
CEAI, Vol.23, No.3, pp. 88-98, 2021 Printed in Romania

A Deep Reinforcement Learning Method based on Deterministic Policy

 Gradient for Multi-Agent Cooperative Competition

Xuan Zuo*, Hui-Feng Xue**, Xiao-Yin Wang**, Wan-Ru Du**,

Tao Tian**, Shan Gao*, Pu Zhang*

* School of Automation, Northwestern Polytechnical University, Xi'an 710072

P.R.China (e-mail: 1069114233@qq.com).

** China Aerospace Academy of Systems Science and Engineering, Beijing 100048

P.R.China (e-mail: xhf0616@163.com)}

Abstract: Deep reinforcement learning in multi-agent scenario is important for real-world applications

but presents challenges beyond those seen in single agent settings. This paper proposes a method to train

a team of multiple types of agents to cooperate against another team of agents. Furthermore, this paper

studies how to train multiple types of agents to collaborate better on their team tasks, and analyses the

influence of various factors on agents’ policy. In the computer experiments, agents are divided into

attacking agents and defending agents. The results show that attacking agents which play the roles of

deceivers can attract most of defending agents and help the other attacking agents to reach their targets

successfully. Choosing appropriate length of training could help agents learn better action policy. The

experiments results reveal that the number of agents has an effect on the performance of our proposed

method. Increasing the number of deceivers in attacking agents can significantly increase the mission

success of attacking team, but the computational complexity will rise and more episodes are needed to

train agents.

Keywords: Machine learning, reinforcement learning, multi-agent, cooperative competition, artificial

intelligence.

1. INTRODUCTION

Much progress towards artificial intelligence has been made

using supervised learning systems that are trained to replicate

the decisions of human experts (Silver et al., 2017; Hastie et

al., 2009; LeCun et al., 2015; Krizhevsky et al., 2012).

Reinforcement Learning (RL) is one of the most general

formulation of the learning problem. Unlike supervised

learning, the feedback is partial and in many cases the

rewards are delayed. It also differs from unsupervised

learning because the aim is not to find hidden structure in

unlabeled data but to solely maximize the reward signal. An

RL researcher is conventionally expected to come up with a

good reward function and subsequently provide a robust RL

algorithm to generalize to unseen trajectories of the feedback

loop. Deep reinforcement learning (DRL) represents a step

towards building autonomous systems with a higher level

understanding of the visual world. In DRL (Arulkumaran et

al., 2017; Francois-Lavet et al., 2018), deep neural networks

are trained to approximate the optimal policy or the value

function. In this way the deep neural networks, serving as

function approximator, enables powerful generalization. One

of the key advantages of DRL is that it enables reinforcement

learning to scale to problems with high-dimensional state and

action spaces (Hernandez-Leal et al., 2019).

Recently, there has been rapid progress using deep neural

networks trained by reinforcement learning. These systems

have outperformed humans in games, such as AlphaGo

(Silver et al., 2016), AlphaGo Zero (Silver et al., 2017) and

Alpha Zero (Silver et al., 2017, 2018). Otherwise, in the

study of antagonistic video games based on local visual

information, Deepmind’s AlphaStar (Vinyals et al., 2019) in

the real-time strategy game Starcraft II, and OpenAI Five

(OpenAI, 2018) in the multiplayer game DOTA 2 show

outstanding performance beyond top human players. The

outstanding ability of deep reinforcement learning in solving

single individual policy optimization problem urges

researchers to try to apply related methods to solve multi-

agent cooperation or competition problems.

The nature of interaction between agents can either be co-

operative, competitive, or both and many algorithms are

designed only for a particular nature of interaction. These

algorithms are generally not applicable in competitive or

mixed settings (Lowe et al., 2017). As multi-agent learning

needs to search for the optimal policy in the high-

dimensional state space, it will bring about an unstable

training environment, if each agent learns policy from its own

perspective without cooperative communication or setting of

sharing global utility. In recent years, the actor-critic

algorithm framework which can be used to optimize agents’

policy with centralized training and control agents’ actions

with decentralized execution, has been introduced into Multi-

Agent Reinforcement Learning (MARL) to share agents’

utility in various ways.

CONTROL ENGINEERING AND APPLIED INFORMATICS 89

Previous works have shown how the MARL approach can be

used to cooperation mission or competition mission between

two types of agents. This paper presents a method to train

multi types of agents to complete both competition and

cooperation mission simultaneously, and demonstrates its

performance by computer experiments. Centralized Critic is

adopted to evaluate and optimize agents’ policy, which make

multi types of agents cooperate for team work.

In this paper, agents are divided into attacking agents and

defending agents. Agents in attacking team which undertake

the attacking mission can arrive their targets synchronously

by minimizing the standard deviation of the distance between

agents and targets. The other agents in attacking team which

undertake deception mission can induce adversaries at close

range by maximizing the value of a Gauss-Quadratic mixing

function about the distance between them and defending

agents. The defending agents intercept adversaries by

minimizing the distance to the attacking agents and giving

him a constant reward on contact. This paper introduces

multi-agent deep deterministic strategy gradient algorithm

which combines Actor-Critic framework and DDPG

algorithm to train agents learning policy, so that the multi-

agent multi-mission multi-target co-control could be realized.

