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Abstract: This paper proposes a new procedure for the design of a robust fuzzy observer-based tracking 
controller for nonlinear systems using Takagi-Sugeno (TS) formalism. A reference state model is 
considered and the premise variables are considered inaccessible to measurement. In order to ensure the 
global stability and to minimize efficiently the effect of the disturbance affecting the tracking performances 
of the closed loop system and the observer, in addition to the Lyapunov approach, the H _∞ norm is used. 
The controller and the observer design are developed in a single step and new sufficient conditions are 
obtained and given in terms of linear matrix inequalities (LMIs). The application on a biological process in 
simulation studies is provided to explain the tracking control design procedure and to prove the efficiency 
of the proposed approach. 
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1. INTRODUCTION 

The study of model following and tracking problems keeps 
considerable attentions due to demands from practical 
dynamical processes in mechanics, economics and biology 
(Benattia et al., 2016; Haidegger et al., 2011; Haidegger et al., 
2011). A variety of approaches have been proposed. The 
output feedback linearization technique and adaptive scheme 
are incorporated to achieve the tracking purpose (Benattia et 
al., 2020; Owczarkowski et al., 2019). The robust control is 
also a frequently used method in case of existence of 
parameter variation and disturbances (Miranda-Colorado and 
Aguilar, 2020; Owczarkowski et al., 2019; Szelitzky et al., 
2011). To attenuate the effect of parameter variation and 
external disturbance, the H1 tracking methods also studied in 
the literature.  

Furthermore, actual systems are generally nonlinear which 
makes observers and controllers design more difficult. Using 
the fuzzy Takagi-Sugeno (TS) formalism makes the task 
easier to handle. Fuzzy technique is recognized as a powerful 
tool in approximating complex nonlinear system. Various 
techniques have been developed and successfully used in 
nonlinear modeling and control (Benattia et al., 2016; 
Benzaouia and El Hajjaji, 2014; Haidegger et al., 2011; 
Haidegger et al., 2011; Tanaka and Wang, 2001; Abyad et al., 
2020; Benzaouia and El Hajjaji, 2018; W.-J. Chang et al., 
2019; Saifia et al., 2020; Tong and Li, 2002; J.-W. Wang et al., 
2013). 

We are interested by the design of a fuzzy observer based 
tracking controller. However, on the one hand, the problem of 
the state fuzzy tracking control didn’t get enough importance. 
Few studies have addressed the tracking problem of all the 
output/state variables, for example (Abyad et al., 2018a; 

Chung-Chun Kung and Hai-Huang Li, 2002; Chung-Shi 
Tseng et al., 2001). On another side, fuzzy observer-based 
control problem is in general difficult to deal with. Most often 
a two-step procedure for the observer and the controller design 
is used. As examples one can cite: an adaptive fuzzy tracking 
control problem for uncertain systems despite the existence of 
the external disturbances, the controller design is based on the 
state estimation was presented in (Liu et al., 2011). A robust 
fuzzy observer based 𝐻ஶ control problem is addressed in (Lo 
and Lin, 2004). A two step procedure is also given in 
(Chung-Shi Tseng et al., 2001) to achieve the tracking purpose 
and state estimation. In these cited works, the stability 
conditions are expressed by bilinear matrix inequalities (BMI) 
difficult to solve. The solution needs to recast the BMI into 
two LMIs where the obtained solution of the first LMI is 
substituted as a known variable when resolving the second 
LMI. In (Y. Wang et al., 2018) an H1 fuzzy control was 
designed for a class of nonlinear disturbed systems with 
uncertain parameters. In (G.-H. Chang and Wu, 2012), a fuzzy 
controller based on the state estimation is synthesized to 
reduce the tracking error. Authors in (Tong and Li, 2002) 
present a sufficient conditions in terms of LMIs for robust 
output tracking controllers based on the state estimation. New 
conditions are given in (Xie et al., 2019) for the stabilization of 
TS fuzzy systems based on the observer with unknown 
premise variables. 

