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Abstract: This paper presents an online self-tuning state-feedback controller for under-actuated systems 
in order to enhance the system’s position-regulation accuracy, disturbance-rejection capability, and 
control input efficiency. The Linear-Quadratic-Regulator (LQR) is employed as the baseline state-
feedback controller whose gains are dynamically reconfigured by adaptively modulating the control 
penalty-factor associated with the quadratic performance-criterion associated with the controller. The 
main contribution of this article is the methodical formulation of an original reconfiguration block that 
dynamically adjusts the control penalty-factor via a self-regulating secant-hyperbolic function to flexibly 
manipulate the control procedure while maintaining its asymptotic-stability. The proposed 
reconfiguration strategy modifies the control penalty-factor online with respect to the state-error feedback 
as well as the control-input dynamics. The benefits afforded by the proposed self-tuning controller are 
verified by conducting hardware-in-the-loop experiments on the QNET Rotary Pendulum board. The 
experimental results show that the proposed strategy renders rapid transits with strong damping against 
parametric uncertainties in pendulum’s body-angle responses while limiting the peak servo requirements 
of the actuator. 

Keywords: Linear quadratic regulator, self-tuning control, control penalty-factor, online reconfiguration, 
nonlinear scaling functions4, rotary inverted pendulum. 

1. INTRODUCTION 

The under-actuated electro-mechanical systems are an 
essential component of robotic systems, precision 
manufacturing machines, biomedical implants, and aerospace 
applications, etc (Mahmoud, 2018). However, with the rapid 
advancement in technology, synthesizing robust-optimal 
controlling tools for such complex dynamical systems has 
posed a great challenge (Szuster and Hendzel, 2017). The 
ubiquitous state-feedback controllers, such as Linear-
Quadratic-Regulator (LQR) and its modified variants, are 
widely favored to optimally control the under-actuated 
systems with nonlinear dynamics (Shahab et al., 2017). They 
yield optimal control decisions by minimizing a Quadratic-
Performance-Index (QPI) that captures the real-time 
variations in state dynamics and control input of the system 
while upholding the asymptotic stability throughout the 
operating regime (Saleem and Rizwan, 2019). These 
attributes make them superior to other model-free classical 
compensators, such as the PID controllers (Bhatti et al., 
2015), the sliding mode controllers (Ullah et al., 2019), 
fuzzy-logic controllers (Saleem et al., 2017), and neural 
controllers (Saleem et al., 2019a), etc. The aforementioned 
classical control solutions are generally avoided owing to 
their inherent structural limitations, lack of sufficient stability 
proof, offline tuning of a multitude of parameters, induction 
of chattering in the response, empirical selection of logical 
rules, and requirement of extensive training data (Saleem et 

al., 2018a; Bhatti et al., 2018). However, despite its optimal 
behavior, even the LQR lacks robustness against modeling 
uncertainties, identification errors, and random parametric 
variations (Prasad et al., 2014; Ghartemani et al., 2011). The 
robust controllers, such as LMI and H∞ systems, put 
unnecessary restraints on deriving the exact solution due to 
the boundary conditions and complex geometry of the system 
(Yang and Zheng, 2018). 

The robustness of state-feedback controllers against 
parametric uncertainties can be enhanced by augmenting 
them with a well-postulated stable self-tuning adaptive 
system (Saleem et al., 2018b; Saleem et al., 2019b; Ning et 
al., 2019). The conventional Model-Predictive-Controllers 
(MPCs) optimize the system in a receding horizon and solve 
the optimization problem in smaller time frames, which leads 
to new but sub-optimal solutions (Önkol and Kasnakoğlu, 
2018). However, an ill-postulated MPC leads to wrong 
predictions which results in fragile control effort under long 
drifting disturbances (Bavili et al., 2015). The Model-
Reference-Adaptive-Controller is synthesized by retrofitting 
the state-space controller with a stable online gain-adjustment 
law (Kavuran et al., 2017). Despite its guaranteed Lyapunov-
stability, the selection of adaptation-rates is a cumbersome 
process (Saleem et al., 2020). The adaptive control laws 
synthesized via State-Dependent-Riccati-Equation are widely 
used to regulate the open-loop unstable and highly-nonlinear 
systems (Batmani et al., 2017). Deriving accurate state-
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dependent coefficient matrices to fully realize the nonlinear 
characteristics of the system is extremely difficult due to the 
system’s complex dynamics (Nekoo and Geranmehr, 2014). 
The indirect adaptive control scheme, equipped with self-
adjusting state penalty-factors of QPI, has yielded promising 
results for under-actuated systems (Zhnag et al., 2014). 
Despite offering enhanced degrees-of-freedom, defining a 
unique set of analytical or logical rules to alter each state 
penalty-factor becomes drastically hectic, especially, if the 
system has a large number of state-variables (Basua and 
Nagarajaiaha, 2008). A practicable self-tuning strategy has 
been proposed in (Filip et al., 2020) that enhances the 
robustness of minimum variance controller for induction 
generators, via discrete settings of control penalty-factor 
across different operating conditions. 

