵ

୨ୀଵ
    

            (1) 

 

y୩ ൌ H୩x୩ ൅ v୩                                                               (2) 
 
Where 
 

⎩
⎪
⎨

⎪
⎧ϒ୩ ൌ diag ቂቀ

nଵ
k ቁ . . . ቀ

n୑
k ቁቃ

Δϒx୩ାଵ ൌ ቎
Δ୬భxଵ,୩ାଵ

         ⋮
Δ୬౉x୑,୩ାଵ

቏
                                           (3) 

 

Moreover, ∆ఊ𝑥௞is the fractional order difference of γ for the 
state vector of 𝑥௞ ∈ ℂெ.In addition, k is the sampling time, 
𝑥௞ ∈ ℂெis the system vector, 𝑦௞ ∈ ℂ௤is a measurement 
vector, 𝐹௞ ∈ ℂெൈெ is a sparse localized model matrix, 
𝑢௞ ൌ ሾ𝑢௞

ଵ, … , 𝑢௞
ெሿ ∈ ℂெ is the state noise vector and 𝐺௞ ∈
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ℂெൈெ𝑖𝑠 is the noise matrix of the state, 𝑛ଵ, … , 𝑛ெ  is the order 
of system equations, M is the number of system equations 
and q is the number of system outputs. The input signal 𝑤௞  is 
usually equal to zero in system 1. 

Assuming that noise signals 𝑢௞ and 𝑣௞ are white and 
independent, the corresponding covariance matrices are as 
follows (Cattivelli et al., 2010): 
 

E ቂ
u୩
v୩

ቃ ቂ
u୩
v୩

ቃ
∗

ൌ ൤
Q୩ 0
0 R୩

൨ δ୩୪                                           (4) 

where * indicates mixed conjugate transposition and 𝛿௞௟ is 
the Kronecker delta function. The initial mode vector 𝑥଴ is 
measured noise and uncorrelated state with an average of 
zero and covariance matrix Π଴ ൐ 0. Qk and Rk are also 
diametric matrices with size M and q . 

Linear fractional order Kalman filter algorithm: Based on 
the above analysis, 𝑥ො௞|௟ estimates the minimum error of linear 
mean square 𝑥௞ with respect to the given observations before 
time 𝑙 and 𝑃௞|௟ . The covariance matrix of the estimated error 
is 𝑥෤௞|௟ ≜ 𝑥௞ െ 𝑥ො௞|௟. Therefore, the fractional order Kalman 
filter algorithm, considering the initial values of the estimate 
of state 𝑥ො଴|ିଵ ൌ 0, and the covariance of the initial state 
estimate error 𝑃଴|ିଵ ൌ Π଴ will be as the following equations 
(5) and (6) (Sierociuk and Dzieliński, 2006): 
 

1. Measure update 

൞
K୩ ൌ P୩|୩ିଵH୩

∗൫R୩ ൅ H୩P୩|୩ିଵH୩
∗൯

ିଵ

xො୩|୩ ൌ xො୩|୩ିଵ ൅ K୩൫y୩ െ H୩xො୩|୩ିଵ൯
P୩|୩ ൌ P୩|୩ିଵ െ K୩H୩P୩|୩ିଵ

                       (5) 

2. Time update  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛥ϒ𝑥ො௞ାଵ|௞ ൌ 𝐹௞𝑥ො௞|௞ 

𝑥ො௞ାଵ|௞ ൌ 𝛥ఊ𝑥ො௞ାଵ|௞ െ ෍ ሺെ1ሻ௝ϒ௝

௞ାଵ

௝ୀଵ
𝑥ො௞ାଵି௝ 

𝑃௞ାଵ|௞ ൌ ሺ𝐹௞ ൅ ϒଵሻ𝑃௞|௞ሺ𝐹௞ ൅ ϒଵሻ∗

൅𝐺௞𝑄௞𝐺௞
∗ ൅ ෍ ϒ௝𝑃௞ି௝ϒ௝

் 
௞

௝ୀଶ
           

            (6) 

where 𝐾௞ is a fraction of the Kalman filter.  

3. FRACTIONAL-ORDER DISTRIBUTED OF KALMAN 
FILTER ALGORITHM 

Consider a set of N nodes (or sensors) distributed in a region. 
If two nodes can communicate directly, they nodes are 
connected. Thus, each node is always connected to itself. Set 
of nodes connected to node i are called the 𝑖-th neighbors and 
it is represented by 𝒩௜ (𝑖 ∈ 𝒩௜). Therefore, the adjacency 
matrix Ω with elements 𝛺௜,௟  is defined as follows:  
 

  𝛺 ൌ ൛𝛺௜,௟ൟ ൌ ൜1,           𝑙 ∈ 𝒩௜
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                               ሺ7ሻ 

 

Therefore, the elements on the main diameter Ω  indicate that 
the sensor i is in constant contact with itself. 
 

Now, assume that the output of system 1 is observed by N 
sensors, so that each sensor only observes a limited number 

of properties. This process is schematically illustrated in Fig. 
1. If Bi represents the number of properties observed by the 
ith-sensor and M is the number of system equations, then the 
observations made by the ith-sensor at moment k can be 
represented by the linear model (8): 
 

 𝑦௜,௞ ൌ 𝐻௜,௞𝑥௞ ൅ 𝑣௜,௞ , 𝐵௜ ൏൏ 𝑀, 𝑖 ൌ 1, . . , 𝑘                                     (8)         

where 𝑦௜,௞ ∈ ℂ௤represents measurements made by the sensor 
i at moment k, 𝐻௜,௞ ∈ ℂ஻೔ൈெis the local observation matrix 
and 𝑣௜,௞ ∈ ℂ஻೔, is the noise of local observations to reflect 
measurement inaccuracies with respect to sensor accuracy 
and other inevitable limitations. 

 

Fig. 1. System output measurement 𝑦௜,௞ by node i at moment 
k. 