On the other hand, control and monitoring of biological 
processes is an active area of research. Due to the presence of 
living microorganisms, these processes can exhibit a wide 
range of dynamic behaviors and are typically described by 
complex nonlinear systems with time varying characteristics. 
Moreover, due to the lack of direct online sensors, these 
processes are also known by the difficulty to measure 
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chemical and biological variables. Automatic control of 
biological processes has been extensively the subject of lot of 
studies, one can cite especially, for the nonlinear modeling 
(Bastin and Dochain, 1990; Bernard and Quelinnec, 2008; 
Denis Dochain and Vanrolleghem, 2015; Karama et al., 2010) 
for the control (Alcaraz-González et al., 2012; Bastin and 
Dochain, 1990; Dahhou et al., 1992; Evans et al., 2003; Ioan 
and Mihai, 2001; Teanu and Petre, 2004) and the estimation 
(Bastin and Dochain, 1990; Ben Youssef et al., 1996; Bernard 
and Gouzé, n.d.; Montiel-Escobar et al., 2012; Zhang et al., 
2017). Based on the TS formulation and the Parallel 
Distributed Compensation (PDC), in two of our previous 
works we were interested by the stabilisation and the fault 
tolerant control issues. In (Khallouq and Karama, 2017), a 
fuzzy statefeedback controller has been developed for the 
stabilization of the state variables of a bacterial growth process 
around a specific equilibrium point. In (Abyad et al., 2018b) a 
Fault Tolerant Control (FTC) has been investigated using a 
fuzzy linear quadratic integral controller to compute the 
nominal controller of the free fault system, and a 
proportional-integral observer to estimate faults.  

In (Ghorbel et al., 2014) a robust fuzzy observer-based 
tracking controller is developed to reduce both the tracking 
error and the estimation error and gives in one step procedure 
the controller and observer gains. It is certainly more 
advantageous when the controller and the observer are 
designed in one step than in the two step approach where they 
are synthesized independently. Nevertheless, requiring the 
controller and observer stability conditions to be resolved 
simultaneously can be more restrictive and therefore can lead 
to constraining LMIs that are more difficult to resolve. It is in 
this context that the contribution of this article can be stated. 
Our objective is to propose an approach aimed at considerably 
simplifying the conditions for stability. 

This paper addresses a similar problem studied in (Ghorbel et 
al., 2014). Based on an algebraic transformation, we propose a 
different procedure to design a fuzzy robust observer based 
tracking controller using a reference model and with non 
measurable premise variables. At first, the nonlinear system is 
tranformed into a TS fuzzy model and a TS fuzzy observer is 
built. Then a PDC control law depending on the reference 
states and the observer states is considered. To study the 
stability conditions, an augmented system using the estimation 
error and the tracking error is constructed. Using the 𝐻ஶ 
norm, the controller and the observer synthesis is achieved in a 
single step. The novelty of this paper is by introducing a 
variable change modifying the considered Lyapunov function, 
more relaxed sufficient conditions are obtained compared to 
those in (Ghorbel et al., 2014). These new conditions are given 
in terms of linear matrix inequalities (LMIs). To show the new 
design features of the current work, an application on a 
biological process in simulation studies is provided. To check 
the efficiency of our method, a comparison with the work in 
(Ghorbel et al., 2014) is realized. First, the simulations of the 
two methods are compared . Later on, by mean of a feasibility 
test, the comparison of the obtained conditions and those in 
(Ghorbel et al., 2014) is performed. 

The paper is organized as follows. In section 2, the problem 
formulation is presented. A detailed description of the 

proposed procedure to design the robust observer based fuzzy 
tracking controller is given in section 3. In section 4, the 
bioprocess model is described. Its transformation to a TS 
model is illustrated in Section 5. Section 6 presents the 
simulation results to illustrate ended by a conclusion 

2. PROBLEM FORMULATION AND PRELIMINARIES 

Consider the following dynamic model:  

( ) = ( ( )) ( ) ( ( )) ( )

( ) = ( )

x t f x t x t g x t u t

y t Cx t


 (1) 

where ( ) nx t   is the state vector, ( ) mu t   is the input 

vector, ( ) qy t   is the output vector, q nC   and ( )f   

and ( )g   are two nonlinear functions.  

