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Abstract: Deep reinforcement learning in multi-agent scenario is important for real-world applications 

but presents challenges beyond those seen in single agent settings. This paper proposes a method to train 

a team of multiple types of agents to cooperate against another team of agents. Furthermore, this paper 

studies how to train multiple types of agents to collaborate better on their team tasks, and analyses the 

influence of various factors on agents’ policy. In the computer experiments, agents are divided into 

attacking agents and defending agents. The results show that attacking agents which play the roles of 

deceivers can attract most of defending agents and help the other attacking agents to reach their targets 

successfully. Choosing appropriate length of training could help agents learn better action policy. The 

experiments results reveal that the number of agents has an effect on the performance of our proposed 

method. Increasing the number of deceivers in attacking agents can significantly increase the mission 

success of attacking team, but the computational complexity will rise and more episodes are needed to 

train agents. 

Keywords: Machine learning, reinforcement learning, multi-agent, cooperative competition, artificial 

intelligence. 

 

1. INTRODUCTION 

Much progress towards artificial intelligence has been made 

using supervised learning systems that are trained to replicate 

the decisions of human experts (Silver et al., 2017; Hastie et 

al., 2009; LeCun et al., 2015; Krizhevsky et al., 2012).  

Reinforcement Learning (RL) is one of the most general 

formulation of the learning problem. Unlike supervised 

learning, the feedback is partial and in many cases the 

rewards are delayed. It also differs from unsupervised 

learning because the aim is not to find hidden structure in 

unlabeled data but to solely maximize the reward signal. An 

RL researcher is conventionally expected to come up with a 

good reward function and subsequently provide a robust RL 

algorithm to generalize to unseen trajectories of the feedback 

loop. Deep reinforcement learning (DRL) represents a step 

towards building autonomous systems with a higher level 

understanding of the visual world. In DRL (Arulkumaran et 

al., 2017; Francois-Lavet et al., 2018), deep neural networks 

are trained to approximate the optimal policy or the value 

function. In this way the deep neural networks, serving as 

function approximator, enables powerful generalization. One 

of the key advantages of DRL is that it enables reinforcement 

learning to scale to problems with high-dimensional state and 

action spaces (Hernandez-Leal et al., 2019). 

Recently, there has been rapid progress using deep neural 

networks trained by reinforcement learning. These systems

have outperformed humans in games, such as AlphaGo 

(Silver et al., 2016), AlphaGo Zero (Silver et al., 2017) and 

Alpha Zero (Silver et al., 2017, 2018). Otherwise, in the 

study of antagonistic video games based on local visual 

information, Deepmind’s AlphaStar (Vinyals et al., 2019) in 

the real-time strategy game Starcraft II, and OpenAI Five 

(OpenAI, 2018) in the multiplayer game DOTA 2 show 

outstanding performance beyond top human players. The 

outstanding ability of deep reinforcement learning in solving 

single individual policy optimization problem urges 

researchers to try to apply related methods to solve multi-

agent cooperation or competition problems. 

The nature of interaction between agents can either be co-

operative, competitive, or both and many algorithms are 

designed only for a particular nature of interaction. These 

algorithms are generally not applicable in competitive or 

mixed settings (Lowe et al., 2017). As multi-agent learning 

needs to search for the optimal policy in the high-

dimensional state space, it will bring about an unstable 

training environment, if each agent learns policy from its own 

perspective without cooperative communication or setting of 

sharing global utility. In recent years, the actor-critic 

algorithm framework which can be used to optimize agents’ 

policy with centralized training and control agents’ actions 

with decentralized execution, has been introduced into Multi-

Agent Reinforcement Learning (MARL) to share agents’ 

utility in various ways.  
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Previous works have shown how the MARL approach can be 

used to cooperation mission or competition mission between 

two types of agents. This paper presents a method to train 

multi types of agents to complete both competition and 

cooperation mission simultaneously, and demonstrates its 

performance by computer experiments. Centralized Critic is 

adopted to evaluate and optimize agents’ policy, which make 

multi types of agents cooperate for team work.  

In this paper, agents are divided into attacking agents and 

defending agents. Agents in attacking team which undertake 

the attacking mission can arrive their targets synchronously 

by minimizing the standard deviation of the distance between 

agents and targets. The other agents in attacking team which 

undertake deception mission can induce adversaries at close 

range by maximizing the value of a Gauss-Quadratic mixing 

function about the distance between them and defending 

agents. The defending agents intercept adversaries by 

minimizing the distance to the attacking agents and giving 

him a constant reward on contact. This paper introduces 

multi-agent deep deterministic strategy gradient algorithm 

which combines Actor-Critic framework and DDPG 

algorithm to train agents learning policy, so that the multi-

agent multi-mission multi-target co-control could be realized. 

This paper also analyses the effects of the number of training 

episodes and the number of agents undertook deception 

mission on the training results.  

2. RELATED WORKS 

A number of complex problems in today’s society can be 

modeled as multi-agent learning problems. A few examples 

include multi-robot control, analysis of social dilemmas, 

managing air traffic flow and energy distribution, etc. When 

one or more agents fail in a multi-agent system, the 

remaining agents can take over some of their tasks. This 

implies that multi-agent system is inherently robust. 