The model of global observation is obtained by collecting 
observations as follows: 

𝑦௞ ൌ ൥
𝑦ଵ,௞

    ⋮
𝑦ே,௞

൩ ,  𝐻௞ ൌ ቎
𝐻ଵ,௞

    ⋮
𝐻ே,௞

቏ , 𝑣௞ ൌ ൥
𝑣ଵ,௞

    ⋮
𝑣ே,௞

൩                      (9) 

Therefore, the general observation of matrix 𝑦௞ ∈ ℂ∑  ஻೔
ಿ
೔సభ  is 

given as follows: 

y୩ ൌ H୩x୩ ൅ v୩                                                     (10) 

Assume that measurement noise 𝑣௜,௞ is unconnected, i.e.: 

𝐸ൣ𝑣௜,௞𝑣௝,௟
∗ ൧ ൌ 𝑅௜,௞𝛿௝,௜𝛿௟,௞                                                         (11) 

Where 𝑅௜, 𝑘 ൐ 0 for all 𝑘, 𝑖. 

The goal of implementing a fractional-order distributed 
Kalman filter is to estimate the uncertain 𝑥௞ state for each 
node 𝑖 of the network. It should be noted that in this network, 
nodes can only share their data with their neighbors ሼ𝑙 ∈ 𝒩௜ሽ. 

The main challenge is to ensure that an accurate estimate of 
the system state is obtained such that if each node has access 
to all measurements across the network nodes, accuracy of 
the overall state estimate does not increase. In order to 
address this issue, the Kalman filter algorithm and fractional-
order distributed Kalman filter algorithms were used and 
presented in Table 1. 

In the above algorithm, the term "incremental updating" is 
used instead of the update term. This is due to the fact that at 
this stage, the optimal local estimate at node 𝑖 is produced 
iteratively by incremental measurements at its neighboring 
nodes ൛𝑦௟,௞, 𝑙 ∈ 𝒩௜ൟ. 
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Table 1. Fractional-order distributed Kalman filter 
algorithm. 

Consider the space-state model of the order-fraction (1): 
For each node 𝑖 we have: 𝑥ො௜,଴|ିଵ ൌ 𝐸ሺ𝑥଴ሻ, 𝑃௜,଴|ିଵ ൌ 𝛱଴ 

In each sampling period 𝑘, repeat the following two steps: 

Step 1: Incremental update 

𝑃௜,௞|௞
ିଵ ൌ 𝑃௜,௞|௞ିଵ

ିଵ ൅ ෌ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ𝐻௟,௞௟∈𝒩೔
                                (12) 

𝜙௜,௞|௞

ൌ 𝑥ො௜,௞|௞ିଵ

൅ 𝑃௜,௞|௞ ෍ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ൫𝑦௟,௞

௟∈𝒩೔

െ 𝐻௟,௞𝑥ො௜,௞|௞ିଵሻ                                                                          ሺ13ሻ

Step 2: Update time 

𝑥ො௜,௞|௞ ൌ 𝜙௜,௞|௞                                                         
𝛥ϒ𝑥ො௜,௞ାଵ|௞ ൌ 𝐹௞𝑥ො௜,௞|௞                                             

                            

𝑥ො௜,௞ାଵ|௞ ൌ 𝛥ఊ𝑥ො௜,௞ାଵ|௞ െ ෌ ሺെ1ሻ௝ϒ௝
௞ାଵ

௝ୀଵ
𝑥ො௜,௞ାଵି௝                         

𝑃௜,௞ାଵ|௞ ൌ ሺ𝐹௞ ൅ ϒଵሻ𝑃௜,௞|௞ሺ𝐹௞ ൅ ϒଵሻ∗ ൅ 𝐺௞𝑄௞𝐺௞
∗ ൅

൅ ෍ ϒ௝𝑃௜,௞ି௝ϒ௝
்

௞

௝ୀଶ

ሺ14ሻ

Assume that a node 𝑖 has access to measurements of its 
neighbors 𝒩௜. The local estimate for node 𝑖 can be calculated 
from Eq. (5) by performing multiple measurement updates. 
Each update is calculated for each neighbor 𝑖. These 
repetitions are shown in Eq. (15): 

‐ In the 𝑖th node at time 𝑘: 

𝜙௜,௞ ← 𝑥ො௜,௞|௞ିଵ

𝑃௜,௞ ← 𝑃௜,௞|௞ିଵ
 

Where 𝜙௜,௞is the local estimate.  

‐ Then, it is repeated for each 𝑙 ∈ 𝒩௜. 

൞
𝐾௞ ← 𝑃௜,௞𝐻௟,௞

∗ ൫𝑅௟,௞ ൅ 𝐻௟,௞𝑃௜,௞𝐻௟,௞
∗ ൯

ିଵ

𝜙௜,௞ ← 𝜙௜,௞ ൅ 𝐾௞൫𝑦௟,௞ െ 𝐻௟,௞𝜙௜,௞൯     
𝑃௜,௞ ← 𝑃௜,௞ െ 𝐾௞𝐻௟,௞𝑃௜,௞                       

                                          (15) 

‐ Running time update 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑥ො௜,௞|௞ ← 𝜙௜,௞|௞                                                                   
𝑃௜,௞|௞ ← 𝑃௜,௞                                                                       
𝛥ϒ𝑥ො௜,௞ାଵ|௞ ൌ 𝐹௞𝑥ො௜,௞|௞                                                        

𝑥ො௜,௞ାଵ|௞ ൌ 𝛥ఊ𝑥ො௜,௞ାଵ|௞ െ ෌ ሺെ1ሻ௝ϒ௝
௞ାଵ

௝ୀଵ
𝑥ො௜,௞ାଵି௝         

𝑃௜,௞ାଵ|௞ ൌ ሺ𝐹௞ ൅ ϒଵሻ𝑃௜,௞|௞ሺ𝐹௞ ൅ ϒଵሻ∗

൅𝐺௞𝑄௞𝐺௞
∗ ൅ ෌ ϒ௝𝑃௜,௞ି௝ϒ௝

்௞

௝ୀଶ

                                 ሺ16ሻ

 

Now we show that the incremental update of the fractional-
order distributed Kalman filter algorithm can be calculated 
using equations (12) and (13). 