2.1. The TS fuzzy model 

The fuzzy dynamic model had been proposed by 
Takagi-Sugeno to represent the nonlinear systems (Takagi and 
Sugeno, 1985). The TS fuzzy model is defined by the 
IF-THEN fuzzy rules describing the local input-output 
relations of a nonlinear system. The fundamental idea of the 
TS fuzzy model is to represent the local dynamics of each 
fuzzy implication (rule) by a linear system model. The overall 
fuzzy system model is generated through fuzzy "blending" of 
the linear system models. It is proved that Takagi-Sugeno 
fuzzy models are universal approximators of any smooth 
nonlinear system (Buckley, 1992; Fantuzzi and Rovatti, 
1996).There are three methods to construct T-S fuzzy models 
(Tanaka and Wang, 2001): black box identification, 
linearization method, and sector nonlinearity methods. We are 
interested in the third one, this technique gives an exact T-S 
representation of nonlinear system without information loss. 
the model (1) is transformed to a T-S fuzzy model following 
the rules below:  

Rule i  : 

if 1( )t  is 1
iM  and . . . and ( )p t  is p

iM  THEN   

 ( ) = ( ) ( ) =1,2, ,i i rx t A x t B u t i n    (2) 

Where 1( ), , ( )pt t   are the premise variables that may be 

functions of state variables, external disturbances and/or time.
j

iM  are the fuzzy sets ( {1,2,..., }j p ), = 2p
rn denotes the 

number of if-then rules n n
iA  , n m

iB    are constant 

matrices of sub-models. 

The final variables of the fuzzy systems are inferred as 
follows: 

( ) = ( )( ( ) ( ))
=1

rn
x t h A x t B u ti i i

i
   (3) 

Where: 

ℎ௜ሺ𝜉ሻ ൌ
∏ ெ೔

ೕሺకೕ
೛
ೕసభ ሺ௧ሻሻ

∑ ∏ ெ೔
ೕሺకೕ

೛
ೕసభ ሺ௧ሻሻ೙ೝ

೔సభ

 (4) 
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with 1( ) = [ ( ) ( )] ( ( ))j
p i jt t t M t     . The term ( ( ))j

i jM t

is the grade of membership of ( )j t in j
iM  is the ( ( ))ih t  

normalized membership function which denotes the weight of 
the   associated sub-model calculated from membership 
functions in the premise parts. By definition we have: 

=1

0 ( ( )) 1, {1,2,..., }

( ( )) = 1
r

i r

n

i
i

h t i n

h t





   




  

2.2. The TS fuzzy observer 

We consider the case of an observer with unknown premise 
variable. The TS fuzzy observer rules are as below:  

Rule i  : 

if 1
ˆ ( )t  is 1iM  and . . . and ˆ ( )p t  is ipM  THEN   

ˆ ˆ ˆ( ) = ( ) ( ) ( ( ) ( ))

= 1,2, ,
i i

r

x t A x t B u t L y t y ti
i n

  


 (5) 

where ̂ , x̂  and ŷ  are the estimated respectively of the 

premise variable, the state vector and the output vector. iL  is 

the unknown observer gain of the thi  observer rule that 
should be determined. 

The global TS fuzzy observer is so given by:  

ˆˆ ˆ ˆ( ) = ( ( ))( ( ) ( ) ( ( ) ( )))
=1

ˆ ˆ( ) = ( )

nr
x t h t A x t B u t L y t y ti i i i

i
y t Cx t

   







 (6) 

2.3. Problem statement of a TS observer-based control with 
reference state model 

We consider a linear reference model given by the following 
equation:  

= ( )r ref rx A x r t  (7) 

where rx  is the reference state which should be tracked by 

the system, refA  is a stable matrix and ( )r t  is a bounded 

input reference. 

Our goal is to synthesize a control law based on the state 
estimation capable to reduce the error between the reference 
trajectory ( )rx t  and the state ( )x t  for all 0t  . 

The controller can then be expressed by an observer-based 
PDC control with reference model as follows: 

=1

ˆ ˆ( ) = ( ( )) ( ( ) ( ))
nr

i i r
i

u t h t K x t x t   (8) 

where m p
iK   is the controller gain that should be 

determined. 

The scheme of the simulation model is given in the Figure 1. 

 
Fig.1. The scheme of the simulation model. 

The following notation will be adopted  

=1 =1 , =1

ˆˆ( ( )) ( ( )) =
n n nr r r

i j i j
i j i j

h t h t h h      

Let us define by ( ) = ( ) ( )r re t x t x t  the tracking error and 

ˆ( ) = ( ) ( )oe t x t x t  the state estimation error. Their dynamics 

are defined by:  

, =1

ˆ( ) = (( ) ( ) ( ) ( )
nr

r i j i i j r i ref r
i j

e t h h A B K e t A A x t    (9) 

( ) ( ))i j oB K e t r t   

0
=1

ˆ( ) = ( )(( ) ( ) ( ))
nr

i i i o
i

e t h A L C e t t   (10) 

 where  

=1

ˆ( ) = ( )( ( ) ( ))
nr

i i i i
i

t h h A x t B u t    (11) 

The state and the control input are supposed to be bounded, the 
membership functions are Lipschitz hence the terms ( )t  is 

bounded and acting like a bounded perturbation.  