This paper also analyses the effects of the number of training

episodes and the number of agents undertook deception

mission on the training results.

2. RELATED WORKS

A number of complex problems in today’s society can be

modeled as multi-agent learning problems. A few examples

include multi-robot control, analysis of social dilemmas,

managing air traffic flow and energy distribution, etc. When

one or more agents fail in a multi-agent system, the

remaining agents can take over some of their tasks. This

implies that multi-agent system is inherently robust.

Furthermore, by design most multi-agent systems also allow

the easy insertion of new agents into the system, leading to a

high degree of scalability. While single-agent RL have a

relatively strong theoretical foundation, a thorough

understanding of the learning problem in multi-agent settings

is still an open problem (Kapoor, 2018). Therefore, progress

in Multi-Agent RL systems is due.

Many initial approaches have been focused on tabular

methods to compute Q-values for general sum Markov games

(Hu and Wellman, 2003). Another approach in the past has

been to remove the non-stationarity in MARL by treating

each episode as an iterative game, where the other agent is

held constant during its turn. In such a game, the proposed

algorithm searches for a Nash equilibrium (Conitzer and

Sandholm, 2007). Naturally, for complex competitive or

collaborative tasks with many agents, finding a Nash

equilibrium is non-trivial. Building on the recent success of

methods for deep RL, there has been a renewed interest in

using high capacity models such as neural networks for

solving MARL problems (Khan et al., 2018).

In most of the MARL algorithms, the training mechanism is

assigned to each agent separately. For example, independent

Q learning algorithm is adopted to train each agent. The

distributed learning architecture above reduces the difficulty

of implementing learning and the complexity of calculation.

For the DRL problem of large-scale state space, a simple

multi-agent DRL system can be constructed by using DQN

algorithm instead of Q learning algorithm to train each agent

individually (Liu et al., 2018). Tampuu et al. (Tampuu et al.,

2017) used the above ideas to expand the framework of deep

Q learning, dynamically adjusted the utility mode according

to different goals, and proposed a DRL model in which

multiple agents could cooperate and compete with each other.

In the face of a class of reasoning missions that require

multiple agents to communicate with each other, the DQN

model cannot usually learn effective strategies. To solve this

problem, Foerster et al. (Foerster et al., 2016) proposed a

model called distributed deep loop Q network (DDRQN),

which solved the problem of multi-agent communication and

cooperation that can be observed in the state part.

The machine learning method based on Q learning is

challenged by an inherent non-stationarity of the

environment, while policy gradient suffers from a variance

that increases as the number of agents grows. In recent years,

some new approaches have been proposed, including deep

reinforcement learning based on attention mechanism and

deep reinforcement learning based on Actor-Critic

framework. In 2017, Choi et al. (Choi et al., 2017) proposed a

multi-focus attention network (MANet) method that can

simulate human spatial extraction ability. This method first

divides the low-level input into several segments representing

local states. In 2017, Foerster et al. (Foerster et al., 2018)

proposed a new multi-agent actor-critic method called

counterfactual multi-agent (COMA) policy gradients based

on the Actor-Critic. COMA uses a centralized critic to

estimate the Q-function and decentralized actors to optimize

the agents’ policies. To address the challenges of multi-agent

credit assignment, it uses a counterfactual baseline that

marginalizes out a single agent’s action, while keeping the

other agents’ actions fixed. Lowe R et al. (Lowe et al., 2017)

present an adaptation of actor-critic methods named

MADDPG (Multi-agent Deep Deterministic Policy Gradient)

that considers action policies of other agents and is able to

successfully learn policies that require complex multiagent

coordination to maximizes the global utility. They also

introduce a training regimen utilizing an ensemble of policies

for each agent that weakened overfitting and leads to more

robust multi-agent policies. They show the success of their

approach compared to existing methods in cooperative as

well as competitive scenario.

In the environment of large-scale multi-agent cooperation, it

is difficult for agents to differentiate valuable information

that helps cooperative decision making from globally shared

information. The predefined communication architectures, on

the other hand, restrict communication among agents and

thus restrain potential cooperation. To tackle these

difficulties, in 2018, Jiang et al. (Jiang and Lu, 2018)

proposed an attentional communication model that learns

when communication is needed and how to integrate shared

information for cooperative decision making.

90 CONTROL ENGINEERING AND APPLIED INFORMATICS

In recent years, MADDPG has been successfully used in the

field of traffic control. Wu et al. (Wu, Jiang and Zhang, 2020)

proposes a distributed conflict-free Cooperation MADDPG

(CoMADDPG), for multiple connected vehicles at

unsignalized intersection. CoMADDPG can reduce average

travel time by 39.28% compared with the other optimization-

based methods, which indicates that CoMADDPG has an

excellent prospect in dealing with the scenario of

unsignalized intersection control.

3. MULTI-AGENT COOPERATIVE COMPETITION AND

DECEPTION TACTION

3.1 Multi-agent centralized training framework

In this paper, the Multi-Agent Deep Deterministic Policy

Gradient (MADDPG) algorithm is adopted to train all agents

in the competitive scenario, so that both attacking and

defending team can gradually learn cooperative tactics in the

training process. Based on the Deep Deterministic Policy

Gradient (DDPG) algorithm (Lillicrap et al., 2015),

MADDPG algorithm adds the policy information of other

agents, including the state, action and reward value of each

agent. Similar to DDPG, the MADDPG algorithm also uses

the Actor-Critic algorithm framework (Sutton and Barto,

2018), as shown in Figure 1.

