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1. INTRODUCTION 

Cancer, in a simplified interpretation, is a disorder in the 
apoptosis process and the inability of cells in receiving 
DNA’s commands to stop dividing. This uncontrolled 
proliferation of cells results in forming tumors that can have 
deadly consequences. This uninhibited population of cells 
interacts dynamically with the population of other cells. 
Mathematical modelling helps to have a better understanding 
of these interplays. There are several proposed mathematical 
models in papers based on the mutual effects of different 
cells and treatment approaches (Adam and Bellomo, 2012). 
The utilized dynamic model in this paper is formed based on 
the interplay of tumor-immune-host cells and chemotherapy 
treatment (De Pillis and Radunskaya, 2003). The given model 
is validated by employing the Lipschitz condition to check 
the solution existence and uniqueness of the system 
differential equations (Khalil and Grizzle, 2002). These 
properties have not been investigated before to the best of our 
knowledge.  

(Murray, 1990), bang-bang theory (Ledzewicz and Schättler, 
2002), state-dependent Riccati equation (SDRE) (Itik et al., 
2010, Batmani and Khaloozadeh, 2013), and other efficient 
techniques (Castiglione and Piccoli, 2007). 

The proposed chemotherapy regimen in this paper originates 
from a nonlinear optimal controller. This controller is 
designed based on the approximate solution of the HJB 
nonlinear PDEs (Kirk, 2004). Several numerical techniques 
have been proposed to solve these PDEs since they do not 
have any closed-form solution for the complex nonlinear 
systems (Fakharian et al., 2010; Navasca and Krener, 2000; 
Sassano and Astolfi, 2012; Beard et al., 1997; Hwang et al., 
2009). Truncated power series expansion is an approximate 
technique that is utilized in this paper and its effectiveness for 
the system is shown from different aspects. The presented 
approach does not have some drawbacks of the SDRE 
technique (Itik et al., 2010), as another useful method, and 
gives a unified controller needless to a switching mechanism. 
For more information, see (Çimen, 2008). 

The rest of this paper is organized as follows: in section 2, a 
description of the mathematical model and the properties of 
its solution are presented. Section 3 is related to the design of 
the optimal controller for the system. An overview of HJB 
PDEs and its approximate solution is presented in this 
section, too. The proposed approach is compared with 
another efficient technique in section 4. Open and closed-
loop systems are simulated in section 5, where the system’s 
performance is investigated from different considerable 
aspects. Finally, in section 6, the conclusion is drawn. 

These malignant cells should be eradicated by therapies like 
chemotherapy, radiotherapy, and so on. Another significant 
arisen problem is the treatment protocol. Lethal side effects 
due to improper dosage of injected chemotherapy drugs 
highlight the role of determining an optimal treatment 
protocol, i.e., proposing a regimen that minimizes  
dosage and the average population of tumor cells (Swan, 
1990). There have been great efforts  proposing new 
optimal protocols based on the maximum principle approach 
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 approximate polynomial solution of the Hamilton-Jacobi-Bellman (HJB) nonlinear partial 
differential equation (PDE). By this method, the complexity of the controller structure, based on its order, 
can be adjusted by the designer.  Finally, some simulations are carried out to highlight the effectiveness 
of the controller in terms of optimality, treatment time, and enlarging of the system's domain of 
attraction. 

Abstract: The optimal control of cancerous proliferation is the main contribution of this paper. 
Chemotherapy is an efficient medical approach to eradicate malignant cells. These drugs are highly toxic 
and may have lethal side-effects; hence, determining an optimal drugs injection protocol has turned into a 
challengeable problem. To cope with the problem from the system's theory standpoint, a well-known 
fourth-order nonlinear dynamic model is applied to describe the system behavior.   
the system's differential model  employing the Lipschitz condition. Then, to eradicate tumor 
cells by minimum injection of drugs, a nonlinear optimal control technique is proposed. The controller 
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2. GOVERNING DYNAMIC OF CELLS INTERACTIONS 
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where  N N t ,  T T t , and  I I t  are the number of 