3. THE MAIN CONTRIBUTION 

Our aim is to determine in a single step unlike the works 
presented in(Tong and Li, 2002), (G.-H. Chang and Wu, 
2012), (Xie et al., 2019) the controller gains iK  and the 

observer gains iL  ensuring the convergence of both the 

tracking error ( )re t  and the observer error ( )oe t  to zero. 

Let consider the variable change =r r rz P e  which will help 

us to simplify the theoretical calculus and avoid several matrix 
nonlinearities:  

1
,

, =1

ˆ= ( ( ) ( ) ( ))
nr

r i j r i i j r r i j
i j

z h h P A B K P z t E t    (12) 

 where  
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, = ( )

( ) = ( ) ( ) ( )

i j r i ref r i j r

TT T T
r o

E P A A P B K P

t x t e t r t

    

   

 (13) 

The controller performance (12) is affected by the presence of 
the disturbance vector ( )t . In order to minimize efficiently 

its effect on ( )rz t , we suggest the use of the H  

performance criteria given by:  

2

0 0
( ) ( ) ( ) ( )

t tf fT T
r rz t Qz t dt t t dt     (14) 

The same reasoning is done for the observer performance (10), 
which can be improved by the introduction of the H  

performance criteria as follows:  

2

0 0
( ) ( ) ( ) ( )

t tf fT T
o oe t Re t dt t t dt     (15) 

ft  defines the terminal control time, Q  and R  are two 

definite, positive matrices.   and   are two prescribed 

positive scalars that define the attenuation level of the 
disturbances ( )t  and ( )t .  

Remark 1 The stability of (12) implies the stability of (9). 

In fact, consider the following candidate Lyapunov functions 
for the systems (12) and (9):  

1( ) ( )

( ) ( )

T
z r r rr

T
e r r rr

V z t P z t

V e t P e t

 




 (16) 

The stability of (12) is guaranteed if the derivative of zr
V is 

definite negative. We can easily show that =z er r
V V  and 

=z er r
V V  . So if zr

V  is negative-definite er
V  is also.  

Remark 2 The attenuation level   of the disturbances of 

( )rz t  and ( )re t  is identical.  

In fact we have:  

0 0

2

0

( ) ( ) = ( ) ( )

( ) ( )

t tf fT T
r r r r

t f T

z t Qz t dt e t Qe t dt

t t dt  

 


 (17) 

where = r rQ P QP . So for ( )rz t  and ( )re t , we have the same 

attenuation level  .  

Theorem 1  There exists a TS observer-based controller with 
reference model of type (12) guaranteeing H  norms less 

than   and   respectively for the state observer error and 

the tracking reference error models (10) and (12), if there 

exist matrices = > 0, = > 0, , , , = 1, ,T T
o o j i rP P X X Y J i j n  

and matrices > 0, > 0Q R  and a prescribed positive scalars 

> 0 , > 0  and   such that the following conditions 

hold:  

( )
< 0

T
o i i o i i o

o

P A J C P A J C R P

P I

    
 

  
 (18) 

, ,

,

0

0 0 0

<0( ) 0 2 0

0 0 0

0 0 0

i j i ref i j

T
i ref

T
i j

M A BY I

A I

BY X I

I I

I I



 


 

  
 
  

 
  
 

 
  

 (19) 

with  

, = ( )T
i j i i j i i jM A X B Y A X B Y Q     

 and  

, =i ref i refA A A   

By solving LMIs (18) and (19), the observer and controller 
gains ,i iL K  are given by:  

1

1

= , =

= , = 1, ,

i o i i i r

r r

L P J K Y P

where P X for i n



 
 

The scalars verifying the H  norms for the observer error 

and the tracking reference error are given respectively by: 

=   and =  . 

Before starting the proof of the theorem, some useful lemmas 
(Guerra et al., 2006) are recalled. 