During training, the policy network in the Actor selects an

action according to the observation information of the current

agent, and the action is executed in the environment to get the

new state and return value. After that, each agent's state,

action, reward value, and new state form a sample to be saved

to the experience replay buffer.

Multi-agent

environment

Critic

State,

action

1024 episodes

Actor

Policy

network

Target network

Evaluation

network

Target network

Experience

replay buffer

Q values of new state

Q values

Loss
Adam

optimizer

Adam

optimizer

Target Q values

Soft update

Observation

information

Policy Gradient

Loss

Sample a random

minibatch

Soft update

Experience

样本
样本

Samples

New state
New state

Reward values

action

action

state

Reward

values

Fig. 1. Multi-Agent Deep Deterministic Policy Gradient

(MADDPG) algorithm.

This method randomly collects 1024 samples from the

experience replay buffer, and sends the new states to the

target network in the Actor. Then the new actions output

from the target network in the Actor are passed to the target

network in the Critic. The target network in the Critic obtains

the new states from the samples and the actions passed by the

Actor, and outputs Q values of the new states. The target Q

values can be calculated according to the Bellman equation

using the reward values obtained from samples and the Q

values of new states output from the target network in the

Critic. The evaluation network in the Critic outputs the

estimated centralized Q values after it gets the sampled states

and actions.

In the Critic, the mean squares of the differences between the

estimated centralized Q values and the target Q values are

used as the loss value to train the evaluation network and

update its parameters. Based on the estimated centralized Q

values, the strategy gradient (Silver et al., 2014) can be

calculated to train and update the policy network in the

Actor.

The parameters of target networks are updated by super-

posing the parameters of policy network or evaluation

network and the parameters of target network proportionally.

In order to ensure the stability of the learning process, the

MADDPG algorithm updates the parameters of target net-

work using the soft update method similar to DDPG. It

updates network parameters as follows:

 (1)

with , where is the parameter of target network, and

 is the parameter of policy network or evaluation network.

This decision-making algorithm is a decentralized execution,

centralized training approach which is not linked to the

graphical interface until at the testing (decentralized

executing) phase. At the training phase, the algorithm and

data of dynamic multi-agent environment runs in the

background. Then at the testing phase, every agent’s action is

given by policy network and the state of the multi-agent

environment is updated per 0.1 second and mapped

synchronously to the graphical interface.

3.2 Multi-Agent Deep Deterministic Policy Gradient

 The MADDPG (Multi-Agent Deep Deterministic Policy

Gradient) algorithm is a general-purpose multi-agent deep

reinforcement learning algorithm based on policy gradient

method (Lowe et al., 2017). MADDPG does not assume a

differentiable model of the environment dynamics or any

particular structure on the communication method between

agents, and it is applicable not only to cooperative interaction

but to competitive or mixed interaction. MADDPG adopts

the framework of centralized training with decentralized

execution to extend the Actor-Critic methods where the Critic

is augmented with extra information about the policies of

other agents, while the Actor only has access to local

information. After training is completed, only the local actors

are used at execution phase, acting in a decentralized manner.

Consider a mission scenario with N agents with policies

parameterized by , and let

be the set of all agent policies. Then the gradient of the

expected return for agent i can be written as:

(2)

CONTROL ENGINEERING AND APPLIED INFORMATICS 91

where is a centralized action-value function

that takes as input actions of all agents, , in addition

to some state information x, and outputs the Q-value for

agent i. In the simplest case, x could consist of the

observations of all agents. The experience replay buffer

contains the tuples , recording

experiences of all agents. The parameters of policy network

are updated using the policy gradient from formula (2) as the

loss by Adam optimizer.

In the Actor-Critic method, the model of action-value

function is the evaluation network. The Adam optimizer

is used to update the network parameters in the training

process. The loss function is as follows:

 (3)

where y represents the target Q value calculated by the

Bellman equation, and y can be written as:

 (4)

where represents the policy of all agents

in the new states, is the Q value output from the target

network in the Critic, and is a discount factor.

3.3 Network model

This paper adopts a fully connected network to train multi-

agent policy. The network model consists of 1 input layer, 2

hidden layers, and 1 output layer, each of which contains 64

units. The ReLU (Rectified Linear Unit) is used as activation

function.

4. MULTI-AGENT COOPERATIVE COMPETITION AND

REWARD FUNCTION

This paper focuses on the application of deep reinforcement

learning algorithm and functionalized return value. Through

centralized training, the agents that undertakes the deception

mission and the agents that undertakes the attack mission

realize the multi-agent, multi-mission, multi-target

collaborative tactics. In the battlefield environment, there are

often many mobile defence units near important targets.

When a target encounters an attack or is about to encounter

an attack, the defending units of the defender can move in

time and intercept the incoming units. In order to safely break

through the defence of the defending team and reach the

targets, the attacking units of the attacking team need to have

good tactical coordination. In this paper and experiments, we

assume that the defending team has two types of agents, one

is the commander with global insight, and the other is the

ordinary guardian who can only observe the barrier-free area.