Furthermore, by design most multi-agent systems also allow 

the easy insertion of new agents into the system, leading to a 

high degree of scalability. While single-agent RL have a 

relatively strong theoretical foundation, a thorough 

understanding of the learning problem in multi-agent settings 

is still an open problem (Kapoor, 2018). Therefore, progress 

in Multi-Agent RL systems is due. 

Many initial approaches have been focused on tabular 

methods to compute Q-values for general sum Markov games 

(Hu and Wellman, 2003). Another approach in the past has 

been to remove the non-stationarity in MARL by treating 

each episode as an iterative game, where the other agent is 

held constant during its turn. In such a game, the proposed 

algorithm searches for a Nash equilibrium (Conitzer and 

Sandholm, 2007). Naturally, for complex competitive or 

collaborative tasks with many agents, finding a Nash 

equilibrium is non-trivial. Building on the recent success of 

methods for deep RL, there has been a renewed interest in 

using high capacity models such as neural networks for 

solving MARL problems (Khan et al., 2018). 

In most of the MARL algorithms, the training mechanism is 

assigned to each agent separately. For example, independent

Q learning algorithm is adopted to train each agent. The 

distributed learning architecture above reduces the difficulty 

of implementing learning and the complexity of calculation. 

For the DRL problem of large-scale state space, a simple 

multi-agent DRL system can be constructed by using DQN 

algorithm instead of Q learning algorithm to train each agent 

individually (Liu et al., 2018). Tampuu et al. (Tampuu et al., 

2017) used the above ideas to expand the framework of deep 

Q learning, dynamically adjusted the utility mode according 

to different goals, and proposed a DRL model in which 

multiple agents could cooperate and compete with each other. 

In the face of a class of reasoning missions that require 

multiple agents to communicate with each other, the DQN 

model cannot usually learn effective strategies. To solve this 

problem, Foerster et al. (Foerster et al., 2016) proposed a 

model called distributed deep loop Q network (DDRQN), 

which solved the problem of multi-agent communication and 

cooperation that can be observed in the state part.  

The machine learning method based on Q learning is 

challenged by an inherent non-stationarity of the 

environment, while policy gradient suffers from a variance 

that increases as the number of agents grows. In recent years, 

some new approaches have been proposed, including deep 

reinforcement learning based on attention mechanism and 

deep reinforcement learning based on Actor-Critic 

framework. In 2017, Choi et al. (Choi et al., 2017) proposed a 

multi-focus attention network (MANet) method that can 

simulate human spatial extraction ability. This method first 

divides the low-level input into several segments representing 

local states. In 2017, Foerster et al. (Foerster et al., 2018) 

proposed a new multi-agent actor-critic method called 

counterfactual multi-agent (COMA) policy gradients based 

on the Actor-Critic. COMA uses a centralized critic to 

estimate the Q-function and decentralized actors to optimize 

the agents’ policies. To address the challenges of multi-agent 

credit assignment, it uses a counterfactual baseline that 

marginalizes out a single agent’s action, while keeping the 

other agents’ actions fixed. Lowe R et al. (Lowe et al., 2017) 

present an adaptation of actor-critic methods named 

MADDPG (Multi-agent Deep Deterministic Policy Gradient) 

that considers action policies of other agents and is able to 

successfully learn policies that require complex multiagent 

coordination to maximizes the global utility. They also 

introduce a training regimen utilizing an ensemble of policies 

for each agent that weakened overfitting and leads to more 

robust multi-agent policies. They show the success of their 

approach compared to existing methods in cooperative as 

well as competitive scenario.  

In the environment of large-scale multi-agent cooperation, it 

is difficult for agents to differentiate valuable information 

that helps cooperative decision making from globally shared 

information. The predefined communication architectures, on 

the other hand, restrict communication among agents and 

thus restrain potential cooperation. To tackle these 

difficulties, in 2018, Jiang et al. (Jiang and Lu, 2018) 

proposed an attentional communication model that learns 

when communication is needed and how to integrate shared 

information for cooperative decision making. 
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In recent years, MADDPG has been successfully used in the 

field of traffic control. Wu et al. (Wu, Jiang and Zhang, 2020) 

proposes a distributed conflict-free Cooperation MADDPG 

(CoMADDPG), for multiple connected vehicles at 

unsignalized intersection. CoMADDPG can reduce average 

travel time by 39.28% compared with the other optimization-

based methods, which indicates that CoMADDPG has an 

excellent prospect in dealing with the scenario of 

unsignalized intersection control. 

3. MULTI-AGENT COOPERATIVE COMPETITION AND 

DECEPTION TACTION  

3.1 Multi-agent centralized training framework 

In this paper, the Multi-Agent Deep Deterministic Policy 

Gradient (MADDPG) algorithm is adopted to train all agents 

in the competitive scenario, so that both attacking and 

defending team can gradually learn cooperative tactics in the 

training process. Based on the Deep Deterministic Policy 

Gradient (DDPG) algorithm (Lillicrap et al., 2015), 

MADDPG algorithm adds the policy information of other 

agents, including the state, action and reward value of each 

agent. Similar to DDPG, the MADDPG algorithm also uses 

the Actor-Critic algorithm framework (Sutton and Barto, 

2018), as shown in Figure 1.  

During training, the policy network in the Actor selects an 

action according to the observation information of the current 

agent, and the action is executed in the environment to get the 

new state and return value. After that, each agent's state, 

action, reward value, and new state form a sample to be saved 

to the experience replay buffer.  
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Fig. 1. Multi-Agent Deep Deterministic Policy Gradient 

(MADDPG) algorithm. 