Lemma 1  For any matrices ,X Y  of appropriate dimensions 
and for any positive scalar   the following inequality hold:  

1T T T TX Y Y X X X Y Y     (20) 

Lemma 2  Consider matrices = < 0T   and X  and a 
scalar  , the following holds:  

1 1

2 1

( ) ( ) 0

( )

T

T T

X X

X X X X

 

 

 



     


     

 (21) 

Proof: 

Let consider the following candidate Lyapunov function:  

1

0( ) ( )
( ( ), ( )) =

( ) ( )0

T
oo o

o r
r rr

Pe t e t
V e t z t

z t z tP

    
    
     

 (22) 

 By defining the following Lyapunov function 

= ( ) ( )T
e o o oo

V e t P e t , ( ( ), ( ))o rV e t z t  can be rewritten as a sum 

of eo
V  and zr

V  

Our goal is to find out sufficient conditions for which 
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( ( ), ( ))o rV e t z t  is negative definite. This can be reached if 

< 0eo
V  and < 0zr

V  

Let’s start by checking for the sufficient conditions to have 

< 0eo
V :  

=1

ˆ= [(( ) ( ) ( )) ( )

( ) (( ) ( ) ( ))]

( )(( ) ( )) ( )

( ) ( ) ( ) ( ) < 0

nr T
e i i i o o oo i

T
o o i i o

T T
o i i o o i i o

T T
o o o o

V h A L C e t t P e t

e t P A L C e t t

e t A L C P P A L C e t

t P e t e t P t





 

  

  



  

 



 (23) 

Applying Lemma 1 to the crossed terms in (23) we get:  

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T
o o o o

T T
o o o o

t P e t e t P t

t t e t P P e t

 

  

 


 (24) 

The observer dynamical error (10) is stable and the H  norm 

(15 )is bounded by   if and only if:  

2( ) ( ) ( ) ( ) < 0T T
e o oo

V e t Re t t t     (25) 

By choosing 2  , this condition can becomes:  

1

( )(( ) ( )) ( )

( ) ( ) ( ) ( ) < 0

T T
o i i o o i i o

T T
o o o o o o

e t A L C P P A L C e t

e t P P e t e t Re t

  

 
 (26) 

 and which holds if:  

1( ) ( ) < 0T
i i o o i i o oA L C P P A L C R P P      (27) 

Applying Schur complement to (27) we get:  

( ) ( )
< 0

T
o i i i i o o

o

P A L C A L C P R P

P I

    
 

  
 (28) 

Now let’s look for the second sufficient condition to have 

< 0zr
V : 

1 1
,

, =1

1 1
,

1 1

1 1
, ,

ˆ= ([ ( ) ( ) ( )] ( )

( ) [ ( ) ( ) ( )])

( )( ( ) ( ) ) ( )

( ) ( ) ( ) ( )

nr T
z i j r i i j r r i j r rr i j

T
r r r i i j r r i j

T T
r r i i j i i j r r

T T T
i j r r r r i j

V h h P A B K P z t E t P z t

z t P P A B K P z t E t

z t P A B K A B K P z t

t E P z t z t P E t

 

 

 

 

  

   



  

  



 (29) 

Using the Lemma 1 for the crossed terms leads to:  

1 1

1 1 1
, ,

( )( ( ) ( ) ) ( )

( ) ( )

T T
z r r i i j i i j r rr

T T T
r r i j i j r r

V z t P A B K A B K P z t

t t z P E E P z 

 

  

   

  


 (30) 

 

 

The controlled model (12) is stable and the H  norm (14) is 

bounded by   if and only if:  

2( ) ( ) ( ) ( ) < 0T T
z r rr

V z t Qz t t t     (31) 

 It follows that: 
1 1

1 1 1 2
, ,

( )( ( ) ( ) ) ( ) ( ) ( )

( ) ( ) ( ) ( ) < 0

T T T
r r i i j i i j r r

T T T T
r r i j i j r r r r

z t P A B K A B K P z t t t

z P E E P z z t Qz t t t



 

 

  

    

    
 (32) 

which can be simplified by choosing 2=   and yields: 

1 1

1 1 1
, ,

( )( ( ) ( ) ) ( )

( ) ( ) < 0

T T
z r r i i j i i j r rr

T T T
r r i j i j r r r r

V z t P A B K A B K P z t

z P E E P z z t Qz t

 

  

   

 


 (33) 

This holds if: 

1 1

1 1 1
, ,

( ) ( )

< 0

T
r i i j i i j r

T
r i j i j r

P A B K A B K P

P E E P Q

 

  

  

 
 (34) 

Using the Schur lemma on (34), we get:  

1
, ,

1
,

< 0
i j r i j

T
i j r

P E

E P I





 
 