The attacking team also has two types of agents, one is the

attacker who undertakes the collaborative attack mission, and

the other is the deceiver who actively approaches and attracts

the defending units to cover attackers.

In this paper, the reward function of the defending agents

consists of two parts: one is the punishment of the distance

between the defending team and the nearest unit of the

attacking team; the other part is the reward when the

defending unit intercepts the attacking unit with a constant

value. Thus, the reward function of the defending agents can

be expressed as:

 (5)

where indicates the defending agent,

indicates the step in each episode. The first part of the

above equation that represents punishment can be written as:

where is a negative constant, indicates the

 attacking agent, and is the distance

between the attacking agent and the defending agent. The

second part of the formula (5) that represents reward can be

written as:

With

where is a positive constant, and represent the radius of

the attacking agents and defending agents respectively.

As the attackers and the deceivers in attacking side have

different tactical missions, the settings of their reward

functions are also different. The attackers’ reward function

consists of five parts: one is the distance from the attacker to

the nearest target as punishment; the second is a constant

value as the reward for the attacker to reach the target; the

third is the standard deviation of the distance between each

attacker and its nearest target that is used as punishment to

train agents to attack synchronously; the fourth is to use a

constant value as punishment when the attacker is intercepted

by the defending agents; the fifth is the distance between the

attacker and its nearest defending agent. Therefore, the

attackers’ reward function can be written as follows:

(6)

The first part of the above equation can be written as:

where is a negative constant, indicates the

 target, and is the distance between the

target and the attacker. The second part of formula (6) can be

written as:

92 CONTROL ENGINEERING AND APPLIED INFORMATICS

where is a positive constant, is the radius of the target.

The third part of formula (6) can be written as:

where is a negative constant, is the distance

between the attacker and the target, and represents the

standard deviation of elements in the collection. The fourth

part of formula (6) can be written as:

with

where is a negative constant. The fifth part of formula (6)

can be written as:

where is a positive constant.

The deceivers’ reward function consists of three parts: one is

a Gauss-Quadratic mixing function about the distance

between the deceiver and defending agent as a reward to train

the deceiver to learn to approach defending agent actively

and keep the distance from defending agent; the second is a

constant as punishment when the deceiver is contacted by

defending agent; the third is the distance between the

deceiver and attacker as a reward to train the deceiver to learn

to evade attackers in the mission. Therefore, deceivers’

reward function can be written as follows:

(7)

the first part of above equation can be written as:

where is the distance between the defending

agent and the deceiver, are all positive

constant parameters. The second part of formula (7) can be

written as:

with

where is a negative constant. The third part of formula (7)

can be written as:

where is a positive constant, is the

distance between the deceiver and the attacker.

In addition to the targets and agents in both attacking and

defending team, obstacles and forests are also set up in the

mission scenario in this paper. The obstacles are impassable,

agents can only detour after touching. The forest can cover

the observation ability of the agent. When agents are outside

the forest, they cannot observe the agents in the forest.

Similarly, when agents are in the forest, they cannot observe

other agents outside the forest. The commander in defending

agents is the only agent with global observation capability,

and all the agents in the scenario can be observed regardless

of whether the commander is in forests or outside forests.

The setting of obstacles and forests can be used to simulate

some dangerous obstacles and low-detection areas in

complex battlefield environment, respectively. Agents are

trained to avoid obstacles and move purposefully into and out

of forests. The attacking agents can learn to use the forests

intelligently to avoid being intercepted, and the defending

agents can learn to cooperate with each other to deal with the

attacking agents in forests.

5. EXPERIMENTS

5.1 The experiment of cooperative competition and deception

tactics

In the computer experiments, the two types of attacking

agents can be trained to learn policy to maximize the global

utility without particular communication method. Thus, the

agents can cooperate on the attacking missions.

The multi-agent environment in this paper is a 600*600 RGB

image modelled using OpenAI Gym (a toolkit for developing

and comparing reinforcement learning algorithms). At the

beginning of each episode, locations of all agents, targets,

obstacles and forests are set randomly in a two-dimensional

plane. Agent i (i=1, 2, …, N) moves in the environment with

speed vi(vi
x, vi

y). The value of agent’s speed is determined by

the action outputted from its policy network. Agents’ position

at the current step is the sum of the previous position and the

current speed multiplied by dt=0.1s. In this mission, any

attackers in the attacking team covering the targets will score.

On the other hand, the defending team tries to intercept the

attacking team to prevent them from reaching the targets.

Each episode ends after 25th step no matter which team wins.

In order to measure the performance of the multi-agent

cooperative tactics quantitatively, three indicators are used to

describe the process of attackers and deceivers learning

CONTROL ENGINEERING AND APPLIED INFORMATICS 93

cooperative tactics, including the total number of times

attacking agents were intercepted by defending agents, the

number of times the attackers were intercepted, and the

number of times the attackers reached the targets for each

1000 episodes during the training process. The experimental

environments will be reset at the beginning of the new

episode, randomly generating new locations for targets,

agents, obstacles and forests. There are three defending

agents, one of which is the commander and others are

ordinary guardians, and there are five attacking agents, two of

which are attackers and three are deceivers. In addition, there

are 2 targets, 1 obstacle, and 2 forests in the experimental

environments, as shown in Figure 2.