This method randomly collects 1024 samples from the 

experience replay buffer, and sends the new states to the 

target network in the Actor. Then the new actions output 

from the target network in the Actor are passed to the target 

network in the Critic. The target network in the Critic obtains 

the new states from the samples and the actions passed by the 

Actor, and outputs Q values of the new states. The target Q 

values can be calculated according to the Bellman equation 

using the reward values obtained from samples and the Q 

values of new states output from the target network in the 

Critic. The evaluation network in the Critic outputs the 

estimated centralized Q values after it gets the sampled states 

and actions.  

In the Critic, the mean squares of the differences between the 

estimated centralized Q values and the target Q values are 

used as the loss value to train the evaluation network and 

update its parameters. Based on the estimated centralized Q 

values, the strategy gradient (Silver et al., 2014) can be 

calculated to train and update the policy network in the 

Actor. 

The parameters of target networks are updated by super-

posing the parameters of policy network or evaluation 

network and the parameters of target network proportionally. 

In order to ensure the stability of the learning process, the 

MADDPG algorithm updates the parameters of target net-

work using the soft update method similar to DDPG. It 

updates network parameters as follows: 

                                                         (1) 

with , where  is the parameter of target network, and 

 is the parameter of policy network or evaluation network. 

This decision-making algorithm is a decentralized execution, 

centralized training approach which is not linked to the 

graphical interface until at the testing (decentralized 

executing) phase. At the training phase, the algorithm and 

data of dynamic multi-agent environment runs in the 

background. Then at the testing phase, every agent’s action is 

given by policy network and the state of the multi-agent 

environment is updated per 0.1 second and mapped 

synchronously to the graphical interface. 

3.2  Multi-Agent Deep Deterministic Policy Gradient 

 The MADDPG (Multi-Agent Deep Deterministic Policy 

Gradient) algorithm is a general-purpose multi-agent deep 

reinforcement learning algorithm based on policy gradient 

method (Lowe et al., 2017). MADDPG does not assume a 

differentiable model of the environment dynamics or any 

particular structure on the communication method between 

agents, and it is applicable not only to cooperative interaction 

but to competitive or mixed interaction. MADDPG adopts 

the framework of centralized training with decentralized 

execution to extend the Actor-Critic methods where the Critic 

is augmented with extra information about the policies of 

other agents, while the Actor only has access to local 

information. After training is completed, only the local actors 

are used at execution phase, acting in a decentralized manner.  

Consider a mission scenario with N agents with policies 

parameterized by , and let  

be the set of all agent policies. Then the gradient of the 

expected return  for agent i can be written as: 

(2) 
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where  is a centralized action-value function 

that takes as input actions of all agents, , in addition 

to some state information x, and outputs the Q-value for 

agent i. In the simplest case, x could consist of the 

observations of all agents. The experience replay buffer  

contains the tuples , recording 

experiences of all agents. The parameters of policy network 

are updated using the policy gradient from formula (2) as the 

loss by Adam optimizer.  

In the Actor-Critic method, the model of action-value 

function  is the evaluation network. The Adam optimizer 

is used to update the network parameters in the training 

process. The loss function is as follows: 

                         (3) 

where y represents the target Q value calculated by the 

Bellman equation, and y can be written as: 

                                 (4) 

where  represents the policy of all agents 

in the new states,  is the Q value output from the target 

network in the Critic, and  is a discount factor. 

3.3 Network model 

This paper adopts a fully connected network to train multi-

agent policy. The network model consists of 1 input layer, 2 

hidden layers, and 1 output layer, each of which contains 64 

units. The ReLU (Rectified Linear Unit) is used as activation 

function. 

4.  MULTI-AGENT COOPERATIVE COMPETITION AND 

REWARD FUNCTION 

This paper focuses on the application of deep reinforcement 

learning algorithm and functionalized return value. Through 

centralized training, the agents that undertakes the deception 

mission and the agents that undertakes the attack mission 

realize the multi-agent, multi-mission, multi-target 

collaborative tactics. In the battlefield environment, there are 

often many mobile defence units near important targets. 

When a target encounters an attack or is about to encounter 

an attack, the defending units of the defender can move in 

time and intercept the incoming units. In order to safely break 

through the defence of the defending team and reach the 

targets, the attacking units of the attacking team need to have 

good tactical coordination. In this paper and experiments, we 

assume that the defending team has two types of agents, one 

is the commander with global insight, and the other is the 

ordinary guardian who can only observe the barrier-free area. 

The attacking team also has two types of agents, one is the 

attacker who undertakes the collaborative attack mission, and 

the other is the deceiver who actively approaches and attracts 

the defending units to cover attackers.  

In this paper, the reward function of the defending agents

consists of two parts: one is the punishment of the distance 

between the defending team and the nearest unit of the 

attacking team; the other part is the reward when the 

defending unit intercepts the attacking unit with a constant 

value. Thus, the reward function of the defending agents can 

be expressed as:  

                     (5) 

where  indicates the  defending agent,  

indicates the  step in each episode. The first part of the 

above equation that represents punishment can be written as: 

 

where  is a negative constant,  indicates the 

 attacking agent, and  is the distance 

between the attacking agent and the defending agent. The 

second part of the formula (5) that represents reward can be 

written as: 

 

With 

 

where  is a positive constant,  and  represent the radius of 

the attacking agents and defending agents respectively. 