normal, tumor, and immune cells at time t , respectively. The 

fourth state,  t
u u t  is the dose of injected drugs as 

2.1  Checking Lipschitz Condition 

Consider the following nonlinear system with the following 
affine structure ( nx ,   nf x  ,   n mg x  , and 

  mu u t  ) 

   x f x g x u   ;  0 0x t x   (2) 

where  x x t , 0t , and 0x  are the vector of the system’s 

states, initial time, and initial state, respectively. By defining 

 Tx N T I v , the system (1) is rewritten as the format 

(2). Then, following demonstrations are applied to the open-
loop version of the system (2), 0u   . 

Lemma 1. [(Khalil and Grizzle, 2002), P88]. Continuity of 
 f x  in its arguments for the initial value problem (IVP) (2) 

ensures that there is at least one solution for the problem. 

The right-hand side of system (1) consists of polynomial 
continuous terms except for the Michaelis-Menten type 
fraction function in third dynamic, which becomes 
discontinuous at T   . Since 0   and the population of 
tumor cells cannot be negative, this discontinuity is not the 
case. Thus, the existence of at least one solution for the 
system (1) is ensured. 

Theorem 1. [(Khalil and Grizzle, 2002), Theorem 3.3.] Let 

0t t  is ensured by  The first 

: 0 iD x   , where 1, 2,3i   and   stands for the upper 

bound of the population of different cells. This Lemma 
relates satisfing the Lipschitz condition to the calculating of 

the upper bound L  for the function 
 f x

x

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The calculation of the constant L  is postponed to Appendix 
B. The second condition in terms of the nonlinear dynamic 
system analysis is interpreted as the existence of a domain of 
attraction W  for the system’s asymptotically stable healthy 
EP. The domain W  can be considered as : 0 iD x    for 

the system (1). By these explanations, the existence and 
uniqueness of the solution for the open-loop system (1) are 
guaranteed. 

3. DESIGN OF THE POLYNOMIAL OPTIMAL 
CONTROLLER 

Various papers have focused on designing a controller for the 
tumor growth system (Rokhforoz et al., 2017; Chien et al., 
2009). A significant factor in the cancer treatment regimen is 
the sense of optimality. The problem in general structure is 
defined as designing an optimal feedback controller, 

 * *u u x  for the system (2),  which stabilizes the system’s 

f  x  be locally Lipschitz for all in domain . Let 

be a compact set of , , and suppose it is known 
that every solution of system (2) lies in W.  Then there is a 
unique solution that is defined for all . 

Based on the Theorem 1, a unique solution to the interval 

The parameters description and their values are given in 
Appendix A. 

  , is the concentration of drug in blood 

and  

Competition between the cells finally ends and their 
population reaches a steady-state value. These steady values 
are considered as the equilibrium points (EPs) of the dynamic 
system (1) and are classified into three main groups: dead, 
coexistence, and healthy EPs. In the first group, the number 
of host cells is zero. In the second group, tumor cells are 
present. These are undesirable EPs. The number of tumor 
cells in healthy EP is zero, while the number of two other 
cells meets the healthy condition (De Pillis and Radunskaya, 
2003). Reaching this point is a significant control objective. 

There are different supportive theories to define the 
mechanism of cancerous cells proliferation and interplays 
between them and other cells in the human body (Kirschner 
and Panetta, 1998; De Pillis et al., 2006). Also, these 
mechanisms are impressed by the nature of the tumor, 
diffusion or compact, its homogeneity, and development of 
its vasculature, angiogenesis. In this paper, the characteristics 
of a solid tumor model and its eradication are investigated 
(Araujo and McElwain, 2004). 
great significance is placed into the population growth 
dynamic. Malignant tumor and normal cells enter a 
competition for nourishment and space, while the 
competition between tumor and immune cells is in a prey-
predator manner. These competitions, the mutual effects of 
cells, and considering chemotherapy treatment lead to 
forming the following (De Pillis and Radunskaya, 
2003): 

condition is demonstrated by applying Lemma 3.2 (Khalil 
and Grizzle, 2002) to the system (1) for domain 
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desirable equilibrium point asymptotically while minimizes 
the cost function 