Fig. 2. Multi-agent cooperative attack and deception mission

scenario. The larger red circles indicate the defending agents,

among which the dark red one is the commander; the smaller

blue and green circles are the attackers and deceivers in

attacking agents respectively. The dark blue dots indicate the

targets, black circles indicate obstacle, and green large circles

indicate forests.

The experiment results show that multi-agent cooperative

attack and deception mission in the above experimental

environments can achieve satisfied results after about 80,000

times of training. The experiment results after 81,000

episodes of training are given below. It can be observed that

the three defending agents are completely confused by the

deceivers in the attacking team, neither defensing the

attackers nor defending and staying near the targets. The

attackers successfully avoid the defending agents and

approach the targets in the mission of this episode.

Figure 3 shows the reward value curves of all agents in the

training process. In the first 10,000 episodes, with the various

agents moving from blind action to gradually learning their

own tasks, the reward values rise rapidly. Then, as the

opponents’ tactical level improved, their own reward values

decrease significantly. In the subsequent training process, the

cooperative tactics of both the attack and defence sides have

gradually matured, and the reward values of all types of

agents have increased. After training up to 70,000 episodes,

the attacking agents gain a comparative advantage and their

reward values continue to rise, while the return values of the

defending agent decrease significantly.

Fig. 3. The reward values of agents for the cooperative attack

and deception mission during 81,000 training episodes. The

ordinate indicates the sum of the reward values per 1,000

training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

Figure 4 and Figure 5 show the number of times all the

attacking agents are intercepted by the defending agents and

the number of times attackers are intercepted per 1,000

episodes during the training process respectively. It can be

observed that as the tactical ability of the defending agents

continue to enhance after the start of training, the number of

times attacking agents are intercepted increases rapidly,

reaching a maximum of 14,724 times per thousand episodes.

Fig. 4. The number of times attacking agents are intercepted

by defending agents during the 81,000 training episodes. The

ordinate indicates the sum of the number of interceptions per

1,000 training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

However, after only a few thousand episodes of training, the

attacking agents soon learn to avoid being intercepted by the

defending agents, and the number of interceptions decreases

significantly. After about 30,000 episodes of training, the

number of interceptions fluctuates between 12,000 and

22,500 per thousand episodes as the competition between the

defending and attacking team becomes more intense. The

94 CONTROL ENGINEERING AND APPLIED INFORMATICS

number of times attackers are intercepted increases rapidly

during the initial stage of training, and then decreases

significantly. Between 29,000 and 35,000 episodes, the

number of times attackers are intercepted is only about one-

tenth of the number of times all attacking agents are

intercepted, indicating that most of the defending agents are

induced by the deceivers. However, as can be seen from

Figure 6, the attacker can only reach the target about once per

episode on average, which means that the attackers have not

learned to attack the targets cooperatively.

Fig. 5. The number of times attackers are intercepted by

defending agents during the 81,000 training episodes. The

ordinate indicates the sum of the number of interceptions per

1,000 training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

Fig. 6. The number of times the attackers reach the targets

during 81,000 episodes of training. The ordinate indicates the

sum of the number of times attackers reach targets per 1,000

training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

As shown in Figure 5 and Figure 6, the number of times the

attackers reach the targets is significantly more than the

number of interceptions after about 70,000 episodes of

training, indicating that the cooperative attack tactics of the

attacking agents are effective at this time. When training to

80,001 to 81,000 episodes, the number of times attackers

reach targets peaks at 16,040 per 1,000 episodes. As the

tactical ability of the defending agents continue to enhance at

this time, the number of times attackers are intercepted also

rises rapidly. If training continues, the attackers' tactics will

tend to avoid the risk of being intercepted and even give up

many opportunities to get close to targets. Therefore, the

training process is terminated at 81,000th episodes. Fig. 1

meant 16000 A/m or 0.016 A/m. Figure labels should be

legible, approximately 8 to 12 point type.

5.2 The controlled experiment

In order to reveal the role of deceivers more directly and

verify the effect of deception tactics, the controlled

experiment has been carried out. In the controlled

experiment, the mission and the experimental environment

are exactly the same as the previous experiment, the only

difference is the setting of the agents’ reward function. The

deceivers’ action policy is simply to avoid being intercepted

by the defending agents, instead of actively approaching

defending agents at appropriate distance. In the following

controlled experiment, agents are also trained 81,000

episodes. The results are shown below.

In Figure 7, it can be observed that the attackers are

surrounded by defending agents, while the attacking agents

that originally played the roles of deceivers can only elude

the defending agents and can no longer effectively deceive

defending agents. Figure 8 shows the reward value curves of

agents in the training process. It can be observed that after

training to 65,000 episodes, the reward values of defending

agents are rapidly increased, while the reward value of an

attacker in attacking agents decreases significantly. This

shows that the tactical mature defending agents can

distinguish different types of attacking agents. After the

attackers lose the cover of the deceivers, they are more likely

to be intercepted by defending agents.

Fig. 7. The controlled experimental scenario without

deception tactics. The larger red circles indicate the

defending agents, among which the dark red one is the

commander; the smaller blue circles are the attackers, and the

small green circles are deceivers without deception tactics.