Assume ൛𝑖ଵ, … , 𝑖௡೔
ൟ shows the set of neighbors of node 𝑖 and 

𝜙௜,௞
ሺ௠ሻ and 𝑃௜,௞

ሺ௠ሻ  represent the values of 𝜙௜,௞ and 𝑃௜,௞ after the 
mth repetition of the following equations: 

𝜙௜,௞
ሺ଴ሻ ൌ 𝑥ො௜,௞|௞ିଵ                                                                    

𝑃௜,௞
ሺ଴ሻ ൌ 𝑃௜,௞|௞ିଵ                                                                     

𝑓𝑜𝑟  𝑚 ൌ 1  𝑡𝑜  𝑛௜,  𝑟𝑒𝑝𝑒𝑎𝑡:                                              

   𝐾௞
ሺ௠ሻ ൌ 𝑃௜,௞

ሺ௠ିଵሻ𝐻௜೘,௞
∗ ቀ𝑅௜೘,௞ ൅ 𝐻௜೘,௞𝑃௜,௞

ሺ௠ିଵሻ𝐻௜೘,௞
∗ ቁ

ିଵ
    

   𝜙௜,௞
ሺ௠ሻ ൌ 𝜙௜,௞

ሺ௠ିଵሻ ൅ 𝐾௞
ሺ௠ሻ ቀ𝑦௜೘,௞ െ 𝐻௜೘,௞𝜙௜,௞

ሺ௠ିଵሻቁ            

   𝑃௜,௞
ሺ௠ሻ ൌ 𝑃௜,௞

ሺ௠ିଵሻ െ 𝐾௞
ሺ௠ሻ𝐻௜೘,௞𝑃௜,௞

ሺ௠ିଵሻ                                 
𝑒𝑛𝑑                                                                                        

𝑥ො௜,௞|௞ ൌ 𝜙௜,௞|௞
ሺ௡ೖሻ                                                                               

𝑃௜,௞|௞ ൌ 𝑃௜,௞
௡ሺೖሻ                                                              

           (17) 

Now, by applying the inverse matrix lemma (Tylavsky and 
Sohie, 1986) to Eq. (12), we have the covariance matrix of 
the posterior estimation error after m repetitions: 

൫𝑃௜,௞
ሺ௠ሻ൯

ିଵ
ൌ ൫𝑃௜,௞

ሺ௠ିଵሻ൯
ିଵ

൅ 𝐻௜೘,௞
∗ 𝑅௜೘,௞

ିଵ 𝐻௜೘,௞              (18) 

This may be defined for all 𝑚 since 𝑃௜,௞
ሺ଴ሻ is reversible. By 

repeating (18) an update for 𝑃௜,௞|௞ , is obtained as follows: 

𝑃௜,௞|௞
ିଵ ൌ 𝑃௜,௞|௞ିଵ

ିଵ ൅ ෌ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ𝐻௟,௞௟∈𝒩೔
                           (19) 

 Moreover, if 𝑃௜,௞
ሺ௠ିଵሻ is invariant, then we have: 

𝜙௜,௞
ሺ௠ሻ ൌ

ሾ𝑃௜,௞
ሺ௠ିଵሻ െ 𝑃௜,௞

ሺ௠ିଵሻ𝐻௜೘,௞
∗ ൫𝑅௜೘,௞ ൅ 𝐻௜೘,௞𝑃௜,௞

ሺ௠ିଵሻ𝐻௜೘,௞
∗ ൯

ିଵ
ሿ ൈ

൫𝑃௜,௞
ሺ௠ିଵሻ൯

ିଵ
𝜙௜,௞

ሺ௠ିଵሻ ൅

𝑃௜,௞|௞ିଵ
ሺ௠ିଵሻ 𝐻௜೘,௞

∗ ൫𝑅௜೘,௞ ൅ 𝐻௜೘,௞𝑃௜,௞
ሺ௠ିଵሻ𝐻௜೘,௞

∗ ൯
ିଵ

𝑦௜೘,௞ ൌ

𝑃௜,௞
ሺ௠ሻ൫𝑃௜,௞

ሺ௠ିଵሻ൯
ିଵ

𝜙௜,௞
ሺ௠ିଵሻ  ൅ 𝑃௜,௞|௞ିଵ

ሺ௠ିଵሻ 𝐻௜೘,௞
∗ ൫𝑅௜೘,௞ ൅

𝐻௜೘,௞𝑃௜,௞
ሺ௠ିଵሻ𝐻௜೘,௞

∗ ൯
ିଵ

𝑦௜೘,௞                                            (20) 

Eq. (20) can be rewritten by using matrix inversion lemma as 
follows: 

𝑃௜,௞
ሺ௠ିଵሻ𝐻௜೘,௞

∗ ൫𝑅௜೘,௞ ൅ 𝐻௜೘,௞𝑃௜,௞
ሺ௠ିଵሻ𝐻௜೘,௞

∗ ൯
ିଵ

ൌ

𝑃௜,௞
ሺ௠ሻ𝐻௜೘,௞

∗ 𝑅௜೘,௞
ିଵ                   (21)                  

൫𝑃௜,௞
ሺ௠ሻ൯

ିଵ
𝜙௜,௞

ሺ௠ሻ ൌ ൫𝑃௜,௞
ሺ௠ିଵሻ൯

ିଵ
𝜙௜,௞

ሺ௠ିଵሻ ൅ 𝐻௜೘,௞
∗ 𝑅௜೘,௞

ିଵ 𝑦௜೘,௞   (22)    

                             
By iterating Eq. (22), we obtain (23):  

൫𝑃௜,௞|௞൯
ିଵ

𝑥ො௜,௞|௞ ൌ ൫𝑃௜,௞|௞ିଵ൯
ିଵ

𝑥ො௜,௞|௞ିଵ ൅ ෌ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ𝑦௟,௞௟∈𝒩೔
 

                 (23) 

Using Eq. (19) and multiplying  both sides of Eq. (23) by 
𝑃௜,௞|௞, the measurement update for 𝑥ො௜,௞|௞ is obtained as 
follows: 

𝑥ො௜,௞|௞ ൌ 𝑥ො௜,௞|௞ିଵ ൅ 𝑃௜,௞|௞ ෍ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ൫𝑦௟,௞ െ 𝐻௟,௞𝑥ො௜,௞|௞ିଵ൯
௟∈𝒩೔

  

      (24)                  

The local estimate is computed in the incremental updating 
stage of fractional order distributed Kalman filter algorithm 
according to Eq. (24). Moreover, the relationships between 
update time of this algorithm are the same as those mentioned 
in the regular update of the ordinary Kalman filter algorithm 
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(Sierociuk and Dzieliński, 2006). Therefore, the Kalman 
filter fractional-order algorithm is formulated and proved. 