   
0

, ,J x u L x u dt


   (3) 

To cope with this problem, let define the scalar function 
 V V x  as the minimum cost function (3) and form the 

following Hamiltonian function 

       , , , .x xH x u V L x u V f x g x u      (4) 

where xV  stands for the gradient of the function  V x  with 

respect to x . Now, the HJB PDEs are given as 

       , . 0x
u

Min L x u V f x g x u      (5) 

and 

     * *V f x g x u      (6) 

   
*

, . , 0x

u u

L x u V f x u
u 

     
(7) 

3.1  PSE Approximate Solution 

Let the integrant of the cost function (3) has the following 
quadratic structure 

 , 0.5 0.5T TL x u x Qx u Ru   (8) 

Where 0TQ Q

x  in (2) is a constant matrix,  g x B . It is 

assumed that the vector field  f x  in (2), optimal control 

signal *u  in (6), and  V x  in (6) have the following power 

series expansion around the system’s desirable operation 
point: 

         2 3 H.O.T.f x Ax F x F x     (9) 

         2 3* H.O.T.u x Kx u x u x     (10) 

and 

         3 40.5 H.O.T.TV x x Px V x u x     (11) 

where m nK   and n nP  . Over this paper, the symbol 

By substituting (8) to (11) for corresponding functions in (6) 
and (7), separating terms with identical degree, and putting 
them equal to zero, we would have following equations for 
the matrices P and K , respectively: 

1 0T TA P PA PBR B P Q     (12) 

1 TK R B P   (13) 

and for    iV x  and    1ik x  
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   
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 (14) 

      1 1
T

i iT
xk x R B V    (15) 

respectively, where 3i  . Equations (12) and (13) are 
obtained by separating terms with degree two in (6) and 
degree one in (7). Also, equations (14) and (15) are acquired 
by separating terms with degree i  in (6) and degree 1i   in 

(7). To obtain    iV x  from (14), it is vital to employ the 

following approximation 

         .i i
xV x A BK x V x   (16) 

therefore, (14) is rewritten as 

              
1

1 1

2

.
i

i y i yi y
x

y

V x V F x Bk x


         



     (17) 

To desgin the controller, it is necessary to obtain    iV x , 

calculate its deravative with respect to the states, and 

substitute for    i
xV x  in (15). It worth noting that if the linear 

part of the optimal control problem is nice then such as 
approximate solution for the HJB PDE exist (Hunt and 
Krener, 2010).  

3.2  Population Control of Cancerous Cells  

The problem is defined as minimizing the average number of 
cancerous cells with minimum dosage of chemotherapy drugs 
in the treatment regimen. The cost function is supposed to be 
in the given format (3) with integrant function (8). The 
weighting matrices are given in Appendix C. They are 
selected corresponding the matrices in another paper (Itik et 
al., 2010). The order of the controller is confined to seventh 
degree, while higher orders can be calculated 
straightforwardly.   
the system (1) should be acquired using truncated Taylor 

degree i  in the power expansion series and H.O.T. stands 
for high order terms. 

  Z i for  a  given  function  Z(x)  denotes  the  terms  of  the 

L x, .u x 0

nonlinear dynamic programming

 
 

Generally, these PDEs do not have any closed form solution; 
thus, the issue of approximate solution is arisen in facing 
with these PDEs. One of the efficient approximate 
approaches is power series expansion (PSE) (Navasca and 
Krener, 2000). 

 and principle of optimality to nonlinear continuous-time
 systems (Kirk, 2004). The PDE (5) can be rewritten as
 follows: 

    . Suppose that the input 

matrix g  
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series expansion at seventh order around the healthy 
equilibrium point. 