The dark blue dots indicate the targets, black circles indicate

obstacle, and green large circles indicate forests.

CONTROL ENGINEERING AND APPLIED INFORMATICS 95

Fig. 8. The reward values of agents in the controlled

experiment. The ordinate indicates the sum of the reward

values per 1,000 training episodes; the abscissa indicates the

number of training episodes in thousands of episodes.

Fig. 9. The number of times attacking agents are intercepted

by defending agents during the 81,000 training episodes. The

ordinate indicates the sum of the number of interceptions per

1,000 training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

Figure 9 and Figure 10 respectively show the number of

times all attacking agents are intercepted and the number of

times attackers are intercepted during the training of the

controlled experiment. It is easy to see that the proportion of

the number of times attackers are intercepted accounts for the

number of times all attacking agents are intercepted is

significantly higher than that of the above situation with

deception tactics. When training to around 70,000 episodes,

the number of times attackers are intercepted quickly rises to

more than 10,000 times. The attacking agents intercepted by

defending agents at this time are almost all attackers. In other

words, the three attacking agents without deception policy in

the controlled experiment can hardly cover the attackers.

Figure 11 shows the number of times the attackers reach

targets during the training process in the controlled

experiment, which shows a nearly linear increase with the

number of training episodes. When train to 79,001 to 80,000

episodes, the attackers reach the targets 5,946 times per

thousand episodes. Compared with above scenarios with

deception tactics, the number of times of reaching targets in

the controlled experiment decreased by 62.5%. Since the

number of times attacker are intercepted has far exceeded the

number of times of reaching targets, most attacks are actually

failed.

Fig. 10. The number of times attackers are intercepted by

defending agents during the 81,000 training episodes. The

ordinate indicates the sum of the number of interceptions per

1,000 training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

Fig. 11. The number of times the attackers reach the targets

during 81,000 episodes of training. The ordinate indicates the

sum of the number of times attackers reach targets per 1,000

training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

The results of the above controlled experiments reflect that

the deception tactics play an important role in multi-agent

cooperative competition. By actively approaching the

defending agents and keeping an appropriate distance, the

deceivers can confuse and induce opponents, thus covering

and helping the attackers to safely complete their attacking

mission.

5.3 The effect of training episodes on multi-agent policy

In the training process, the competition situation and agents’

tactical level will directly affect the opponents’ policy

optimization process. To achieve the goal of the cooperative

mission in this paper, the two types of attacking agents

should learn to cooperate with each other to perform their

96 CONTROL ENGINEERING AND APPLIED INFORMATICS

tasks. On the other hand, the two types of defending agents

should learn to work together to besiege and intercept

attacking agents, so as to maximize the reward value of all of

them.

Fig. 12. The reward values of agents for the cooperative

attack and deception mission during 121,000 training

episodes. The ordinate indicates the sum of the reward values

per 1,000 training episodes; the abscissa indicates the number

of training episodes in thousands of episodes.

Figure 12 to Figure 15 show the results of three defending

agents against two attackers and three deceivers during

121,000 episodes of training. As the number of training

episodes increases, it can be observed that the tactics of the

defending agents are more and more tend to work together to

besiege a single attacking agent, and the total number of

interceptions and the number of times the attackers are

intercepted are rapidly increased, as shown in Figures 12, 13

and 14. After training to about 90,000 episodes, this trend

will force the attackers to adopt a more conservative policy of

avoiding being intercepted rather than getting close to targets,

as shown in figure 15.

Fig. 13. The number of times attacking agents are intercepted

by defending agents during the 121,000 training episodes.

The ordinate indicates the sum of the number of interceptions

per 1,000 training episodes; the abscissa indicates the number

of training episodes in thousands of episodes.

The above results show that if the agents encounter powerful

opponents and accumulates too much failure experience in

the training process, the agents’ policy will be more and more

conservative. As the training episodes increases, the attacking

agents will gradually give up the opportunity to take the risk

to complete their mission, which will eventually lead to the

agents learning passive escape policy. This is obviously

inconsistent with the expected goal of the cooperative

competitive mission. Therefore, the number of training

episodes should be reasonably set according to the

requirements of the mission and the data of experiments.

Fig. 14. The number of times attackers are intercepted by

defending agents during the 121,000 training episodes. The

ordinate indicates the sum of the number of interceptions per

1,000 training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

Fig. 15. The number of times the attackers reach the targets

during 121,000 episodes of training. The ordinate indicates

the sum of the number of times attackers reach targets per

1,000 training episodes; the abscissa indicates the number of

training episodes in thousands of episodes.

By comparing the data of above experiments where three

defending agents (including one commander and two

guardians) and five attacking agents (including two attackers

and three deceivers) are set up, it can be observed that the

attacking agents can learn relatively satisfied tactical policy

after about 80,000 episodes of training.