The major contribution of this paper is the systematic 
development of a simple yet robust self-tuning state-feedback 
control strategy for the under-actuated electro-mechanical 
systems by adaptively reconfiguring the control penalty-
factor associated with the controller’s QPI. The proposed 
approach is beneficial because the control penalty-factor 
decisively steers the control-input trajectory which directly 
influences the robustness and control-efficiency of the 
system. Hence, the novel contribution of this paper is the 
formulation of a stable online reconfiguration block that is 
retrofitted with the baseline fixed-gain LQR to automatically 
self-adjust the control penalty-factor of its QPI by using a 
self-regulating continuous nonlinear scaling function. This 
arrangement dynamically alters the solution of Matrix-
Riccati-Equation after every sampling interval, to online 
adapt the state-feedback gains. The proposed reconfiguration 
block constitutes a decaying Hyperbolic-Secant-Function 
(HSF) that is driven by the weighted sum of state-error 
variables. The continuity of HSF offers smooth gain 
transition across the entire operating regime. Additionally, 
the variation-rate of the HSF is dynamically self-regulated 
with respect to the variations in control-input. This feature 
flexibly manipulates the control procedure to effectively 
compensate the exogenous disturbances, while maintaining 
the control input economy and asymptotic-convergence. The 
efficacy of the proposed adaptive controller is validated by 
conducting credible hardware-in-the-loop experiments of 
QNET Rotary Pendulum board. The rotary pendulum system 
is selected owing to its under-actuated nature and open-loop 
unstable behavior. The experimental results clearly show that 
the proposed adaptive controller enhances the system’s 
disturbance-rejection capability while effectively limiting the 
overall control energy expenditure. 

There has been no significant contribution in the available 
open literature to indirectly self-tune the state-feedback gains 
of LQR by adaptively tuning the control penalty-factor as a 
continuous nonlinear function of the system’s observable 
state-dynamics, in order to stabilize an under-actuated 
mechatronic system. Hence, this paper mainly focuses on 
exploring and validating the aforementioned idea. 

The remaining paper is structured as follows. The 
mathematical model of the system is presented in Section 2. 
The baseline state-feedback controller is discussed in Section 
3. The design procedure of the proposed self-tuning regulator 

is presented in Section 4. The reconfiguration blocks are 
formulated in Section 5. The experimental evaluation 
procedure and the results are illustrated in Section 6. The 
paper is concluded in Section 7. 

2. SYSTEM MODELING 

The Rotary-Inverted-Pendulum (RIP) is an inherently 
unstable and nonlinear dynamical system that is widely used 
as a standard benchmark to test the efficacy of control 
algorithms for under-actuated multivariable systems (Shahab 
et al., 2017). The inverted pendulum theory is considered as a 
core component in designing stabilization control strategies 
for higher-order complex mechatronic systems (Boubaker 
and Iriarte, 2017). The aforementioned attributes make the 
RIP system an ideal candidate to validate the robustness of 
the proposed adaptive control scheme in this research. A 
simplified hardware schema of the RIP system is shown in 
Fig. 1. The postural stability of the pendulum is maintained 
via a single permanent magnet DC geared-motor that is 
actuated by applying the control input voltage, 𝑉 , to its 
terminals. The DC motor shaft is coupled to the pendulum’s 
arm in order to rotate it. The arm’s rotation energizes the 
pendulum’s rod to uphold its vertical stability. The angular 
displacement of the arm and the rod are denoted as α and θ.  

The dynamic model of the RIP system is methodically 
formulated via the Euler-Lagrange approach (Balamurugan et 
al., 2017). The Lagrangian, 𝐿, is evaluated by computing the 
difference of total potential energy, 𝑉 , and total kinetic 
energy, 𝑇 , of the system in terms of the generalized 
coordinates (𝜑 and 𝜃) and their angular-velocities (𝜑 and 𝜃), 
as shown in (1). 