Based on the aforementioned notes and defining 
T

 as the state vector of the system (1), the 

matrix 0TP P   in the function    2 0.5 TV x x Px  in (11) 

can be calculated by solving the (12). The functions    nV x , 

for 3,4,5,...,8n  , are obtained from (17) as follows: 

       3 2TV x x PF x   (18) 

               
       

4 3 3 2

3 310.5
T

T
x

T
x x

V x x PF x V x F x

V x BR B V x

  


 (19) 
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x x x
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               
               
               

6 5 3 4
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x x x
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x x x
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


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 

 

 (21) 

               
                       
               
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4 4 5 3 6 2

5 4 6 31 1
T T

T
x

x x x

T T
x x x x

V x x PF x V x F x

V x F x V x F x V x F x

V x BR B V x V x BR B V x 

  

  

 

 (22) 

               
                       
               
               
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T
x

x x x

T
x x x

T T
x x x x

V x x PF x V x F x

V x F x V x F x V x F x

V x F x V x BR B V x

V x BR B V x V x BR B V x


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  
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 

 

 (23) 

where the structure of the controllers    2k x ,    3k x , 
   4k x ,    5k x ,    6k x , and    7k x  are calculated 

according to (15). 

4. COMPARISON WITH SDRE TECHNIQUE 

One of another interesting optimal controller design 
techniques for nonlinear systems is the state dependent 
Riccati equation (SDRE) (Çimen, 2008). In this technique a 
controller is designed upon the solution of the following 
extended version of the well-known Riccati algebraic 
equation (ARE) (12) for state-dependent nonlinear system 

 x A x x Bu   

           1 0T TA x P x P x A x P x BR B P x    (24) 

which should be solved for  P x . The state-dependent ARE 

(24) can be considered as a simplified version of the HJB 

PDE (6). The SDRE technique has been employed to control 
the population of cancerous cells (Itik et al., 2010).  It is an 
effective approach but it has some drawbacks.  

In the SDRE approach, the formulation (24) imitates the 
format of ARE (12) for the state-dependent nonlinear system, 

 x A x x Bu  , with    T
xV x x P x . This imitation 

imposes some conditions like positive definiteness and 
symmetry on the state dependent matrix  P x , which 

originate similar conditions for P , 0TP P  , in a 

Lyapunov function   TV x x Px  with    T
xV x x P  for the 

linear systems. These conditions are not the case for the PSE 
approach. 

The formulation (24) should be solved to obtain  P x . It is 

not possible to obtain  P x  in a closed-form. Instead it is 

solved for different operation points’ of the system 

 x A x x Bu  . At first, it is evaluated at a series of 

operation points to transform it to a set of AREs (12). Then, 
these AREs are solved to obtain constant matrices 

 
i

i x x
P P x


 , where ix  denotes the i-th operation point. It 

means that a series of constant matrices 0T
i iP P   are 

obtained instead of the closed-form matrix  P x . Therefore, 

acquiring the closed formulations for    T
xV x x P x , 

 V x , and  *u x  are not possible. By the SDRE technique, 

a series of linear controllers are acquired which applied to the 
system based on the operation point of the system. This 
necessitate a switching mechanism. 

On the other hand,  V x  is considered as the minimum of 

cost function (8), i.e.,  

 
   * *

0

min 0.5
TT

u x
V x x Qx u Ru dt



   (25) 

The integrant of (25) is quadratic, hence,  V x  is a positive 

definite function and can be considered as a candidate 
Lyapunov function for the nonlinear system (2). According to 

(6) it is obvious that 
   *,

dV x
L x u

dt
  , where 

      *.x

dV x
V x f x Bu

dt
     is the time derivative of 

 V x  along the trajectories of close loop system (2). With 

respect to positive semi definiteness of  *,L x u , it can be 

found that 
 dV x

dt
 is negative semi definite; therefore, 

stability of the closed loop system can be proved. As a result, 

 V x  can be utilized to analyse the stability properties of the 

system straightforwardly (Khalil and Grizzle, 2002). Lack of 
a closed formulation for  V x  can be a drawback of the 

SDRE technique.  
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Fig. 1. Trajectory of closed-loop systems in response to an 
initial condition which is out of the open-loop healthy point’s 
DOA. Green point: healthy EP, blue point: initial condition, 
and red point: coexistence EP. 