4. THE FRACTIONAL-ORDER DIFFUSION KALMAN 
FILTER ALGORITHM 

It can be seen in the fractional-order distributed Kalman filter 
algorithm that the incremental update step in each node i ends 
with an optimal local estimate of 𝜙௜,௞|௞ after combining all  
measurements of its neighbors 𝒩௜  are completed. Therefore, 
this estimate is converted to an estimate of the new updated 
state 𝑥ො௜,௞|௞  which is the variance matrix of error 𝑃௜,௞|௞. Now 
the problem of estimating 𝑥ො௜,௞|௞  is defined such that in 
addition to terms  𝜙௜,௞|௞, local estimation terms ൛𝜙௟,௞|௞ൟ in the 
neighborhood Ni also affect its calculation. This is meant to 
approximate the results of the local estimate  𝑥ො௜,௞|௞   and 
global estimate 𝑥ො௞|௞ (estimate based on access to all data 
across the network). The relation between ሼ𝜙௟,௞|௞ሽ in the 
neighborhood of 𝒩௜ and the general estimate 𝑥ො௞|௞ must be 
investigated first in order to achieve this objective. 

Therefore, assume that the adjacency matrix Ω meet the 
requirements of the following Equation: 

 ෌ ሾ𝛺ሿ௟,௜
ே
௜ୀଵ

𝛾௜ ൌ 1     𝑙 ൌ 1, . . . , 𝑁                                  (25) 

where 𝛾௜ are weights. For example, if Ω is reversible, then the 

vector of weights 𝛾 ൌ 𝑐𝑜𝑙ሼ𝛾௞ሽ is obtained as 𝛾 ൌ Ωିଵ1 and 
condition (12) is always met. In general, any given matrix 
Ω  may not satisfy condition (12). Fortunately, there is a 
solution to this problem without changing network topology. 
Each node is connected to itself according to the definition of 
the network. In this method, if Ω  is not reversible, it could be 
reversed by appropriately changing the values of some 
elements of the original diameter Ω  to zero (Cattivelli et al., 
2010). Therefore, condition (12) would be met without 
affecting network topology. 

However, assumption (12) is only used to motivate diffusion 
updates as mentioned before while it is not necessary for 
diffusion algorithms. Three different optimal solution 
methods for the Kalman filter may be considered depending 
on the data access for each node. 

The individual estimation of mode 𝑥௞ in node i, represented 
by 𝑥ො௜,௞|௞

௜௡ௗ , depends only on the observations 𝑦௜,௝in node i for j 
= 0, ..., k. The local estimation of the state of 𝑥௞ in node i, 
represented by 𝑥ො௜,௞|௞

௟௢௖ , depends on observations 𝑦௟,௝ for j = 0, 
..., k on the whole neighborhood i, 𝑤ℎ𝑒𝑟𝑒 𝑙 ∈  𝒩௜ is 
dependent. Finally, the global estimate of mode 
𝑥௞ represented by 𝑥ො௞|௞ depends on observations 𝑦௜,௝ for j = 0, 
..., k among all nodes i = 1, ..., N. Now, the relationship 
between local estimates of  𝑥ො௜,௞|௞

௟௢௖  and their inclusive estimates 
is examined. 

The covariance matrices for individual, local and learning 
estimation errors are represented by 𝑃௜,௞|௞

௜௡ௗ   𝑃௜,௞|௞
௟௢௖  and 𝑃௞|௞ 

respectively. Since measurement noise 𝑣௜,௞ is assumed to be 
with zero mean in various unconnected nodes, it can be 
shown that  individual and inclusive estimates are related as 
follows (Sayed, 2003): 

⎩
⎨

⎧𝑃௞|௞
ିଵ 𝑥ො௞|௞ ൌ ෍ ൫𝑃௜,௞|௞

௜௡ௗ ൯
ିଵ

𝑥ො௜,௞|௞
௜௡ௗ

ே

௜ୀଵ
           

𝑃௞|௞
ିଵ ൌ ෍ ൫𝑃௜,௞|௞

௜௡ௗ ൯
ିଵே

௜ୀଵ
െ ሺ𝑁 െ 1ሻ𝛱௞

ିଵ
                        (26) 

where Π୩ is the covariance matrix x୩. According to the 
above, local estimates will be related to individual 
estimates: 

⎩
⎪
⎨

⎪
⎧ ൫𝑃௜,௞|௞

௟௢௖ ൯
ିଵ

𝑥ො௜,௞|௞
௟௢௖ ൌ ෍ ሾ𝐴ሿ௟,௜൫𝑃௟,௞|௞

௜௡ௗ ൯
ିଵ

𝑥ො௟,௞|௞
௜௡ௗ   

ே

௟ୀଵ

൫𝑃௜,௞|௞
௟௢௖ ൯

ିଵ
ൌ ෍ ሾ𝐴ሿ௟,௜൫𝑃௟,௞|௞

௜௡ௗ ൯
ିଵே

௟ୀଵ
െ ቀ෌ ሾ𝐴ሿ௟,௜

ே
௟ୀଵ

െ 1ቁ 𝛱௞
ିଵ 

 

      

            (27) 

Now consider a set of real weights 𝛾௜, 𝑖 ൌ 1, … , 𝑁  with the 
following combinations: 

෍ 𝛾௜൫𝑃௜,௞|௞
௟௢௖ ൯

ିଵ
𝑥ො௜,௞|௞

௟௢௖
ே

௜ୀଵ
ൌ ෎ ෍ ሾ𝐴ሿ௟,௜൫𝑃௟,௞|௞

௜௡ௗ ൯
ିଵ

𝑥ො௟,௞|௞
௜௡ௗ

ே

௜ୀଵ

ே

௟ୀଵ

  

           (28) 

෍ 𝛾௜൫𝑃௜,௞|௞
௟௢௖ ൯

ିଵே

௜ୀଵ
ൌ ෎ ෍ 𝛾௜ሾ𝐴ሿ௟,௜൫𝑃௟,௞|௞

௜௡ௗ ൯
ିଵே

௜ୀଵ

ே

௟ୀଵ

െ

൬෍ ෌ 𝛾௜ሾ𝐴ሿ௟,௜
ே
௜ୀଵ

ே

௟ୀଵ
െ ∑ 𝛾௜

ே
௜ୀଵ ൰ 𝛱௞

ିଵ                                      (29) 