𝐿 𝑇 𝑉                                                                                      1  

The Euler-Lagrange equations of the RIP system are derived 
as shown in (2), (Balamurugan et al., 2017). 

 

Fig. 1. Hardware diagram of the RIP systems. 
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where, 𝜏 represents the torque applied by the DC motor at the 
arm's pivot. The effect of nonlinear dissipation factors and 
frictional forces is negligible in the actual system, and hence, 
it has been ignored in the model derivation. The 



25                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

corresponding relationship between 𝜑, 𝜃, and 𝜏 is described 
in (3), (Jian and Yongpeng, 2011). 

𝜑
1
𝑁

𝑟𝑀 𝑙 𝑔 cos 𝜃 𝜃 𝐽 𝑀 𝑟 cos 𝜃 sin 𝜃 𝜑 𝐽 𝑀 𝑙 𝜏  

𝜃
1
𝑁

𝑀 𝑙 𝑀 𝑟 sin 𝜃 𝑔 𝐽 𝑔 𝑀 𝑟 𝑔 𝜃 𝑀 𝑙 𝑟 sin 𝜃 𝐽 𝜑

𝑀 𝑙 𝑟 cos 𝜃 𝜏                                                           3   

such that, 𝜏
𝐾 𝑉 𝐾 𝜑

𝑅
 

and, 𝑁 𝐽 𝑀 𝑟 sin 𝜃 𝐽 𝑀 𝑟 𝑀 𝑙 𝐽  

The above-mentioned nonlinear equations are linearized 
around the point, 𝜑 𝜃 𝜑 𝜃 0. Moreover, the small-
angular displacements of the rod are approximated as follows 
(Jian and Yongpeng, 2011). 

sin 𝜃 𝜃, cos 𝜃 1                                                            4  

The state-space model of a linear system is given by (5). 

𝑥 𝑡 𝑨𝑥 𝑡 𝑩𝑢 𝑡 , 𝑦 𝑡 𝑪𝑥 𝑡 𝑫𝑢 𝑡            5  

where, 𝑥  is the state-vector, 𝑦 is the output-vector, 𝑢  is the 
control input signal, 𝑨 is the state-transition matrix, 𝑩 is the 
control-input matrix, 𝑪  is the output matrix, and 𝑫  is the 
feed-forward matrix. The state-vector and the control input-
vector of the system are symbolically represented as follows 
(Balamurugan et al., 2017). 

𝑥 𝛼 𝜃 𝛼 𝜃 , 𝑢 𝑉                                             6  

where, 𝑉  is the DC motor voltage. The nominal state-space 
model of the RIP system is defined in (7), (Balamurugan et 
al., 2017; Saleem and Mahmood-ul-Hasan, 2019).  
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where, 
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The modeling parameters of the RIP system, used in this 
research, are identified in Table 1 (Saleem and Mahmood-ul-
Hasan, 2019). 

3. PRIMARY STATE-FEEDBACK CONTROLLER 

The LQR is an optimal state-feedback controller that has 
garnered a lot of traction owing to its capability of operating 
and controlling multivariable systems with minimum cost 

(Lewis et al., 2012). The fixed-gain LQR provides an 
automated procedure to compute optimal control solutions by 
minimizing a QPI, given in (8), which captures the state-
variations and control-input of the linear system (Saleem and 
Rizwan, 2019).  

𝐽
1
2

 𝑥 𝑡 𝑸𝑥 𝑡 𝑢 𝑡 𝑹𝑢 𝑡 𝑑𝑡                          8  

where, 𝑸 ∈ ℝ4×4 and 𝑹 ∈ ℝ are the state- and control-penalty 
matrices, respectively. The selection of 𝑸 and 𝑹 matrices are 
very important for robust stabilization of the RIP system [5]. 
In a sense, they are the figure-of-merit used to compute the 
optimal control solution. These matrices are selected such 
that, 𝑸 is a positive semi-definite matrix and 𝑹 is a positive 
definite matrix. They are symbolically represented as 
follows. 