 

Fig. 2. Comparison between controllers for initial condition 

 0.8 0.4 0.6 0
T

. 

5. SIMULATION AND ANALYSIS 

The open-loop system (1) based on the given values for the 
parameters has two stable EPs, a coexistence point and a 
healthy one, and three unstable EPs. Reaching a stable 
healthy EP is defined as the main control objective. On the 
other hand, from the system’s theory point of view, multiple 
EPs implies that the domain of attraction of the healthy EP is 
not global and is confined by the DOA of the other EPs. 
Injection of chemotherapy drugs helps to enlarge the healthy 
EP’s DOA. Mathematically, this is interpreted as forcing the 
system out of the basin of attraction of the stable coexistence 
point. This can be done by broadening the healthy point's 
domain of attraction. To show the efficiency of the controller 
in terms of enlargement domain of attraction, the closed-loop 
systems with truncated controllers at different orders are 
compared. The result of this comparison for the initial 

 

 1. Performance of the Closed-loop Systems. 

Performance Measure 
Third-Order 
Controller 

Fourth-Order 
Controller 

Cost Function 229.25 209.58 

Treatment Time 112 109 

Performance Measure 
Fifth-Order 
Controller 

Sixth-Order 
Controller 

Cost Function 207.24 374.65 

Treatment Time 110 141 

condition  0.625 0.25 0.625 0
T

 is depicted in Fig. 1. It 

can be seen from Fig. 1 that the linear controller and 
truncated controllers at second and seventh orders do not 
have satisfactory performance rather than other orders. It is a 
reasonable possible result since applying high order terms for 
approximated controllers by PSE method necessarily does 
not lead to a wider region of attraction (Navasca and Krener, 
2000). 

The time interval of treatment process is another major factor 
that shows the effectiveness of the controller. The behavior of 
the closed-loop systems in encountring acute medical 

condition  0.8 0.4 0.6 0
T

is shown in Fig. 2. Truncated 

controllers at third and sixth orders are not as effective as 
other ones in the eradication of cancerous cells. Also, the 
treatment time for the fourth-order controller does not have a 
dramatic reduction rather than the fifth order. In Table 1, 
controllers are compared in terms of the cost function value 
and treatment time. The criteria for treatment time is 
  101 10T t   , that means eradication of cancerous cells. 

System’s 
Variables 

Normal 
Cells 

Tumor 
Cells 

Immune 
Cells 

Control 
Signal 

Fourth-Order 
Controller 

2.6640 1.6645 42.5208 33.2367 

Fifth-Order 
Controller 

2.6694 1.7032 42.5722 28.4495 

 

     2. Performance of the Closed-loop Systems.  

The selection between the closed-loop system by fourth and 
fifth-order controllers with a more desirable response is a 
tradeoff between the minimum value of the cost function and 
treatment time. In our investigation, the problem mainly is 
proposed based on the minimization of the cost function. A 
comparison between the performance of the closed-loop 
systems by controllers from different orders in terms of 
integral of square error (ISE) measure for the system’s 
variables is reported in Table 2. It can be concluded that the 
truncated controller at the fifth-order has a high ability to 
enlarge the domain of attraction and reduction of treatment 
time. 
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Fig. 3. Comparison between pulsed chemotherapy and 
continuous chemotherapy based on proposed optimal 
controller truncated at fifth order. 

 

Fig. 4. Comparison between control signal of the pulsed 
chemotherapy and the continuous chemotherapy based on 
theproposed optimal controller truncated at fifth order. 