As the attackers and the deceivers in attacking side have 

different tactical missions, the settings of their reward 

functions are also different. The attackers’ reward function 

consists of five parts: one is the distance from the attacker to 

the nearest target as punishment; the second is a constant 

value as the reward for the attacker to reach the target; the 

third is the standard deviation of the distance between each 

attacker and its nearest target that is used as punishment to 

train agents to attack synchronously; the fourth is to use a 

constant value as punishment when the attacker is intercepted 

by the defending agents; the fifth is the distance between the 

attacker and its nearest defending agent. Therefore, the 

attackers’ reward function can be written as follows: 

(6) 

The first part of the above equation can be written as: 

 

where  is a negative constant,  indicates the 

 target, and  is the distance between the 

target and the attacker. The second part of formula (6) can be 

written as: 
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where  is a positive constant,  is the radius of the target. 

The third part of formula (6) can be written as: 

 

where  is a negative constant,  is the distance 

between the attacker and the target, and  represents the 

standard deviation of elements in the collection. The fourth 

part of formula (6) can be written as: 

 

with  

 

where  is a negative constant. The fifth part of formula (6) 

can be written as: 

 

where  is a positive constant.  

The deceivers’ reward function consists of three parts: one is 

a Gauss-Quadratic mixing function about the distance 

between the deceiver and defending agent as a reward to train 

the deceiver to learn to approach defending agent actively 

and keep the distance from defending agent; the second is a 

constant as punishment when the deceiver is contacted by 

defending agent; the third is the distance between the 

deceiver and attacker as a reward to train the deceiver to learn 

to evade attackers in the mission. Therefore, deceivers’ 

reward function can be written as follows:  

(7) 

the first part of above equation can be written as: 

 

 

where  is the distance between the defending 

agent and the deceiver,  are all positive 

constant parameters. The second part of formula (7) can be 

written as: 

 

with  

 

where  is a negative constant. The third part of formula (7) 

can be written as: 

 

where  is a positive constant,  is the 

distance between the deceiver and the attacker. 

In addition to the targets and agents in both attacking and 

defending team, obstacles and forests are also set up in the 

mission scenario in this paper. The obstacles are impassable, 

agents can only detour after touching. The forest can cover 

the observation ability of the agent. When agents are outside 

the forest, they cannot observe the agents in the forest. 

Similarly, when agents are in the forest, they cannot observe 

other agents outside the forest. The commander in defending 

agents is the only agent with global observation capability, 

and all the agents in the scenario can be observed regardless 

of whether the commander is in forests or outside forests.  

The setting of obstacles and forests can be used to simulate 

some dangerous obstacles and low-detection areas in 

complex battlefield environment, respectively. Agents are 

trained to avoid obstacles and move purposefully into and out 

of forests. The attacking agents can learn to use the forests 

intelligently to avoid being intercepted, and the defending 

agents can learn to cooperate with each other to deal with the 

attacking agents in forests. 

5.  EXPERIMENTS 

5.1 The experiment of cooperative competition and deception 

tactics  

In the computer experiments, the two types of attacking 

agents can be trained to learn policy to maximize the global 

utility without particular communication method. Thus, the 

agents can cooperate on the attacking missions.  

The multi-agent environment in this paper is a 600*600 RGB 

image modelled using OpenAI Gym (a toolkit for developing 

and comparing reinforcement learning algorithms). At the 

beginning of each episode, locations of all agents, targets, 

obstacles and forests are set randomly in a two-dimensional 

plane. Agent i (i=1, 2, …, N) moves in the environment with 

speed vi(vi
x, vi

y). The value of agent’s speed is determined by 

the action outputted from its policy network. Agents’ position 

at the current step is the sum of the previous position and the 

current speed multiplied by dt=0.1s. In this mission, any 

attackers in the attacking team covering the targets will score. 

On the other hand, the defending team tries to intercept the 

attacking team to prevent them from reaching the targets. 

Each episode ends after 25th step no matter which team wins.  

In order to measure the performance of the multi-agent 

cooperative tactics quantitatively, three indicators are used to 

describe the process of attackers and deceivers learning 
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cooperative tactics, including the total number of times 

attacking agents were intercepted by defending agents, the 

number of times the attackers were intercepted, and the 

number of times the attackers reached the targets for each 

1000 episodes during the training process. The experimental 

environments will be reset at the beginning of the new 

episode, randomly generating new locations for targets, 

agents, obstacles and forests. There are three defending 

agents, one of which is the commander and others are 

ordinary guardians, and there are five attacking agents, two of 

which are attackers and three are deceivers. In addition, there 

are 2 targets, 1 obstacle, and 2 forests in the experimental 

environments, as shown in Figure 2. 

 

Fig. 2. Multi-agent cooperative attack and deception mission 

scenario. The larger red circles indicate the defending agents, 

among which the dark red one is the commander; the smaller 

blue and green circles are the attackers and deceivers in 

attacking agents respectively. The dark blue dots indicate the 

targets, black circles indicate obstacle, and green large circles 

indicate forests.  