If a set of weights is found such that the condition 
∑ 𝛾௜ሾΩሿ௟,௞

ே
௜ୀଵ ൌ 1 holds true for all 𝑙 s, then equations (28) and 

(29) are reduced to equations (30) and (31) after changing the 
symbol 𝑥ො௜,௞|௞

௟௢௖ ൌ 𝜙௜,௞, 

𝑃௞|௞
ିଵ 𝑥ො௞|௞ ൌ ෍ 𝛾௜𝑃௜,௞|௞

ିଵ 𝜙௜,௞

ே

௜ୀଵ
                                       (30) 

𝑃௞|௞
ିଵ ൌ ෍ 𝛾௜𝑃௜,௞|௞

ିଵ
ே

௜ୀଵ
െ ሺ∑ 𝛾௜ െ 1ே

௜ୀଵ ሻ𝛱௞
ିଵ                       (31) 

Therefore, local and inclusive estimates are related by the 
above relationship. Now, with a distributed Kalman filter 
algorithm in a distributed fraction, it is expected that the 
covariance matrix of individual errors 𝑃௜,௞|௞ will decrease 
over time. Therefore, the first term of the right-hand side of 
(31) dominates. Hence, the relation (32) can be approximated 
as follows: 

𝑃௞|௞
ିଵ ൎ ෍ 𝛾௜𝑃௜,௞|௞

ିଵ
ே

௜ୀଵ
                                                   (32) 

Thus: 

𝑥ො௞|௞ ൎ ൤෍ 𝛾௜𝑃௜,௞|௞
ିଵ

ே

௜ୀଵ
൨

ିଵ

෍ 𝛾௜𝑃௜,௞|௞
ିଵ 𝜙௜,௞

ே

௜ୀଵ
                  (33) 

Eq. (33) can be used to rewrite the average weighted value as 
follows: 

𝑥ො௞|௞ ൎ ෌ 𝛤௜𝜙௜,௞
ே
௜ୀଵ

                                                       (34) 

where the matrices meet the average of Eq. (35): 

∑ 𝛤௜ ൌ 𝐼ே
௜ୀଵ                                                                             (35) 

The result of Eq. (34) provides an approximation method 
such that estimates ሼ𝜙௟,௞ሽ in all nodes in the neighborhood 𝑘 
can be localized. For example, for two connected nodes 𝑙 and 
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𝑖, we can assign non-negative weight 𝑐௟,௜ and if two nodes 𝑙 
and 𝑖 are not connected, 𝑐௟,௜ ൌ 0. Weights are chosen to 
satisfy Eq. (36): 

෌ 𝑐௟,௜௟∈𝒩೔
ൌ 1                                                                      (36) 

Therefore, according to Eq. (34), the relation 𝑥ො௜,௞|௞ ൌ 𝜙௜,௞|௞ 
in the time update section in the Kalman filter of the 
distributed fraction is replaced by Eq. (37): 

𝑥ො௜,௞|௞ ൌ ෌ 𝑐௟,௜𝜙௟,௞௟∈𝒩೔
                                                        (37) 

Eq. (37) is called diffusion update. 

At any particular moment, each sensor collects information 
viewed by its neighbors in order to make accurate estimates 
of target tracking. Nevertheless, considering the effect of 
observation noise, 𝑣௞,௜, we consider a conversion factor for 
each neighbor in order to adjust the effect of noise. The 
matrix of the coefficient 𝐶 ൌ ሾ𝑐௟,௞ሿ is defined by the 
following property: 

𝑐௟,௜ ൒ 0,    ෌ 𝑐௟,௜௟∈𝒩೔
ൌ 1

𝑐௟,௜ ൌ 0,   𝑖𝑓  𝑙 ∉ 𝒩௜    𝑓𝑜𝑟   𝑘 ൌ 1, . . . , 𝑁
                                    (38) 

Matrix 𝐶 is called diffusion matrix because it manages the 
diffusion process and plays an important role in the steady 
state performance of the network. The elements in 𝐶 
represent the weights used by the diffusion algorithm to 
combine estimates from neighboring sensors and there are 
different rules for combining these values. In this paper, the 
metropolis rule for the expression of a set of non-negative 
coefficients 𝑐௟,௜, is obtained as follows (Sayed, 2003): 

𝑐௟,௜ ൌ
ଵ

୫ୟ୶ሺ௡೗,௡೔ሻ
,  𝑖𝑓  𝑙 ് 𝑘  𝑎𝑟𝑒  𝑙𝑖𝑛𝑘𝑒𝑑

𝑐௟,௜ ൌ 0,  𝑖𝑓  𝑙, 𝑘  𝑛𝑜𝑡  𝑙𝑖𝑛𝑘𝑒𝑑

𝑐௜,௜ ൌ 1 െ ෌ 𝑐௟,௜௟∈𝒩೔/௜
,   𝑖𝑓  𝑙 ൌ 𝑘

                                    (39)  

where 𝑛௜ represents the degree of node 𝑖. 

In implementing diffusion, the nodes only cooperate with 
their immediate neighbors and propagate the information 
across the network through a sequence of Kalman repetitions 
and data aggregation. According to the above explanation, 
the fractional order Kalman filtering algorithm which consists 
of two stages of information exchange (local information 
exchange and global information exchange) is summarized in 
Table 2.  