In the final scenario, the problem is investigated from 
practical point of view. In acute medical situations with 
enormous growing of cancerous cells population, the first 
decision for the controller would be increasing the amount of 
the injected drugs in a continuous manner. In all of 
simulations the amount of the injected drugs is constrained to 
a unit dose. The continuous drugs injection may arose the 
question of practicality of the proposed controller in this 
paper. Since nowadays we witness great developments in 
hardware technologies, it seems using continuous control 
approaches for continual drugs injection in a specific interval 
is reasonable. But, to show the ability of the proposed 
controller, a discontinuous profile with pulsed drugs injection 
regimen based on the applying sampled saturated control 
signal is tested for the closed loop system. Fig. 3 and Fig. 4 
show the response of the closed loop system and control 

signal to the initial condition  0.8 0.4 0.9 0
T

, 

respectively. It is not unexpected that the closed loop system 
would have tighter domain of attraction than that of 
continuous drug injection.  

6. CONCLUSIONS 

In this paper, at first, the problem of solution existence and 
uniqueness using Lipschitz theory for the deterministic 
dynamic model governing the growth of the cancerous cells 
was put into perspective. A piecewise function is obtained 
based on the upper bound of the cells population as the 
Lipschitz constant. Then, the problem of determining an 
optimal chemotherapy regimen was addressed to inhibit the 
population growth of cancerous cells. The optimization 
measure, the cost function, for the system has a quadratic 
structure and is defined based on minimizing the dosage of 
injected drugs and the average number of tumor cells. For the 
determination of optimal protocol, the HJB PDE was solved 
approximately. The approximate solution works based on the 
truncated power series expansion technique. Since the 
optimal problem for the system was nice, the necessary 
condition for optimality and the existence of the approximate 
solution were ensured.  

Controllers with different orders were designed for the 
system. It was shown numerically that the truncated state 
feedback controller at the fifth-order has a better response 
rather than the other six orders in our application in terms of 
different factors. The optimal cost function and treatment 
time for an initial acute medical condition, in which the 
population of tumor cells is very large, reduces considerably 
by the fifth-order controller. Also, the domain of attraction is 
broadened. Besides, the effectiveness of the controller from 
the practical point of view was shown by comparing it with 
conventional pulsed chemotherapy. It has dramatic effects on 
the reduction of the treatment time.  
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Appendix A. DEFINITION OF THE SYSTEMS 
PARAMETERS 

1r  Per unit growth rate (Normal cells) 1 

2r  Per unit growth rate (Tumor cells) 1.5 

1b Carrying capacity (Normal cells) 1 

2b Carrying capacity (Tumor cells) 1 

1c  Competition coefficient (Nomal-
Tumor cells)

1 

2c  Competition coefficient (Tumor-
Immune cells)

0.5 

3c  Competition coefficient (Tumor-
Normal cells)

1 

4c  Competition coefficient (Immune-
Tumor cells)

1 

1 Fraction cell kill (Normal cells)  

2 Fraction cell kill (Tumor cells)  

3 Fraction cell kill (Immune cells)  

s  Immune source rate 0.33 
 Immune response rate 0.01 

  Immune threshold rate 0.3 

1d Per capita death rate (Immune cells) 0.1 

2d Per capita death rate (Drug) 1 

Appendix B. CALCULATING LIPSCHITZ CONSTANT 

       3 3 3

1, 2, 3
1 1 11 2 3

max , ,
x x x

j j jj j j

f x f x f x f x

x x x x  

                
          
  

By considering 0 mx   , for 1, 2,3m  , without loss of 

generality we would have 

 

     

3

1 1 1 1 1 2 1 1
1 1

*
1 1 1 1 1 1 2 1 1 1 1 1

2

2 2

j j

f x
r r b x c x c x

x

r r b c x c x r r b c h 



 
     

 

       


 

and 

 

 
   

3

3 2 2 2 2 2 2 3 3 1 2 1
1 2

2 3 1 3 2 2 2 2 2 3

*
2 2 3 2 2 2

2

2

2

j j

f x
c x r r b x c x c x c x

x

r c x c r b c x c x

r c c r b h 



 
        

 

     

    



  

 

 
 

 

 
   
  