5.4 The effect of the number of deceivers on cooperative

attacking

In the cooperative competition mission in this paper, the

deceivers play important roles in inducing defending agents

CONTROL ENGINEERING AND APPLIED INFORMATICS 97

and covering attackers to reach targets safely. This paper

researches the computer experiment results of cooperative

attacking and deception tactics with variable number of

deceivers by tuning the number of deceivers. It is found that

the number of deceivers has a significant effect on the

performance of deception tactics. The length of the training is

set to 81,000 episodes in the experiments, the number of

deceivers ranges from 0 to 4, and other settings in the

experimental environment are consistent with the previous

experiments. Table 1 statistics the experiments data of the

last 1,000 episodes of the training process, i.e., the total

number of interceptions, the number of times attackers are

intercepted and the number of times attackers reach targets in

the 80,001-81,000 episodes. The proportion of the number of

times attackers are intercepted accounts for the total number

of interceptions is also listed in Table 1.

Table 1. Statistical results of training data for the 80001-

81000 episodes. Nd is the number of deceivers, T is the

total number of interceptions, Ta is the number of times

attackers are intercepted, Tr is the number of times

attackers reach targets.

Nd T Ta Ta /T Tr

0 9666 9666 100% 1446

1 10938 7818 71.48% 3950

2 17679 8970 50.74% 10065

3 13512 5271 39.00% 16040

4 17793 4929 27.70% 5717

From the data in Table 1, it can be observed that the number

of times attackers are intercepted shows a roughly downward

trend with the increase of the number of deceivers. But when

the number of deceivers increases to two, the number of

times attackers are intercepted exceeded that of only one

deceiver, which is caused by the inherent randomness of

reinforcement learning. This random disturbance is reflected

in the statistical data, which inevitably caused the training

results to deviate from the overall trend to some extent.

However, the proportion of the number of times attackers are

intercepted accounts for the total number of interceptions

decreases monotonously as the number of deceivers

increases. This demonstrates that the more deceivers there

are, the more defending agents they can induce, and the better

the attackers’ chances of surviving.

This paper tests the policy network model obtained after

81,000 episodes of training. The testing environment is set as

the same as the training environment. The length of test is set

to 1,000 episodes, and the test data are listed in Table 2.

In Table 2, as the number of deceivers increases, the number

of times attackers are intercepted monotonically decreases,

and the proportion of the number of times attackers are

intercepted accounts for the total number of interceptions also

monotonically decreases. As shown in Table 1 and Table 2,

when the number of deceivers increase from 0 to 4 in training

and testing, the number of times attackers reach targets

increases as the number of deceivers increases. This shows

that, as more deceivers join, the attacking agents get a higher

winning percentage.

Table 2. Statistical results of test data of 1000 episodes. Nd

is the number of deceivers, T is the total number of

interceptions, Ta is the number of times attackers are

intercepted, Tr is the number of times attackers reach

targets.

Nd T Ta Ta /T Tr

0 6030 6030 100% 1287

1 7515 5415 72.06% 3067

2 11436 5259 45.99% 5856

3 10365 4254 41.04% 10810

4 14865 3999 26.90% 3744

However, when the number of deceivers increases to more

than 4, the previous training times are not enough for

attackers to learn better policy in the face of more complex

situations, so that the number of times attackers reach targets

decreases compare to previous situation with less agents.

6. CONCLUSIONS

This paper proposes a method to realize multi-agent

cooperative competition and deception tactics by designing

functional reward values for multi-agent based on MADDPG

algorithm, and verifies the role of deception tactics through

experiments. We set up multiple types of agents to share

various missions and obtain the cooperative attacking and

deception policy modes through computer experiments to

realize the cooperation of multi-mission among multiple

agents. This paper also researches the effect of training

episodes on multi-agent learning policy in the experiments.

The experiments data shows that too little training is not

enough for agents to learn satisfied policy, while too much

training may make agents learn overly aggressive or

conservative policy, so the number of training episodes

should be reasonably set according to the mission

requirements and test results. Otherwise, this paper analyses

the effect of the number of deceivers on the performance of

deception tactics by tuning the number of deceivers in the

experiments. The training and testing results show that

increasing the number of deceivers in the mission can

significantly improve the performance of deception tactics by

covering attackers to reach targets safely from the

interception of defending agents. But the computational

complexity of the multi-agent environments will rise with the

increase of the number of agents, and more training episodes

are needed to ensure a satisfied learning effect.

MARL has been applied to a variety of problem domains,

mostly in simulation but also in some real-life tasks.

Simulated domains dominate for two reasons. The first

reason it is easier to understand and to derive insight from

results in simpler domains. The second reason is that

scalability and robustness to imperfect observations are

necessary in real-life tasks, and few MARL algorithms

exhibit these properties. In real-life applications, more direct

derivations of single-agent RL are preferred (Buşoniu et al.,

2010). Although deep reinforcement learning method has

made a significant breakthrough in solving cooperative

mission of multi-agent, there are still some problems that

have not been solved well. First, the number of training

98 CONTROL ENGINEERING AND APPLIED INFORMATICS

episodes relies on human experience to set in the existing

multi-agent algorithms based on deep reinforcement learning.

It is difficult to define how many episodes of training can

obtain a model that best conforms to the expected result

before a number of training and testing. Second, the existing

deep reinforcement learning algorithms continuously

optimize the agents’ policy in the direction of maximizing the

Q values in training process by updating network parameters.