Table 2: Fractional-order diffusion Kalman filter 
algorithm 

Consider the space-state model of the order-fraction (1): 
For each node 𝑖 we have: 𝑥ො௜,଴|ିଵ ൌ 𝐸ሺ𝑥଴ሻ, 𝑃௜,଴|ିଵ ൌ 𝛱଴ 
In each sampling period 𝑘, repeat the following two steps: 
Step 1: Incremental update 

⎩
⎪
⎨

⎪
⎧ 𝑃௜,௞|௞

ିଵ ൌ 𝑃௜,௞|௞ିଵ
ିଵ ൅ ෍ 𝐻௟,௞

∗ 𝑅௟,௞
ିଵ𝐻௟,௞

௟∈𝒩೔

𝜙௜,௞|௞ ൌ 𝑥ො௜,௞|௞ିଵ ൅ 𝑃௜,௞|௞ ෍ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ൫𝑦௟,௞ െ 𝐻௟,௞𝑥ො௜,௞|௞ିଵ൯
௟∈𝒩೔

 

Step 2: Diffusion update 

𝑥ො௜,௞|௞ ൌ ෍ 𝑐௟,௜𝜙௟,௞

௟∈𝒩೔

                                    

𝛥ϒ𝑥ො௜,௞ାଵ|௞ ൌ 𝐹௞𝑥ො௜,௞|௞                                                                                   

𝑥ො௜,௞ାଵ|௞ ൌ 𝛥ఊ𝑥ො௜,௞ାଵ|௞ െ ෍ሺെ1ሻ௝ϒ௝

௞ାଵ

௝ୀଵ

𝑥ො௜,௞ାଵି௝                                        

𝑃௜,௞ାଵ|௞ ൌ ሺ𝐹௞ ൅ ϒଵሻ𝑃௜,௞|௞ሺ𝐹௞ ൅ ϒଵሻ∗ ൅ 𝐺௞𝑄௞𝐺௞
∗ ൅ ෍ϒ௝𝑃௜,௞ି௝ϒ௝

்
௞

௝ୀଶ

 

 

5. AVERAGE PERFORMANCE ANALYSIS 

In this section, convergence of diffusion Kalman filter 
algorithms are analyzed. The main results of this section are 
as follows. The estimation error at each node and at any 
moment is expressed through a proper expression (46). Then, 
using this result it is shown that the Kalman filter distribution 
estimates for all moments of 𝑘 ൒ 0are without bias. 

Hypothesis 1: Consider the discrete-time linear fractional 
order system given by mode Eq. (1), output observation Eq. 
(8) and initial estimation conditions 𝑥ො௜,଴|ିଵ ൌ 𝐸ሺ𝑥଴ሻ, 𝑃௜,଴|ିଵ ൌ
𝛱଴ for each node i. Global state estimates obtained by the 
fractional-order diffusion Kalman filter for the system at all 
𝑘 ൒ 0 moments are without bias. 

Proof: To prove hypothesis 1, the estimation error at the end 
of the incremental update is calculated by 𝜙෨௜,௞ ൌ 𝑥௞ െ 𝜙௜,௞. 
Also, ni is the degree of node i and the set ൛𝑖௝ൟ, 𝑗 ൌ 1, . . , 𝑛௜ 
represents neighbors indices of node i. 

Consider the incremental step in the algorithm mentioned in 

Table 2 and 𝑃௜,௞
ሺ௝ሻ , 𝑃௜,௞ values in the jth iteration where 

𝑗 ൌ 1, . . , 𝑛௜, 𝑃௜,௞
ሺ଴ሻ ൌ 𝑃௜,௞|௞ିଵ  and 𝑃௜,௞

ሺ௡೔ሻ ൌ 𝑃௜,௞|௞. By repeating 
the incremental step on the neighbors of node i we can write: 

𝜙෨௜,௞ ൌ ൤𝐼 െ 𝑃௜,௞
ሺ௡೔ିଵሻ𝐻௜೙೔

,௞
∗ ቀ𝑅௜೙೔

,௞ ൅ 𝐻௜೙೔
,௞𝑃௜,௞

ሺ௡೔ିଵሻ𝐻௜೙೔
,௞

∗ ቁ
ିଵ

𝐻௜೙೔
,௞൨

ൈ ൤𝐼 െ 𝑃௜,௞
ሺ଴ሻ𝐻௜భ,௞

∗ ቀ𝑅௜భ,௞ ൅ 𝐻௜భ,௞𝑃௜,௞
ሺ଴ሻ𝐻௜భ,௞

∗ ቁ
ିଵ

𝐻௜భ,௞൨ 𝑥෤௜,௞|௞ିଵ

  ൅ ൤𝐼 െ 𝑃௜,௞
ሺ௡೔ିଵሻ𝐻௜೙೔

,௞
∗ ቀ𝑅௜೙೔

,௞ ൅ 𝐻௜೙೔
,௞𝑃௜,௞

ሺ௡೔ିଵሻ𝐻௜೙೔
,௞

∗ ቁ
ିଵ

𝐻௜೙೔
,௞൨

ൈ ൤𝐼 െ 𝑃௜,௞
ሺଵሻ𝐻௜మ,௞

∗ ቀ𝑅௜మ,௞ ൅ 𝐻௜మ,௞𝑃௜,௞
ሺଵሻ𝐻௜మ,௞

∗ ቁ
ିଵ

𝐻௜మ,௞൨     

ൈ 𝑃௜,௞
ሺ଴ሻ𝐻௜భ,௞

∗ ቀ𝑅௜భ,௞ ൅ 𝐻௜భ,௞𝑃௜,௞
ሺ଴ሻ𝐻௜భ,௞

∗ ቁ
ିଵ

𝑣௜భ,௞

           ⋮

   ൅ 𝑃௜,௞
ሺ௡೔ିଵሻ𝐻௜೙೔

,௞
∗ ቀ𝑅௜೙೔

,௞ ൅ 𝐻௜೙೔
,௞𝑃௜,௞

ሺ௡೔ିଵሻ𝐻௜೙೔
,௞

∗ ቁ
ିଵ

𝑣௜೙೔
,௞ 

 

      (40) 

Notice that 𝑃௜,௞
ሺ௝ሻ𝐻௜ೕ,௞

∗ 𝑅௜ೕ,௞
ିଵ ൌ 𝑃௜,௞

ሺ௝ିଵሻ𝐻௜ೕ,௞
∗ ቀ𝑅௜ೕ,௞ ൅

𝐻௜ೕ,௞𝑃௜,௞
ሺ௝ିଵሻ𝐻௜ೕ,௞

∗ ቁ
ିଵ

, therefore the above equation can be 

rewritten as: 

𝜙෨௜,௞ ൌ 𝑥෤௜,௞|௞ିଵ െ 𝑃௜,௞|௞ ෍ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ൫𝐻௟,௜𝑥෤௜,௞|௞ିଵ ൅ 𝑣௟,௞൯
௟∈𝒩೔