  

 (35) 

with  

1 1
, = ( ) ( )T

i j r i i j i i j rP A B K A B K P Q       

Replacing ,i jE  by its expression, (35) becomes:  

, ,

, 0 0
< 0

( ) 0 0

0 0

i j i ref i j

T
i ref

T
i j

A B K I

A I

B K I

I I







   
 
  

 
  
 

 

 (36) 

 with  

, =i ref i refA A A   

Multiplying (36) left and right by -1( )rdiag I I P I 
   

leads to:  

1
, ,

,

1 1 1

0 0
<0

( ) 0 ( ) 0

0 0

i j i ref i j r

T
i ref

T
r i j r r

A BK P I

A I

P BK P P

I I









  

   
 
  
 
  
 

  

 (37) 

By using the Lemma 2 with 1= = T
r rX P P   

= = < 0TI I      
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we have:  

1 1 1 1

1 1 1 1 2 1

1 1 1 2 1

( ( ) ) ( )( ( ) ) 0

( ) ( ) ( )

( ) 2 ( )

T
r r

T T
r r r r

r r r

P I P I

P P P P I

P P P I

    

   

   

   

    

   

     


    

  

 (38) 

and with the Schur complement and the following variable 

change: 1=j j rY K P  (41) becomes:  

, ,

,

1

0

0 0 0

< 0( ) 0 2 0

0 0 0

0 0 0

i j i ref i j

T
i ref

T
i j r

A BY I

A I

BY P I

I I

I I



 


 



   
 
  

 
  
 

 
  

 (39) 

The bilinear matrix inequalities (BMIs) (28) and (37) can be 
transformed into linear matrix inequalities (LMIs) 
respectively (18) and (19) by using the following variable 

change 1= , = , =i i i r i iJ PL X P Y K X . This ends the proof of 

the theorem1.  

Remark 3 Note that Theorem 1 allows us to obtain both 
controller gains iK  and observer gains iL  using one step 

procedure by resolving the LMI constraints given in theorem1 
unlike the two-step procedure in(Zaidi et al., 2013).   

Algorithm 1  The following algorithm gives the necessary 
steps to use the result of Theorem1:   

• Construct the TS fuzzy model (3).  

• Define the reference model (7).  

• Solve LMIs (18) and (19) of the theorem1 by finding out the 
minimal values of   and  .  

• Get the matrices 1, = , ,o rP P X R Q  then compute the gains 

=i i rK Y P  and 1=i o iL P J   

 • Compute the fuzzy observer given by (6) and the fuzzy 
controller given by (8).  

4. BIOLOGICAL PROCESS DESCRIPTION 

We consider a generic model of biomass growth. It is a process 
of microorganisms cultures (yeasts, bacterias, mushrooms,...) 
fed with carbonated substrate that take place in a bioreactor. 
The evolution of the biomass and the substrate concentrations 
respectively ( )X t  and ( )S t  in a Continuous stirred-tank 

reactor(CSTR) is described by the following mass balance 
model(Bastin and Dochain, 1990), (Denis Dochain & 
Vanrolleghem, 2015) 

1

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( )( ( ))in

X t S X t D t X t

S t k S X t D t S S t







  


  (40) 

where : ( )D t  the dilution rate, inS  is the substrate influent 

concentration, 
1

1

k
 is the biomass/substrate yield and ( )S  

is the specific growth rate. 

In the following, the Haldane model will be considered to 
express the relationship ( )S . It describes the inhibition 

phenomenon occurring at high substrate concentration.  

*
2

( ) =
/s I

S
S

K S S K
 

 
 (41) 

where sK  is Monod’s constant, IK  is the inhibition and 
*  is related to the maximum of the specific growth rate 

max  such that  

* = (1 2 )s
max

I

K

K
    (42) 

5. TRANSFORMATION OF THE MASS BALANCE 
MODEL INTO A T-S MODEL 

To rewrite the biomass growth model (40) in the affine form 
(1), we consider that:  

1 2

2

1 2

=

= max
in in

D D D

D
S S

D D




 (43) 

where 1( )D t  and 2 ( )D t  are respectively the water and the 

substrate dilution rates. Replacing ( )D t  and ( )inS t  by their 

expressions (43) in (40), leads to the affine form as follows:  

1

1 2

( ) 0( )
=

( ) 0( ) max
in

X XS DXX t

k S DSS t S S S




        
                 