The experiment results show that multi-agent cooperative 

attack and deception mission in the above experimental 

environments can achieve satisfied results after about 80,000 

times of training. The experiment results after 81,000 

episodes of training are given below. It can be observed that 

the three defending agents are completely confused by the 

deceivers in the attacking team, neither defensing the 

attackers nor defending and staying near the targets. The 

attackers successfully avoid the defending agents and 

approach the targets in the mission of this episode.  

Figure 3 shows the reward value curves of all agents in the 

training process. In the first 10,000 episodes, with the various 

agents moving from blind action to gradually learning their 

own tasks, the reward values rise rapidly. Then, as the 

opponents’ tactical level improved, their own reward values 

decrease significantly. In the subsequent training process, the 

cooperative tactics of both the attack and defence sides have 

gradually matured, and the reward values of all types of 

agents have increased. After training up to 70,000 episodes, 

the attacking agents gain a comparative advantage and their 

reward values continue to rise, while the return values of the 

defending agent decrease significantly.  

 

Fig. 3. The reward values of agents for the cooperative attack 

and deception mission during 81,000 training episodes. The 

ordinate indicates the sum of the reward values per 1,000 

training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

Figure 4 and Figure 5 show the number of times all the 

attacking agents are intercepted by the defending agents and 

the number of times attackers are intercepted per 1,000 

episodes during the training process respectively. It can be 

observed that as the tactical ability of the defending agents 

continue to enhance after the start of training, the number of 

times attacking agents are intercepted increases rapidly, 

reaching a maximum of 14,724 times per thousand episodes.  

 

Fig. 4. The number of times attacking agents are intercepted 

by defending agents during the 81,000 training episodes. The 

ordinate indicates the sum of the number of interceptions per 

1,000 training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

However, after only a few thousand episodes of training, the 

attacking agents soon learn to avoid being intercepted by the 

defending agents, and the number of interceptions decreases 

significantly. After about 30,000 episodes of training, the 

number of interceptions fluctuates between 12,000 and 

22,500 per thousand episodes as the competition between the 

defending and attacking team becomes more intense. The 
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number of times attackers are intercepted increases rapidly 

during the initial stage of training, and then decreases 

significantly. Between 29,000 and 35,000 episodes, the 

number of times attackers are intercepted is only about one-

tenth of the number of times all attacking agents are 

intercepted, indicating that most of the defending agents are 

induced by the deceivers. However, as can be seen from 

Figure 6, the attacker can only reach the target about once per 

episode on average, which means that the attackers have not 

learned to attack the targets cooperatively.  

 

Fig. 5. The number of times attackers are intercepted by 

defending agents during the 81,000 training episodes. The 

ordinate indicates the sum of the number of interceptions per 

1,000 training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

 

Fig. 6. The number of times the attackers reach the targets 

during 81,000 episodes of training. The ordinate indicates the 

sum of the number of times attackers reach targets per 1,000 

training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

As shown in Figure 5 and Figure 6, the number of times the 

attackers reach the targets is significantly more than the 

number of interceptions after about 70,000 episodes of 

training, indicating that the cooperative attack tactics of the 

attacking agents are effective at this time. When training to 

80,001 to 81,000 episodes, the number of times attackers 

reach targets peaks at 16,040 per 1,000 episodes. As the 

tactical ability of the defending agents continue to enhance at 

this time, the number of times attackers are intercepted also 

rises rapidly. If training continues, the attackers' tactics will 

tend to avoid the risk of being intercepted and even give up 

many opportunities to get close to targets. Therefore, the 

training process is terminated at 81,000th episodes. Fig. 1 

meant 16000 A/m or 0.016 A/m. Figure labels should be 

legible, approximately 8 to 12 point type.  

5.2  The controlled experiment 

In order to reveal the role of deceivers more directly and 

verify the effect of deception tactics, the controlled 

experiment has been carried out. In the controlled 

experiment, the mission and the experimental environment 

are exactly the same as the previous experiment, the only 

difference is the setting of the agents’ reward function. The 

deceivers’ action policy is simply to avoid being intercepted 

by the defending agents, instead of actively approaching 

defending agents at appropriate distance. In the following 

controlled experiment, agents are also trained 81,000 

episodes. The results are shown below.  

In Figure 7, it can be observed that the attackers are 

surrounded by defending agents, while the attacking agents 

that originally played the roles of deceivers can only elude 

the defending agents and can no longer effectively deceive 

defending agents. Figure 8 shows the reward value curves of 

agents in the training process. It can be observed that after 

training to 65,000 episodes, the reward values of defending 

agents are rapidly increased, while the reward value of an 

attacker in attacking agents decreases significantly. This 

shows that the tactical mature defending agents can 

distinguish different types of attacking agents. After the 

attackers lose the cover of the deceivers, they are more likely 

to be intercepted by defending agents. 

 

Fig. 7. The controlled experimental scenario without 

deception tactics. The larger red circles indicate the 

defending agents, among which the dark red one is the 

commander; the smaller blue circles are the attackers, and the 

small green circles are deceivers without deception tactics. 

The dark blue dots indicate the targets, black circles indicate 

obstacle, and green large circles indicate forests.  
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Fig. 8. The reward values of agents in the controlled 

experiment. The ordinate indicates the sum of the reward 

values per 1,000 training episodes; the abscissa indicates the 

number of training episodes in thousands of episodes. 