ൌ ൫𝐼 െ 𝑃௜,௞|௞𝑆௜,௞൯𝑥෤௜,௞|௞ିଵ െ 𝑃௜,௞|௞ ෍ 𝐻௟,௞
∗ 𝑅௟,௞

ିଵ𝑣௟,௞

௟∈𝒩೔

 
 

     (41) 
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where 𝑥෤௜,௞|௞ିଵ ൌ 𝑥௞ െ 𝑥ො௜,௞|௞ିଵ indicates  estimation error in 
node i at the end of the diffusion update and 𝑆௜,௞ ൌ
∑ 𝐻௟,௞

∗ 𝑅௟,௞
ିଵ𝐻௟,௞௟∈𝒩೔

, so it is:  

𝑥෤௜,௞|௞ିଵ ൌ 𝐹௞ିଵ𝑥෤௜,௞ିଵ|௞ିଵ ൅ 𝐺௞ିଵ𝑢௞ିଵ െ ෌ ሺെ1ሻ௝ϒ௝𝑥෤௜,௞ି௝
௞

௝ୀଵ
                                            

            (42) 

Combining Eq. (43) with the diffusion update step of the 
mentioned algorithm in Table 2 results in Eq.  (43):  

𝑥෤௜,௞|௞ିଵ ൌ ෌ 𝑐௟,௜𝜙෨௟,௞௟∈𝒩೔
                 

  ൌ ෍ 𝑐௟,௜ ቂ൫𝐼 െ 𝑃௟,௞|௞𝑆௟,௞൯𝑥෤௟,௞|௞ିଵ െ 𝑃௟,௞|௞ ෌ 𝐻௠,௞
∗ 𝑅௠,௞

ିଵ 𝑣௠,௞௠∈𝒩೗
ቃ

௟∈𝒩೔

  

(43) 

By obtaining the expected value from both sides of equations 
(44) and (45) the recursive formula for the expected value of 
the estimates is obtained by the fractional-order Kalman filter 
algorithm as follows: 

𝐸ൣ𝑥෤௜,௞|௞ିଵ൧ ൌ 𝐹௞ିଵ𝐸ൣ𝑥෤௜,௞ିଵ|௞ିଵ൧ െ ෌ ሺെ1ሻ௝ϒ௝𝐸ൣ𝑥෤௜,௞ି௝൧
௞

௝ୀଵ
  

     (44)    

𝐸൫𝑥෤௜,௞|௞ିଵ൯ ൌ ෍ 𝑐௟,௜൫𝐼 െ 𝑃௟,௞|௞𝑆௟,௞൯𝐸൫𝑥෤௟,௞|௞ିଵ൯
௟∈𝒩೔

             (45) 

Since the 𝑥ො௜,଴|ିଵ ൌ 0 is ሺ𝑥଴ሻ ൌ 0 . For all i, ൫𝑥෤௜,଴|ିଵ൯ ൌ 0 . 
Thus, 

𝐸൫𝑥෤௜,଴|଴൯ ൌ ෍ 𝑐௟,௜൫𝐼 െ 𝑃௟,଴|଴𝑆௟,଴൯𝐸൫𝑥෤௟,଴|ିଵ൯
௟∈𝒩೔

ൌ 0         (46) 

Therefore, we can conclude from repeating equations (44) 
and (45) that the fractional-order diffusion Kalman filter 
estimation for all k≥0 is without bias. 

6. SIMULATION 

In this section, a projectile path tracking scenario is 
implemented in a wireless sensor network in order to 
numerically evaluate performance of the fractional-order 
distributed Kalman filter algorithms and the fractional-order 
diffusion Kalman filter algorithm. Then, by estimation of  the 
state of a projectile performance of the proposed fractional-
order diffusion Kalman filter algorithm, the fractional-order 
distributed Kalman filter algorithm and conventional 
fractional Kalman filter algorithm are compared. The results 
obtained from simulations, as confirmed in the previous 
sections, prove the validity of the proposed algorithms in 
terms of convergence error of  estimation error due to the 
proposed fractional order Kalman filter algorithm. The 
accuracy of the estimation obtained from the proposed 
fractional-order Kalman filter algorithms also shows a 
significant improvement over the conventional fractional-
order Kalman filter algorithm. 

Consider a set of sensors in a wireless sensor network that try 
to predict and track the trajectory of a projectile. Assume that 
the projectile is adjacent to an adaptive network in which the 
sensors observe the position of the projectile affected by 
noise. This network consists of 20 sensors or agents with 
topology shown in Fig. 2, where the connecting lines 
between the nodes represent information communication 

between the agents. At the same time, each sensor node can 
independently detect the position of the projectile and 
communicate with its neighbors. 

 

Fig. 2. Network topology with N = 20 nodes. 

Now acceleration a, velocity v, and projectile position p are 
as follows: 

𝑎 ൌ ൥
𝑎௫
𝑎௬
𝑎௭

൩ , 𝑣 ൌ ൥
𝑣௫
𝑣௬
𝑣௭

൩ , 𝑝 ൌ ൥
𝑝௫
𝑝௬
𝑝௭

൩                                 (47) 

For the projectile move (Ebaid, 2011): 

𝐷௡భ𝑣ሺ𝑡ሻ ൌ 𝑎ሺ𝑡ሻ
𝐷௡మ𝑝ሺ𝑡ሻ ൌ 𝑣ሺ𝑡ሻ 

𝑎ଵ ൌ 𝑎ଶ ൌ 0,  𝑎ଷ ൌ െ𝑔
                                          (48) 

where g is the acceleration of gravity on earth. x mode is a 6-
dimensional vector system consisting of projectile’s velocity 
and position collection as follows. Therefore, the dynamics of 
the process with respect to Eq. (49) are considered as follows: 