𝑸 𝑑𝑖𝑎𝑔 𝑞 𝑞 𝑞 𝑞 ,   𝑹 𝜌                                   9  

where, 𝑞  and 𝜌 represent the real-numbered penalty-factors 
of the 𝑸 and 𝑹 matrices, respectively, and the subscript ‘𝑥’ 
represents the corresponding state-variable. The value of  𝜌 is 
selected as unity in this research to limit the peak actuating 
torques in the control profile while damping the overshoots. 
In this work, the 𝑸 matrix is empirically selected offline via 
trial-and-error by iteratively minimizing the cost-function 
shown in (10).  

𝐽 𝑒 𝑡 𝑒 𝑡 𝑢 𝑡  𝑑𝑡                   10  

such that, 𝑒 𝑡 𝜋 𝜃 𝑡 , 𝑒 𝑡 𝛼 𝛼 𝑡  

Table 1. Modelling parameters of the RIP system. 

Parameter Symbol Value 
Mass of pendulum Mp 0.027 kg

Pendulum center of mass lp 0.153 m
Length of pendulum rod Lp 0.191 m
Length of horizontal arm r 0.083 m

Mass of arm Marm 0.028 kg
Gravitational acceleration g 9.810 m/s2

Moment about motor shaft Je 1.23×10-4 kgm2

Moment about pendulum Jp 1.10×10-4 kgm2

Motor armature resistance Rm 3.30 Ω
Motor armature inductance Lm 47.0 mH

Motor torque constant Kt 0.028 N.m
Back e.m.f. constant Km 0.028 V/(rad/s)

Maximum torque Tm 0.14 Nm

For position-regulation applications, the initial angular 
position of pendulum-arm is recorded at the beginning of an 
experimental trial and is then used as its reference, 𝛼 . The 
selection of 𝑸 is done by applying a particular set of state 
penalty-factors to the LQR, observing the position-regulation 
behavior of the pendulum, and evaluating the cost using the 
function in (10). The state penalty-factors, shown in (11), 
yield the minimum cost, and are thus chosen for this work.  

𝑸 𝑑𝑖𝑎𝑔 32.8 52.2 6.1 2.5 ,   𝑹 1                       11  

The selected Q and R matrices are then used to solve the 
Algebraic Riccati Equation (ARE). The solution of ARE is 
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the symmetric positive definite matrix, P, as shown in (12), 
(Saleem and Rizwan, 2019). 

𝑨 𝑷 𝑷𝑨 𝑷𝑩𝑹 𝑩 𝑷 𝑸 0                                      12  

where, P ∈ ℝ4×4. It is used to evaluate the state-feedback gain 
vector, 𝑲, as shown in (13). 

𝑲 𝑹 𝑩 𝑷                                                                              13  

If the system is controllable, the solution of ARE yields a 
stable and convergent control behavior (Lewis et al., 2012). 
This is sufficient proof of stability for the proposed linear 
control law. The state-feedback gains evaluated offline in this 
research are 𝑲 6.21 130.56 4.22 17.83 . 
Additionally, the LQR optimal control law is also retrofitted 
with the integral-of-error variables in 𝛼  and 𝜃 . These 
auxiliary variables aid the system in damping the oscillations 
and improving its reference-tracking accuracy (Saleem et al., 
2018b). The integral control law is expressed as follows. 

𝑢 𝑡 𝑲 𝜀 𝑡 𝐾 𝐾
𝜀 𝑡
𝜀 𝑡

                                 14  

such that, 𝜀 𝑡 𝑒 𝜏 𝑑𝜏, 𝜀 𝑡 𝑒 𝜏 𝑑𝜏 

The coefficients of integral gain vector, 𝑲 , are selected 
offline by iteratively minimizing the cost-function, 𝐽 , to 
attain the best position regulation accuracy. The computed 
integral gains are 𝑲 2.06 7.47 10 . The 
augmented fixed-gain LQR control law is expressed in (15). 

𝑢 𝑡 𝑲𝑥 𝑡 𝑲 𝜀 𝑡                                                         15  

4. PROPOSED ADAPTIVE CONTROLLER DESIGN 

For a finite horizon problem, the Matrix-Riccati-Equation is 
expressed as follows (Lewis et al., 2012).  

𝑨 𝑷 𝑡 𝑷 𝑡 𝑨 𝑷 𝑡 𝑩𝑹 𝑩 𝑷 𝑡 𝑸 𝑷 𝑡       16  

where, 𝑷 𝑡  is the time-varying solution of the ARE that is 
used to evaluate the time-varying state-feedback gain vector, 
𝑲 𝑡 , shown in (17). 