  (44) 

 Where 

=
X

x
S

 
 
 

, 1

2

=
D

u
D

 
 
 

, 
1

( ) 0
( ( )) =

( ) 0

S
f x t

k S




 
  

  

and ( ( )) =
max
in

X X
g x t

S S S

  
 
   

 The following non linearities 

are considered and construct the vector  :  

1

2

3

( ( )) = ( )

( ( )) =

( ( )) =

x t S

x t X

x t S

 







  

(45) 

The nonlinear model (44) can be written in the form: 

1 2 3( ) ( ) ( ) ( , ) ( )

( ) ( )

x t A x t B u t

y t Cx t

   
 


 (46) 

where the obtained matrices have the general form:  

2 21
1 2 3

1 1 3 3

0
( ) = ; ( , ) =

0 max
in

A B
k S

 
  

  

   
        
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Each time varying parameter j , = 1...3j  can be expressed 

with two models as follows:  

1 2

1 2

= ( ) ( )

( ) = , ( ) =

j jmin max
j j j j j

min max
j j j jj j

j jmax min max min
j j j j

M M

M M

    

   
 

   



 

 

 

where = min{ }min
j j   and = max{ }max

j j  . 

3 premise variables are considered. Therefore the model (46) 

can be represented by 3= 2 = 8rn  sub-models of the form 

(2) having respectively as a membership function ( )ih  , 
{1,2...,8}i  defined by:  

1 2 3
1 2 31 2 3

( ) = ( ) ( ) ( )i k k kh M M M     

with 1 {1,2}k  , 2 {1,2}k   and 3 {1,2}k  . For more 

details, the reader can find the systematic multimodeling 
methodology in (Nagy et al., 2010). 

6. SIMULATION STUDIES 

6.1. Problem statement of a TS observer-based control with 
reference state model 

Using the simulation parameters summarized in Table 1, the 
matrices ( , )i iA B  of the multimodel are obtained: 

Table 1. Simulation parameters. 

Parameter  *    sK    IK    max
inS   

Value   6.3   10   0.1   12  

Unit  1h  /g l   /g l   

1 2 3 4

5 6 7 8

1 5 2 6

3 7 4 8

0.3 0
= = = =

0.6 0

0.01 0
= = = =

0.02 0

12 12 12 12
= = , = =

4 8 0.2 11.8

0.2 0.2 0.2 0.2
= = , = =

4 8 0.2 11.8

A A A A

A A A A

B B B B

B B B B

 
  
 
  

      
       
      
         

(47) 

For the simulation, it is considered that the substrate is the 
output of the system and the only variable accessible to the 

measurement (  0 1C  ) and the matrix 

 0.13 0.33refA diag   in the reference model to generate 

the reference trajectories. 

By using the Algorithm 1, the resolution of the LMIs given in 
Theorem 1 leads to the following matrices with 

23, 0.6, and 0.6       

200.6387    4.0355 0.0839    0.0001
= , =

4.0355  204.2312 0.0001    0.0320o rP P
   
   
   

 

0.72     0 1.9083   -0.3956
= , =

0          0.72 -0.3956   67.7284
R Q

   
   
     

= 0.7746, and = 0.7746    
 

The controller gains:  

1 2

3 4 5

6 7 8

2.7176    1.6494 2.7173    1.6493
= , =

0.6280   -1.6638 0.6279   -1.6640

2.7173    1.6501
= = =

0.6279   -1.6640

2.7174    1.6496 2.7175    1.6496
= , = =

0.6280   -1.6640 0.6280

K K

K K K

K K K

   
   
   

 
 
 

 
 
     -1.6640

 
 
 

 

The observer gains: 

1 2 3 4

5 6 7 8

-0.6425
= = = =

2.3155

-0.0599
= = = =

2.3032

L L L L

L L L L

 
 
 
 
 
 

 

6.2. The simulation results 

All the simulations are applied on the nonlinear mass balance 
model (40) used as a simulator for the real process. The 
evolution of the state variables, respectively the biomass 𝑋ሺ𝑡ሻ 
and the substrate 𝑆ሺ𝑡ሻ, their estimated values 𝑋෠ሺ𝑡ሻ and  𝑆መሺ𝑡ሻ 
and the reference model state 𝑋௥ሺ𝑡ሻ and 𝑆௥ሺ𝑡ሻ are compared 
and shown in the figure 2. We can easily notice that the 
observer produces a good estimation and the proposed 
controller allows to obtain a satisfying trajectory tracking. 