 

Fig. 9. The number of times attacking agents are intercepted 

by defending agents during the 81,000 training episodes. The 

ordinate indicates the sum of the number of interceptions per 

1,000 training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

Figure 9 and Figure 10 respectively show the number of 

times all attacking agents are intercepted and the number of 

times attackers are intercepted during the training of the 

controlled experiment. It is easy to see that the proportion of 

the number of times attackers are intercepted accounts for the 

number of times all attacking agents are intercepted is 

significantly higher than that of the above situation with 

deception tactics. When training to around 70,000 episodes, 

the number of times attackers are intercepted quickly rises to 

more than 10,000 times. The attacking agents intercepted by 

defending agents at this time are almost all attackers. In other 

words, the three attacking agents without deception policy in 

the controlled experiment can hardly cover the attackers.  

Figure 11 shows the number of times the attackers reach 

targets during the training process in the controlled 

experiment, which shows a nearly linear increase with the 

number of training episodes. When train to 79,001 to 80,000 

episodes, the attackers reach the targets 5,946 times per 

thousand episodes. Compared with above scenarios with 

deception tactics, the number of times of reaching targets in 

the controlled experiment decreased by 62.5%. Since the 

number of times attacker are intercepted has far exceeded the 

number of times of reaching targets, most attacks are actually 

failed.  

 

Fig. 10. The number of times attackers are intercepted by 

defending agents during the 81,000 training episodes. The 

ordinate indicates the sum of the number of interceptions per 

1,000 training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

 

Fig. 11. The number of times the attackers reach the targets 

during 81,000 episodes of training. The ordinate indicates the 

sum of the number of times attackers reach targets per 1,000 

training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

The results of the above controlled experiments reflect that 

the deception tactics play an important role in multi-agent 

cooperative competition. By actively approaching the 

defending agents and keeping an appropriate distance, the 

deceivers can confuse and induce opponents, thus covering 

and helping the attackers to safely complete their attacking 

mission. 

5.3  The effect of training episodes on multi-agent policy 

In the training process, the competition situation and agents’ 

tactical level will directly affect the opponents’ policy 

optimization process. To achieve the goal of the cooperative 

mission in this paper, the two types of attacking agents 

should learn to cooperate with each other to perform their 
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tasks. On the other hand, the two types of defending agents 

should learn to work together to besiege and intercept 

attacking agents, so as to maximize the reward value of all of 

them.  

 

Fig. 12. The reward values of agents for the cooperative 

attack and deception mission during 121,000 training 

episodes. The ordinate indicates the sum of the reward values 

per 1,000 training episodes; the abscissa indicates the number 

of training episodes in thousands of episodes. 

Figure 12 to Figure 15 show the results of three defending 

agents against two attackers and three deceivers during 

121,000 episodes of training. As the number of training 

episodes increases, it can be observed that the tactics of the 

defending agents are more and more tend to work together to 

besiege a single attacking agent, and the total number of 

interceptions and the number of times the attackers are 

intercepted are rapidly increased, as shown in Figures 12, 13 

and 14. After training to about 90,000 episodes, this trend 

will force the attackers to adopt a more conservative policy of 

avoiding being intercepted rather than getting close to targets, 

as shown in figure 15.  

 

Fig. 13. The number of times attacking agents are intercepted 

by defending agents during the 121,000 training episodes. 

The ordinate indicates the sum of the number of interceptions 

per 1,000 training episodes; the abscissa indicates the number 

of training episodes in thousands of episodes.  

The above results show that if the agents encounter powerful 

opponents and accumulates too much failure experience in 

the training process, the agents’ policy will be more and more 

conservative. As the training episodes increases, the attacking 

agents will gradually give up the opportunity to take the risk 

to complete their mission, which will eventually lead to the 

agents learning passive escape policy. This is obviously 

inconsistent with the expected goal of the cooperative 

competitive mission. Therefore, the number of training 

episodes should be reasonably set according to the 

requirements of the mission and the data of experiments.  

 

Fig. 14. The number of times attackers are intercepted by 

defending agents during the 121,000 training episodes. The 

ordinate indicates the sum of the number of interceptions per 

1,000 training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes. 

 

Fig. 15. The number of times the attackers reach the targets 

during 121,000 episodes of training. The ordinate indicates 

the sum of the number of times attackers reach targets per 

1,000 training episodes; the abscissa indicates the number of 

training episodes in thousands of episodes.  

By comparing the data of above experiments where three 

defending agents (including one commander and two 

guardians) and five attacking agents (including two attackers 

and three deceivers) are set up, it can be observed that the 

attacking agents can learn relatively satisfied tactical policy 

after about 80,000 episodes of training.  

5.4 The effect of the number of deceivers on cooperative 

attacking 

In the cooperative competition mission in this paper, the 

deceivers play important roles in inducing defending agents 
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and covering attackers to reach targets safely. This paper 

researches the computer experiment results of cooperative 

attacking and deception tactics with variable number of 

deceivers by tuning the number of deceivers. It is found that 

the number of deceivers has a significant effect on the 

performance of deception tactics. The length of the training is 

set to 81,000 episodes in the experiments, the number of 

deceivers ranges from 0 to 4, and other settings in the 

experimental environment are consistent with the previous 

experiments. Table 1 statistics the experiments data of the 

last 1,000 episodes of the training process, i.e., the total 

number of interceptions, the number of times attackers are 

intercepted and the number of times attackers reach targets in 

the 80,001-81,000 episodes. The proportion of the number of 

times attackers are intercepted accounts for the total number 

of interceptions is also listed in Table 1.  