𝑲 𝑡 𝑹 𝑩 𝑷 𝑡                                                                   17  

The control input is computed by solving the Riccati 
equation, expressed in (16), backward in time for 𝑷 𝑡 . This 
computation is done offline because 𝑥 𝑡  is not required to 
find 𝑷 𝑡  (Lewis et al., 2012). The gain 𝑲 𝑡  is computed 
and stored. The algorithms that are commonly used to 
calculate the solution of Riccati equation are Hamiltonian 
matrix, QZ algorithm, and recursive solution schemes, etc 
(Varga, 2008; Nekoo and Rahaghi, 2018). 

In this work, the RIP stabilization is treated as an infinite 
horizon control problem. For such problems, the robustness 
of LQR structure can be enhanced by augmenting it with a 
synthetic state-error driven adaptive system that indirectly 
self-tunes the 𝑲  vector. The adaptation scheme works by 
dynamically adjusting the constituent matrices of the ARE on 
the basis of real-time state-error variations. This arrangement 
updates the solution of ARE after every sampling interval. 
The famous State-Dependent-Riccati-Equation employs time-
varying state and input matrices, 𝑨 𝑡  and 𝑩 𝑡 , to update its 

solutions online (Batmani et al., 2017). However, defining 
accurate state-dependent coefficient matrices to realize the 
system’s nonlinear characteristics is extremely difficult due 
to the system’s complex dynamics (Nekoo and Geranmehr, 
2014). Another promising technique that modifies the 
solutions of ARE online depends on the state-dependent 
dynamic adjustment of state penalty-factors of the QPI 
(Saleem and Mahmood-ul-Hasan, 2020). Despite its efficacy, 
synthesizing the adaptation laws for each state penalty-factor 
of a multi-variable system becomes laborious due to the 
tuning requirement of several hyper-parameters involved as 
well as the coupling between the state-variables (Zhnag et al., 
2014). 

This article proposes a practicable approach to dynamically 
adjust the LQR gains. In the optimal regulator problem, the 
value of 𝑹 directly manipulates the control input profile. The 
control penalty-factor weights the control-input variable in 
the QPI. The fixed value of the control penalty-factor, 𝜌 , 
makes a trade-off between the system’s disturbance-rejection 
capability and its control-input requirements. This 
arrangement makes the control procedure wasteful in terms 
of available control resources. It unnecessarily applies more 
controlling force than required under small perturbations. 
Conversely, it contributes to insufficient controlling force 
under large perturbations.  

Hence, it is imperative to dynamically adjust the value of 𝜌 in 
LQR’s QPI to attain robust control effort. This modification 
will effectively suppress the detrimental effects of the 
exogenous disturbances while maintaining a reasonable 
control economy (Filip and Szeidert, 2017). It also obviates 
the requirement of empirically selecting the control penalty-
factor via iterative tuning methods for different operating 
conditions. The dynamic adjustment of 𝜌 is done via a pre-
calibrated state-error dependent continuous nonlinear scaling 
function. The objective is to achieve a favorable balance 
between the system’s control economy and disturbance-
rejection capability. A detailed discussion regarding the 
online modification procedure of 𝜌 , on the basis of the 
system’s state-error feedback, is presented in Section 5.  

With the proposed augmentation in place, the updated 
expression of QPI is given by (18). 

𝐽
1
2

𝑥 𝑡 𝑸𝑥 𝑡 𝑢 𝑡 𝑹 𝑡 𝑢 𝑡 𝑑𝑡                   18  

The proposed adaptive framework uses the originally 
prescribed state-penalty matrix 𝑸 , expressed in (11). 
However, the control penalty-factor is revised as follows. 

𝑸 𝑑𝑖𝑎𝑔 32.8 52.2 6.1 2.5 , 𝑹 𝑡 𝜌 𝑡      19  

where, 𝜌 𝑡  represents the time-varying control penalty-
factor. The 𝑷 𝑡  is considered zero in the infinite horizon 
control problems (Lewis et al., 2012).  Hence, the online 
adaptation of 𝜌 𝑡  dynamically alters the solutions of the 
Riccati equation as shown in (20).  