Training a type of agents in this way can only perform one

type of mission, unable to balance multi-mission goals and

flexibly adjust policy according to the dynamic environment,

and the problem of multi-agent multi-mission cooperation

can only be solved by assigning different missions to

different types of agents. At last, as the deep reinforcement

learning method has a strong inherent randomness, the

experiments results are difficult to be reproduced. The

random multi-agent dynamic environment and experience

sampling process will cause the policy learning process to be

unstable and make the experimental data fluctuate in a large

range. It is a practical problem in the cluster control of

unmanned intelligent system, which is worth further

exploring.

REFERENCES

Arulkumaran K., Deisenroth M., Brundage M. and Others

(2017). A brief survey of deep reinforcement learning.

IEEE Signal Processing Magazine, 34, 26–38.

Buşoniu, L., Babuška, R., & Schutter, B. D. (2010). Multi-

agent Reinforcement Learning: An Overview, 183–221.

Choi J., Lee B., and Zhang B. (2017). Multi-focus attention

network for efficient deep reinforcement learning. In

Workshops at the Thirty-First AAAI Conference on

Artificial Intelligence.

Conitzer, V., & Sandholm, T. (2007). AWESOME: A general

multiagent learning algorithm that converges in self-play

and learns a best response against stationary opponents.

Machine Learning, 67(1), 23–43.

Foerster J., Assael I., de Freitas N. and Others (2016).

Learning to communicate with deep multi-agent reinfor-

cement learning. In Advances in Neural Information

Processing Systems, pp. 2137–2145.

Foerster J., Farquhar G., Afouras T. and Others (2018).

Counterfactual multi-agent policy gradients. In Thirty-

Second AAAI Conference on Artificial Intelligence.

François-Lavet V., Henderson P., Islam R. and Others

(2018). An introduction to deep reinforcement learning.

Foundations and Trends R ⃝ in Machine Learning, 11 (3-

4), 219–354.

Hastie T., Tibshirani R., and Friedman J. (2009). The

elements of statistical learning: data mining, inference,

and prediction. Springer.

Hernandez-Leal P., Kartal B., and Taylor M. E. (2019). A

survey and critique of multiagent deep reinforcement

learning. Autonomous Agents and Multi-Agent Systems,

33 (6), 750–797.

Hu, J., & Wellman, M. P. (2003). Nash q-learning for

general-sum stochastic games. Journal of Machine

Learning Research, 4, 1039–1069.

Jiang J., and Lu Z. (2018). Learning attentional communi-

cation for multi-agent cooperation. In Advances in

Neural Information Processing Systems, pp. 7254–7264.

Kapoor, S. (2018). Multi-Agent Reinforcement Learning: A

Report on Challenges and Approaches. arXiv Preprint

ArXiv:1807.09427.

Khan, A., Zhang, C., Lee, D., Kumar, V., & Ribeiro, A.

(2018). Scalable Centralized Deep Multi-Agent

Reinforcement Learning via Policy Gradients. ArXiv,

abs/1805.08776.

Krizhevsky A., Sutskever I., and Hinton G. E. (2012).

Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing

Systems, pp. 1097–1105.

LeCun Y., Bengio Y., and Hinton G. (2015). Deep learning.

nature, 521 (7553), 436–444.

Lillicrap T., Hunt J., Pritzel A. and Others (2015). Continu-

ous control with deep reinforcement learning. In arXiv

preprint, Vol. 1509.02971.

Liu Q., Zhai J., Zhang Z. and Others (2018). A survey on

deep reinforcement learning. Chinese Journal of

Computers, 40, 1–27.

Lowe R., Wu Y., Tamar A. and Others (2017). Multi-agent

actor-critic for mixed cooperative competitive environ-

ments. In Advances in Neural Information Processing

Systems, pp. 6379–6390.

OpenAI (2018). Openai five. In https: //blog.openai.com/

openai-five/.

Silver D., Huang A., Maddison C. and Others (2016). Mas-

tering the game of go with deep neural networks and tree

search. Nature, 529, 484–489.

Silver D., Hubert T., Schrittwieser J. and Others (2017).

Mastering chess and shogi by self-play with a general

reinforcement learning algorithm. In arXiv preprint, Vol.

1712.01815.

Silver D., Hubert T., Schrittwieser J. and Others (2018). A

general reinforcement learning algorithm that masters

chess, shogi, and go through self-play. Science, 362,

1140–1144.

Silver D., Lever G., Heess N. and Others (2014). Deter-

ministic policy gradient algorithms. In International

Conference on Machine Learning, pp. 387–395.

Silver D., Schrittwieser J., Simonyan K. and Others (2017).

Mastering the game of go without human knowledge.

Nature, 550, 354–359.

Sutton R., and Barto A. (2018). Reinforcement learning: An

introduction. MIT press.

Tampuu A., Matiisen T., Kodelja D. and Others (2017).

Multiagent cooperation and competition with deep

reinforcement learning. Plos One, 12(4), e0172395.

Vinyals O., Babuschkin I., Czarnecki W. and Others (2019).

Grandmaster level in starcraft ii using multi-agent

reinforcement learning. Nature, 575, 350–354.

Wu, T., Jiang, M., & Zhang, L. (2020). Cooperative

Multiagent Deep Deterministic Policy Gradient

(CoMADDPG) for Intelligent Connected Transportation

with Unsignalized Intersection. Mathematical Problems

in Engineering, 2020, 1–12.