Table 1. Statistical results of training data for the 80001-

81000 episodes. Nd is the number of deceivers, T is the 

total number of interceptions, Ta is the number of times 

attackers are intercepted, Tr is the number of times 

attackers reach targets. 

Nd T Ta Ta /T Tr 

0 9666 9666 100% 1446 

1 10938 7818 71.48% 3950 

2 17679 8970 50.74% 10065 

3 13512 5271 39.00% 16040 

4 17793 4929 27.70% 5717 

From the data in Table 1, it can be observed that the number 

of times attackers are intercepted shows a roughly downward 

trend with the increase of the number of deceivers. But when 

the number of deceivers increases to two, the number of 

times attackers are intercepted exceeded that of only one 

deceiver, which is caused by the inherent randomness of 

reinforcement learning. This random disturbance is reflected 

in the statistical data, which inevitably caused the training 

results to deviate from the overall trend to some extent. 

However, the proportion of the number of times attackers are 

intercepted accounts for the total number of interceptions 

decreases monotonously as the number of deceivers 

increases. This demonstrates that the more deceivers there 

are, the more defending agents they can induce, and the better 

the attackers’ chances of surviving.  

This paper tests the policy network model obtained after 

81,000 episodes of training. The testing environment is set as 

the same as the training environment. The length of test is set 

to 1,000 episodes, and the test data are listed in Table 2.  

In Table 2, as the number of deceivers increases, the number 

of times attackers are intercepted monotonically decreases, 

and the proportion of the number of times attackers are 

intercepted accounts for the total number of interceptions also 

monotonically decreases. As shown in Table 1 and Table 2, 

when the number of deceivers increase from 0 to 4 in training 

and testing, the number of times attackers reach targets 

increases as the number of deceivers increases. This shows 

that, as more deceivers join, the attacking agents get a higher 

winning percentage. 

Table 2. Statistical results of test data of 1000 episodes. Nd 

is the number of deceivers, T is the total number of 

interceptions, Ta is the number of times attackers are 

intercepted, Tr is the number of times attackers reach 

targets. 

Nd T Ta Ta /T Tr 

0 6030 6030 100% 1287 

1 7515 5415 72.06% 3067 

2 11436 5259 45.99% 5856 

3 10365 4254 41.04% 10810 

4 14865 3999 26.90% 3744 

However, when the number of deceivers increases to more 

than 4, the previous training times are not enough for 

attackers to learn better policy in the face of more complex 

situations, so that the number of times attackers reach targets 

decreases compare to previous situation with less agents. 

6. CONCLUSIONS 

This paper proposes a method to realize multi-agent 

cooperative competition and deception tactics by designing 

functional reward values for multi-agent based on MADDPG 

algorithm, and verifies the role of deception tactics through 

experiments. We set up multiple types of agents to share 

various missions and obtain the cooperative attacking and 

deception policy modes through computer experiments to 

realize the cooperation of multi-mission among multiple 

agents. This paper also researches the effect of training 

episodes on multi-agent learning policy in the experiments. 

The experiments data shows that too little training is not 

enough for agents to learn satisfied policy, while too much 

training may make agents learn overly aggressive or 

conservative policy, so the number of training episodes 

should be reasonably set according to the mission 

requirements and test results. Otherwise, this paper analyses 

the effect of the number of deceivers on the performance of 

deception tactics by tuning the number of deceivers in the 

experiments. The training and testing results show that 

increasing the number of deceivers in the mission can 

significantly improve the performance of deception tactics by 

covering attackers to reach targets safely from the 

interception of defending agents. But the computational 

complexity of the multi-agent environments will rise with the 

increase of the number of agents, and more training episodes 

are needed to ensure a satisfied learning effect.  

MARL has been applied to a variety of problem domains, 

mostly in simulation but also in some real-life tasks. 

Simulated domains dominate for two reasons. The first 

reason it is easier to understand and to derive insight from 

results in simpler domains. The second reason is that 

scalability and robustness to imperfect observations are 

necessary in real-life tasks, and few MARL algorithms 

exhibit these properties. In real-life applications, more direct 

derivations of single-agent RL are preferred (Buşoniu et al., 

2010). Although deep reinforcement learning method has 

made a significant breakthrough in solving cooperative 

mission of multi-agent, there are still some problems that 

have not been solved well. First, the number of training 
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episodes relies on human experience to set in the existing 

multi-agent algorithms based on deep reinforcement learning. 

It is difficult to define how many episodes of training can 

obtain a model that best conforms to the expected result 

before a number of training and testing. Second, the existing 

deep reinforcement learning algorithms continuously 

optimize the agents’ policy in the direction of maximizing the 

Q values in training process by updating network parameters. 

Training a type of agents in this way can only perform one 

type of mission, unable to balance multi-mission goals and 

flexibly adjust policy according to the dynamic environment, 

and the problem of multi-agent multi-mission cooperation 

can only be solved by assigning different missions to 

different types of agents. At last, as the deep reinforcement 

learning method has a strong inherent randomness, the 

experiments results are difficult to be reproduced. The 

random multi-agent dynamic environment and experience 

sampling process will cause the policy learning process to be 

unstable and make the experimental data fluctuate in a large 

range. It is a practical problem in the cluster control of 

unmanned intelligent system, which is worth further 

exploring. 