𝑓௞ሺ𝑥௞, 𝑢௞ሻ ൌ ሾ𝐷௡𝑣 𝐷௡𝑝ሿ் ൈ ℎ௡

𝛥ϒ𝑥௞ାଵ ൌ 𝑓௞ሺ𝑥௞, 𝑢௞ሻ ൅ 𝑤௞,  𝑘 ൒ 0      𝑤௞ ൌ ሺ0, 𝑄௞ሻ

𝑥௞ାଵ ൌ 𝛥ϒ𝑥௞ାଵ െ ෍ ሺെ1ሻ௝ϒ௝𝑥௞ାଵି௝,   𝑘 ൒ 0  
௞ାଵ

௝ୀଵ

                       (49) 

where 𝑛 ൌ 0.99 is the fractional-order system, 𝑥௞ ൌ ሾ𝑣௞, p୩ሿ் 
system modes with default values. Moreover, 𝑥଴ ൌ
ሾ0.7,0.1,0.2,0.8,0.2ሿ் and 𝑢௞ ൌ ሾ0ሿ are input system. 
Assume each node measures an unspecified target position in 
one of the following two situations: 𝐻௜,௞ ൌ
ሾ0, 𝑑𝑖𝑎𝑔ሺሾ1 1 0ሿሻሿ, for the case where only horizontal 
dimensions are seen and 𝐻௜,௞ ൌ ሾ0 , 𝑑𝑖𝑎𝑔ሺሾ1 0 1ሿሻሿ, for the 
case where both a horizontal and a vertical dimension are 
seen. Therefore, nodes can’t directly measure projectile 
position in three dimensions. The assignment of the 
observable pair is performed at random by each node. 

The values of the parameters are: ℎ ൌ 0.1, 𝐺௞ ൌ 𝐼଺, 𝑄௞ ൌ
0.001𝐼଺, 𝑆௜ ൌ 0 and 𝑅௜,௞ ൌ √𝑖𝑃𝑅଴𝑃் with 𝑅଴ ൌ 0.5 ൈ
𝑑𝑖𝑎𝑔ሺሾ1 4 7ሿሻ and 𝑃 is a permutation matrix that is randomly 
selected for each node. The coefficient √𝑘 makes variation of 
noise conditions for each node possible. The initial 
conditions are 𝑥଴ ൌ ሺ10,2,8,0.1,0.1,0.1ሻ் and 𝑃଴ ൌ 𝐼଺. 

Fig. 3 shows actual vertical path (continuous curve) and noise 
measurements of vertical position at node 5 (dashed curve). 
Fig. 4 also shows the mode estimation function when 
estimating vertical position for different algorithms across the 
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entire network. The three remaining curves are related to 
conventional Kalman filter, fractional-order distributed and 
fractional-order diffusion Kalman filter. It is observed that 
the estimates obtained by fractional-order diffusion Kalman 
filter are closer to the actual path than that of the other two 
algorithms.  

 

Fig. 3. True vertical path and noise measurement of vertical 
position in node 5 

 

Fig. 4. Average estimates of vertical position of all nodes by 
different algorithms. 

The mean square deviation (MSD) criterion for  performance 
of the fractional-order Kalman filter is evaluated. It should be 
noted that the mean MSD for all nodes is defined as follows: 

𝑀𝑆𝐷௜,௞ ൌ 𝐸ฮ𝑥௜ െ 𝑥ො௜,௞|௞ฮ
ଶ

𝑀𝑆𝐷௞
௔௩௚ ൌ

ଵ

ே
෌ 𝑀𝑆𝐷௜,௞

ே

௜ୀଵ

                                       (50) 

where the time index k and node i are considered for MSD, 
because different nodes generally produce different estimates 
for diffusion algorithms. 

The MSD Kalman filter function is evaluated numerically 
and is compared with conventional and distributed Kalman 
filters. In Fig. 5 and Table 3, a comprehensive MSD 
evaluation for the three algorithms is presented. 

In this Figure, the 𝑥-axis represents the number of repetitions 
and the y-axis shows MSD. 

As you can see, the error in the conventional fractional 
Kalman filter is high, since the nodes do not have access to 
three-dimensional measurements of projectile movement, and 
the pair ൛𝐹, 𝐻௜

௟௢௖ൟ is indistinguishable. It can be concluded 
from this Figure that the two distributed and diffusion

fractional order Kalman filter algorithms converge to 
constant values of MSD with different convergence speeds 
over time. By comparing and analyzing simulations of the 
three different algorithms, it can be concluded that the 
estimated order fractional diffusion Kalman filter shows 
significant improvement over the distributed state. These 
results confirm the benefits of using diffusion strategies for 
adaptive networks. 

 

Fig. 5. Inclusive MSD function for Fractional  Order 
diffusion Kalman Filter algorithms, Fractional-Order 
distributed Kalman Filter Algorithm and Ordinary Kalman 
Filter Algorithm. 

Table 3. Global MSD performance and computing time 
for diffusion fractional-order, distributed fractional-

order, and conventional Kalman filter. 

Algorithm MSD 
performance 

Computing 

time  (s) 

diffusion fractional-
order Kalman filter 

0.63 5.25 

fractional-order 
distributed Kalman 

filter 

0.66 5.22 

conventional Kalman 
filter 

0.87 5.109 

The comparison of the methods was investigated in terms of 
computing time  and was run by hardware the following 
specifications " (processor: Intel, core i7(TM), cpu 2 GHz, 
RAM: 8 GB)”, was included in table 3 and the descriptions of 
the table were added to line 3 of the last paragraph of 
simulation section. Table 3 shows that, in the implemented 
method, as the estimation accuracy increases, computations 
take longer and MSD decreases, and this indicates that even 
though the computing time has increased, the error have 
decreased and a greater accuracy is yielded. All items 
mentioned in the last paragraph of the article simulation 
section were added. Table 3 shows that, in the implemented 
method, as the estimation accuracy increases, computations 
take longer and MSD decreases, and this indicates that even 
though the computing time has increased, the error have 
decreased and a greater accuracy is yielded. 
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7. CONCLUSIONS 

In this paper, strategies of fractional-order diffusion Kalman 
filter for estimating distributed mode in linear systems are 
presented. In this algorithm, each node only needs to 
communicate with its neighbors in order to share data and 
estimates. Also, the proposed diffusion method guarantees 
diffusion of information across the entire network. Then 
steady-mode mean analysis was presented and it was proved 
that the computational estimation calculated by Kalman filter 
is a non-bias emission fraction. Finally, the performance of 
the proposed diffusion and distributed fractional-order 
Kalman filter algorithms were compared with conventional 
Kalman algorithm to estimate the state of a projectile. 
Simulation results show that the generalized estimation error 
of the fractional-order diffusion Kalman filter algorithm can 
converge to a desirable single value. Also, the accuracy of the 
estimation obtained by the fractional-order diffusion Kalman 
filter differs significantly from the other two algorithms. 
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