𝑨 𝑷 𝑡 𝑷 𝑡 𝑨 𝑷 𝑡 𝑩 𝑹 𝑡 𝑩 𝑷 𝑡 𝑸 0      20  

where, 𝑷 𝑡  is the steady-state solution of the Riccati 
equation that is updated explicitly in accordance with the 
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instantaneous value of 𝜌 𝑡 . This solution is used as the input 
of the adjustable gain vector, 𝑲 𝑡 , shown in (21). 

𝑲 𝑡 𝑹 𝑡 𝑩 𝑷 𝑡                                                          21  

The proposed self-tuning (reconfigurable) state-feedback 
control law is given by the following expression. 

𝑢 𝑡 𝑲 𝑡 𝑥 𝑡 𝑲 𝜀 𝑡                                                   22  

The coefficients of 𝑲  are kept fixed at their originally 
prescribed values. The proposed adaptive controller is 
illustrated in Fig. 2. The proposed framework ensures 
asymptotically-stable control behavior if 𝜌 𝑡 0 . The 
proposed scheme re-evaluates the updated steady-state 
solutions of the new ARE with time-varying control penalty-
factor after every sampling interval. This ARE solving 
technique is computationally efficient because it does not put 
excessive computational burden on the embedded processor. 

 

Fig. 2. Proposed adaptive control framework. 

5. RECONFIGURATION SCHEME FOR CONTROL 
PENALTY-FACTOR 

The nominal state-feedback controller is augmented with a 
reconfiguration block to online adapt the value of 𝜌 . It 
redesigns the controller characteristics online to enhance the 
controller’s adaptability and ensure optimum allocation of 
control resources under exogenous disturbances. This section 
presents two techniques for online modification of 𝜌. In both 
techniques, a pre-calibrated Hyperbolic-Secant-Function 
(HSF) is used to scale the value of 𝜌. The continuous HSF is 
an algebraic equation that is extensively used for adaptive 
gain variation in classical controllers because they are 
symmetrical, bounded, smooth, and differentiable (Saleem 
and Mahmood-ul-Hasan, 2018). The realization of this 
algebraic equation is computationally economical. Unlike 
gradient-descent-based auto-tuning techniques, the nonlinear 
scaling functions do not put a recursive computational burden 
on the embedded processor. Hence, these mathematical 
functions can be easily programmed via modern-day digital 
computers. The detailed formulation and benefits afforded by 
each adaptive reconfiguration approach are discussed as 
follows. 

5.1. Pre-calibrated Reconfiguration Block 

This reconfiguration block is used as the baseline adaptive 
modulator to compare and verify the feasibility of the 
proposed scheme to effectively reject the influence of 

parametric uncertainties. This reconfiguration strategy 
adaptively modulates the value of 𝜌 online as a function of 
the system’s state-error variations. The proposed algorithm 
undertakes to improve the system’s response speed and 
damping strength against bounded exogenous perturbations, 
irrespective of the applied control effort. In under-actuated 
systems, the control resources contributed by the controller 
with fixed 𝜌  may not be sufficient to overcome the 
detrimental effects rendered by large disturbances (Filip et 
al., 2019). Similarly, the control input resources contributed 
by the controller with fixed 𝜌 may be unnecessarily excessive 
under low error conditions, rendering it wasteful in such 
conditions. In order to cope with such practical scenarios, the 
following rationale is suggested to reconfigure the value of 𝜌. 

 The value of 𝜌 is maintained at its nominal level for lower 
magnitudes of state-error variables. This arrangement 
allows for reference tracking with minimal control-energy 
consumption. 

 The value of 𝜌  is depressed under high disturbance 
conditions; that is, when the magnitudes of state-error 
variables increase. This arrangement renders a stronger 
damping control effort.  

The aforementioned rules significantly enhance the 
disturbance-rejection capability. The impact of disturbance is 
measured by computing a linear sum of the state-error 
variables and their time-derivatives, as shown in (23). 

𝑔 𝑡 𝜇 . 𝑒 𝑡 𝜇 . 𝑒 𝑡 𝜇 . 𝑒 𝑡 𝜇 . 𝑒 𝑡        23  

where, 𝑔 .  is the weighted sum of state-error variables and 
their time-derivatives. This expression is fed as input to the 
HSF, expressed in (24), to reconfigure the value of 𝜌. 