REFERENCES 

Arulkumaran K., Deisenroth M., Brundage M. and Others 

(2017). A brief survey of deep reinforcement learning. 

IEEE Signal Processing Magazine, 34, 26–38. 

Buşoniu, L., Babuška, R., & Schutter, B. D. (2010). Multi-

agent Reinforcement Learning: An Overview, 183–221. 

Choi J., Lee B., and Zhang B. (2017). Multi-focus attention 

network for efficient deep reinforcement learning. In 

Workshops at the Thirty-First AAAI Conference on 

Artificial Intelligence.  

Conitzer, V., & Sandholm, T. (2007). AWESOME: A general 

multiagent learning algorithm that converges in self-play 

and learns a best response against stationary opponents. 

Machine Learning, 67(1), 23–43. 

Foerster J., Assael I., de Freitas N. and Others (2016). 

Learning to communicate with deep multi-agent reinfor-

cement learning. In Advances in Neural Information 

Processing Systems, pp. 2137–2145. 

Foerster J., Farquhar G., Afouras T. and Others (2018). 

Counterfactual multi-agent policy gradients. In Thirty-

Second AAAI Conference on Artificial Intelligence. 

François-Lavet V., Henderson P., Islam R. and Others 

(2018). An introduction to deep reinforcement learning. 

Foundations and Trends R ⃝ in Machine Learning, 11 (3-

4), 219–354. 

Hastie T., Tibshirani R., and Friedman J. (2009). The 

elements of statistical learning: data mining, inference, 

and prediction. Springer. 

Hernandez-Leal P., Kartal B., and Taylor M. E. (2019). A 

survey and critique of multiagent deep reinforcement 

learning. Autonomous Agents and Multi-Agent Systems, 

33 (6), 750–797. 

Hu, J., & Wellman, M. P. (2003). Nash q-learning for 

general-sum stochastic games. Journal of Machine 

Learning Research, 4, 1039–1069. 

Jiang J., and Lu Z. (2018). Learning attentional communi-

cation for multi-agent cooperation. In Advances in 

Neural Information Processing Systems, pp. 7254–7264. 

Kapoor, S. (2018). Multi-Agent Reinforcement Learning: A 

Report on Challenges and Approaches. arXiv Preprint 

ArXiv:1807.09427. 

Khan, A., Zhang, C., Lee, D., Kumar, V., & Ribeiro, A. 

(2018). Scalable Centralized Deep Multi-Agent 

Reinforcement Learning via Policy Gradients. ArXiv, 

abs/1805.08776. 

Krizhevsky A., Sutskever I., and Hinton G. E. (2012). 

Imagenet classification with deep convolutional neural 

networks. In Advances in Neural Information Processing 

Systems, pp. 1097–1105. 

LeCun Y., Bengio Y., and Hinton G. (2015). Deep learning. 

nature, 521 (7553), 436–444. 

Lillicrap T., Hunt J., Pritzel A. and Others (2015). Continu-

ous control with deep reinforcement learning. In arXiv 

preprint, Vol. 1509.02971. 

Liu Q., Zhai J., Zhang Z. and Others (2018). A survey on 

deep reinforcement learning. Chinese Journal of 

Computers, 40, 1–27. 

Lowe R., Wu Y., Tamar A. and Others (2017). Multi-agent 

actor-critic for mixed cooperative competitive environ-

ments. In Advances in Neural Information Processing 

Systems, pp. 6379–6390. 

OpenAI (2018). Openai five. In https: //blog.openai.com/ 

openai-five/. 

Silver D., Huang A., Maddison C. and Others (2016). Mas-

tering the game of go with deep neural networks and tree 

search. Nature, 529, 484–489. 

Silver D., Hubert T., Schrittwieser J. and Others (2017). 

Mastering chess and shogi by self-play with a general 

reinforcement learning algorithm. In arXiv preprint, Vol. 

1712.01815. 

Silver D., Hubert T., Schrittwieser J. and Others (2018). A 

general reinforcement learning algorithm that masters 

chess, shogi, and go through self-play. Science, 362, 

1140–1144. 

Silver D., Lever G., Heess N. and Others (2014). Deter-

ministic policy gradient algorithms. In International 

Conference on Machine Learning, pp. 387–395. 

Silver D., Schrittwieser J., Simonyan K. and Others (2017). 

Mastering the game of go without human knowledge. 

Nature, 550, 354–359. 

Sutton R., and Barto A. (2018). Reinforcement learning: An 

introduction. MIT press. 

Tampuu A., Matiisen T., Kodelja D. and Others (2017). 

Multiagent cooperation and competition with deep 

reinforcement learning. Plos One, 12(4), e0172395. 

Vinyals O., Babuschkin I., Czarnecki W. and Others (2019). 

Grandmaster level in starcraft ii using multi-agent 

reinforcement learning. Nature, 575, 350–354. 

Wu, T., Jiang, M., & Zhang, L. (2020). Cooperative 

Multiagent Deep Deterministic Policy Gradient 

(CoMADDPG) for Intelligent Connected Transportation 

with Unsignalized Intersection. Mathematical Problems 

in Engineering, 2020, 1–12. 

 

 