 
Fig. 2. Comparison between the state variables, their estimates 
and the reference model. 

The manipulated variables, the dilution rate 𝐷ሺ𝑡ሻ  and the 
influent substrate 𝑆௜௡ሺ𝑡ሻ are presented in figure 3. It is clearly 
shown that the controller outputs change smoothly whenever 
the setpoints change to keep the state variables close as 
possible to the reference trajectories. 
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Fig. 3. The evolution of the control variables. 

The figure 4 shows the evolution of the ratio of the energy of 
( ) ( )T

r re t Qe t  to the energy of ( ) ( )T t t  corresponding to 

controller and the ratio of the energy of ( ) ( )T
o oe t Re t  to the 

energy of 𝜔்ሺ𝑡ሻ𝜔ሺ𝑡ሻ corresponding to the observer. 

 

Fig. 4. The ratio of the energy of ( ) ( )T
r re t Qe t to the energy of 

( ) ( )T t t   corresponding to controller and the ratio of the 

energy of ( ) ( )T
o oe t Re t to the energy of    T t t   

corresponding to the observer. 

Clearly both of the energy ratio of the controller and the 
observer converge toward zero which means that the obtained 
observer and controller ensure a good H  performance. For 

comparison purposes, the same simulations are carried by 
applying the method proposed in (Ghorbel et al., 2014). The 
obtained results are shown  in figures 5 and 6 respectively for 
the control and state variables. 

It is clear that even if the controller and the observer converge 
and the tracking objective is achieved (figure 6), the cost in 
term of control is too high (max (𝑫ሺ𝒕ሻሻ ൌ 𝟐𝟎𝒉ି𝟏 ) see the 
transient regime in figures 5). The values of the dilution rate 
𝑫ሺ𝒕ሻ and the influent substrate 𝑺𝒊𝒏ሺ𝒕ሻ concentration are too 
high exceeding the physical constraints and become aberrant 
(𝒎𝒊 𝒏൫𝑺𝒊𝒏ሺ𝒕ሻ൯ ൌ െ𝟏𝟒𝒈/𝒍 negative). There is a lost of the 
physical meaning of the manipulated variables, the positivity 
constraint are no longer respected. 

 
Fig. 5. The evolution of the control variables obtained by 
application of theorem in (Ghorbel et al., 2014). 

 
Fig. 6. Comparison between the state variables, their estimates 
and the reference model obtained by application of the 
theorem in (Ghorbel et al., 2014). 

The attenuation level of the disturbance obtained by 
application of the method in (Ghorbel et al., 2014) 

= 4.0845  is too high compared to the obtained value with 

our proposed method 0.7746  . We can conclude that the 

stability conditions developed in the proposed approach are 
less difficult to satisfy, leading to more realistic results and 
also better in terms of disturbance rejection. 

6.3. Feasibility test 

An exhaustive numerical comparison through a feasibility test 
among  the condition proposed in (Ghorbel et al., 2014) and 
the condition stated in Theorem 1 has been performed for the 
obtained TS model. The matrices iA  and iB  given in (47) 

are considered with two free parameters. The entries 21iA and 

22iB  are respectively multiplied by  two real numbers a and 

b uniformly distributed in the interval  3 3 . The 

resolution of the LMIs is done using the YALMIP tool. 
 

Figure 7 shows the obtained results.  It is clearly  seen that 
the feasibility of LMIs given in theorem1 is more expanded 
than the ones in (Ghorbel et al., 2014). This  demonstrates 
that the conditions given in theorem1   are less conservative 
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comparing to those given (Ghorbel et al., 2014) and  of the 
effectiveness of the presented method.  

 
Fig. 7. Test of feasibility: blue circles for Theorem 1 and red 
stars for Theorem of (Ghorbel et al., 2014). 

7. CONCLUSION 

In this work, we’ve proposed a reference model fuzzy tracking 
controller based on a state observer using the TS formulation 
with unmeasurable premise variables. Using Lyapunov theory 
and the H ��performance criteria for the stability analysis, 

we've elaborated less restrictive sufficient conditions. The 
proposed method allows calculating in a one-step procedure 
the observer and the controller gains by solving a set of new 
relaxed LMIs. The efficiency of the suggested method is 
shown via simulation subject to a biological process where the 
goal is achieved regarding the tracking control and the state 
estimation. 
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