𝜌 𝑡 𝜌 𝜌 𝜌 . sech 𝛽 . |𝑔 𝑡 |                24  

where, sech .  represents the HSF, 𝜌  and 𝜌  represent 
the upper and lower bounds of HSF, and 𝛽  is the pre-fixed 
variation-rate of HSF. These hyper-parameters are 
empirically tuned a priori by minimizing 𝐽  to attain strong 
damping against disturbances. The selected values are 
recorded in Table 2. This controller is denoted as 
Reconfigurable-LQR, or “RLQR”, in this research. 

5.2. Self-regulating Reconfiguration Block 

The aforementioned strategy is sub-optimal. It applies tight 
control effort to efficiently reject the disturbances and damp 
the overshoots while rendering large actuating torques in the 
control input (as shown in section 6). The induction of peak 
servo requirements tends to saturate the actuator which 
eventually leads to complete de-stabilization of the RIP 
system. It is well-known that, in the LQR problem, the 
enlargement of 𝜌 limits the control input expenditure of the 
system under transient disturbance conditions at the cost of 
affecting its response-speed, and vice-versa (Lewis et al., 
2012; Filip et al., 2019). This feature is beneficial in 
preventing the electro-mechanical system’s actuator from 
getting saturated. Hence, this research work contributes to 
enhance the adaptability of the reconfiguration block by 
augmenting it with an original nonlinear-type self-regulating 
mechanism that is designed to deliver the following 
characteristics.  
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 The value of 𝜌  is depressed under large disturbances to 
tighten the control effort, and vice-versa, as shown in 
expression (24). 

 However, if the control-input tends to inflate significantly 
under exogenous disturbances, then the variation-rate of 
the 𝜌 𝑡  is reduced appropriately to soften the control 
effort and limit the magnitude of peak actuating torques. 

This rationale uses the state-error and control-input variables 
simultaneously to modify the value of 𝜌 . The proposed 
rationale is realized by implanting the control-input variable 
as an additional input in the expression of 𝜌 𝑡 , shown in 
(24).  

Table 2. Parameter selection of pre-calibrated HSF. 

Parameter Range Tuned value 
𝜌  [0, 10] 1.04 

𝜌  [0, 10] 0.21 

𝛽  [0, 10] 8.15 

𝜇  [0, 10] 0.78 

𝜇  [0, 10] 2.25 

𝜇  [0, 10] 0.26 

𝜇  [0, 10] 0.69 

This auxiliary variable self-regulates the variation-rate of 
HSF waveform in real-time. The proposed self-regulating 
HSF is shown in (25). 

𝜌 𝑡 𝜌 𝜌 𝜌 . sech  𝛽 𝑢, 𝑡 . |𝑔 𝑡 |     25  

where, 𝛽 𝑢, 𝑡 𝛽 . 𝜎
1 𝜎

1 |𝑘. 𝑢 𝑡 |
 

where, 𝜎  is the positive constant that determines the 
minimum limit of variation-rate, 𝑘  is the positive scaling 
factor of 𝑢 𝑡 , 𝛾  is the positive fractional exponent of the 
magnitude of 𝑢 𝑡  that decides the dead-zone bandwidth to 
prevent self-regulation at a lower value of control-input. The 
parameters 𝜎 , 𝑘 , and 𝛾  are tuned offline by iteratively 
minimizing 𝐽 . The tuned values of these hyper-parameters 
are given in Table 3. The remaining parameters in the self-
regulating HSF, in (20), are assigned the same values as 
prescribed earlier in Table 2. This augmentation dynamically 
alters (slows down) the variation-rate of HSF to limit the 
control energy consumption without significantly affecting 
the disturbance-rejection capability. The self-regulating 
property is useful when the control input profile exhibits 
large persistent fluctuations. The automatic adjustment 
rendered in the shape of HSF waveform, under large 
actuating torques, is depicted in Fig. 3. 

The proposed self-regulating HSF increases the degree-of-
freedom of the reconfiguration block by unifying the effects 
of variations in control-input and state-error dynamics in a 
single framework. This adaptive controller is denoted as Self-
regulating Reconfigurable-LQR, or “SRLQR”, in this paper. 

6. EXPERIMENTS AND RESULTS 

This section presents the experimental analysis procedure and 
the corresponding outcomes of each controller being tested. 

 

Table 3. Parameter selection of self-regulating HSF 

Parameter Range Tuned value 
𝛾  [0, 10] 1.52 

𝑘 [0, 10] 0.08 

𝜎 [0, 10] 0.25 

 

Fig. 3. Automatic adjustment in HSF waveform. 