3

1 3

2 2
4 3 2 3 2 3 3

2

2

2
1 1 4 2 4 2

2

2
1 1 4 2 4 2 22

2

2 2
4 3 2 3 2 3 3

2

1

2

j j

f x

x

c x x x x x x

x

d d c x c x

x

d d c x c x x
x

c x x x x x x

  



  


   


  



 
 

 

   




    




     


   





 

 3. Description and values of parameters for 
dynamic competition differential model (1). 

     

Parameter  Description Value 

Ledzewicz, U. and Schättler, H. 2002. Optimal bang-bang 
controls for a two-compartment model in cancer 
chemotherapy. Journal of optimization theory and 
applications, 114, 609-637. 
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 
   

  
 

1 2 3

1 2 3

2 2 2
1 4 3 1 4 22, ,

2

2 2 3

4 2 3 4 1 2 4 2 3 4 2

3 1 2 3
, ,

1
max 2

2 2

max , ,

x x x

x x x

d c x d c x
x

c x x c d x c x x c x

h x x x

     


  

     


     



  

Maximum of  3 3 1 2 3, ,h h x x x  as its strict upper bound can 

be obtained by solving a set of algebraic equations 3 0
k

h

x





, 

for 1,2,3k  , which stem from putting the gradient 3h  equal 

to zero. Instead of this procedure which is not 
straightforward, we can obtain a conservative upper bound 
for 3h  as follows: 

 

    

   


  

    

1 2 3

1 2 3

2

3 1 2 3
, ,

2 2
1 4 32 , ,

2

22
1 4 2 4 2 3 4 1 2

2 3

4 2 3 4 2

2 2
1 4 12

2 3 *
4 1 4 3

max , ,

1
. max

min

2 2 2

1
2

4 2

x x x

x x x

x

h x x x

d c x
x

d c x c x x c d x

c x x c x

d c d

c d c h

  


     

    


    

   


     

 

   

    

 

Hence we would have for the Lipschitz constant 

      * * *
1 2 3max , ,L h h h


   . Maximum value between the 

functions  *
1h  ,  *

2h  , and  *
3h   can be found by 

comparing their inclination, initial distance from origin, and 
calculating the their intersection points. Based on the 
quantification of parameters according to [10], we would 
have 

 
 

**
2

* *
3

; 0

;

h

h
L

  

  

 



 
   

Where * 0.214  . 

Appendix C. REQUIRED FUNCTIONS FOR DESIGNING 
CONTROLLER AND THE CONTROLLER STRUCTURE 

1 1 0 0.1

0 0.325 0 0
;

0 1.595 0.2 0.33

0 0 0 1

A

   
  
   
 

 

 

   
2
2 2 4

2 2

2 2
1 1 2 1 4 4

2 2 3 1 2

2 2 3 3 4 4

1.5 0.5 0.3

0.183 0.96

0.1 0.1 0.05

;
6 0.2 0 5

0

.16

x x x x x x

x x x x
F

x x x

x x x x
x

x x

   
 

    
 
 
 

 





 

   

2 3
4 4

2
4

3 2 2 3
2 2 3 4 4

3 2

0.05 1 0.016

0.15

0.611 0.111 0.099 3 0.054
;

0

x x x

x

x x x x x x

x
F x

 
 
 




   
 
  

  

   

   

3 4
4 1 4

3
2 4

4 3 3 4
2 2 3 4 3 4

4 5
1 4 4

4
2 4

5 4 4 5
2 3 2 3 4 4

4

5

;

0.016 0.004

0.05

2.037 0.370 0.033 0.103

0.004 0.0008

0.012

6.79 1.234 0.008 0.

0

002
;

0

x

F x

F x

x x

x x

x x x x x x

x x x

x x

x x x x x x

 


   



 
 
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 
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



 

0 0 0 0

0 200 0 0
;

0 0 0 0

0 0 0 0.2

Q

 
 
 
 
 
 

 

2.4;R   

0 0 0 0
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0 0 0 0

0 0 0 0.980

P

 
 
 
 
 
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