6.1.  Hardware setup 

The QNET Rotary Pendulum board is shown in Fig. 4 
(Saleem and Mahmood-ul-Hasan, 2019). The variations in θ 
and α are measured by using the rotary encoders that are 
coupled with the rod and motor-shaft, respectively. The NI-
ELVIS II data-acquisition board is used to digitize the 
encoder measurements at a sampling rate of 1000 Hz. The 
sampled data is serially transmitted at 9600 bps to the control 
software that is running on a 2.0 GHz, 6.0 GB RAM 
embedded computer.  

 

Fig. 4. QNET 2.0 Rotary Pendulum board. 

The control application is implemented in a virtual 
instrument file LabVIEW software by using its built-in 
“Block Diagram” tool. The front-end of the control 
application is used as a graphical-user-interface to record and 
visualize the real-time state and control-input variations. The 
control software transmits the generated control signals to a 
motor driver circuit that is installed on the hardware setup. 
The motor driver transforms the incoming signals into pulse-
width-modulated signals to actuate the DC motor. In this 
research, the clockwise rotation of the pendulum is 
considered a positive displacement. The pendulum rod is 
swung up and balanced manually at the beginning of every 
trial. 
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6.2.  Experimental evaluation 

The robustness of the SRLQR is compared with LQR and 
RLQR via “five” distinct hardware experiments. These test 
cases and their outcomes are presented as follows. 

A. Position regulation: The position-regulation accuracy of 
the pendulum is tested by allowing the arm to maintain its 
initial position with minimum deviations as the rod balances 
itself vertically under normal conditions. The time-domain 
profile of θ, α, Vm, and 𝑲 𝑡  are shown in Fig. 5. 

 

Fig. 5. Pendulum’s response under normal conditions. 

B. Impulsive-disturbance rejection: The controller’s ability 
to reject the impact of bounded impulsive exogenous 
disturbance(s) is tested by injecting a pulse signal directly in 
the system’s control input (Vm). The applied signal has a 
magnitude of +5.0 V and time-duration of 0.1 s. The signal is 
applied when the response of pendulum arm, α, approaches 
the second and third local maxima(s). The corresponding 
variations in θ, α, Vm, and 𝑲 𝑡  are shown in Fig. 6.  

C. Step-disturbance attenuation: The controller’s resilience 
to tolerate and compensate the effects of permanent load 
changes is examined by injecting a +5.0V step-signal in the 

control input (Vm) of the system at t ≈ 4.0 s mark. This test 
case emulates the effects of applying exogenous torques on 
the system’s body dynamics. The corresponding 
perturbations in θ, α, Vm, and 𝑲 𝑡  are shown in Fig. 7.  

 

Fig. 6. Pendulum’s response under impulsive disturbances. 

D. Noise immunity: The system’s position-regulation 
accuracy is also tested under the influence of process noise 
contributed by the parasitic impedances of electronic 
components, measurement noise of sensors, and mechanical 
vibrations. For this purpose, a low-amplitude and high-
frequency sinusoidal signal, 𝑑 𝑡 1.5 sin 20𝜋𝑡 , is 
injected in the reference input at t ≈ 0 s. The corresponding 
variations in θ, α, Vm, and 𝑲 𝑡   are shown in Fig. 8.  

E. Modelling-error compensation: The controller’s 
immunity against identification-errors and modeling-
variations is examined by hooking up a 0.10 kg mass beneath 
the surface of pendulum’s arm, as shown in Fig. 9, at t ≈ 4.0 s 
mark. This modification permanently alters the coefficients 
of the state and input matrices of the system's nominal state-
space model, and hence, disturbs the system’s position-
regulation behavior. The corresponding variations in θ, α, Vm, 
and 𝑲 𝑡  are shown in Fig. 10.  
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Fig. 7. Pendulum’s response under step disturbance. 

5.3. Analytical discussion 

The experimental results are analyzed on the basis of 
following Key-Performance-Indicators (KPIs).  

 The time taken (ts) by the response to settle within ±2% of 
the reference. 

 The magnitude of overshoot and undershoot (Mp,x) in the 
response.  

 The Root-Mean-Square-Error (RMSEx) in the response.  

 The offset error (Eoffset) in arm’s position under step-
disturbance. 

 The peak-to-peak magnitude of oscillations (αp-p) in the 
arm’s position under disturbances. 

 The Mean-Square-Voltage (MSV) applied to DC motor. It 
is used as a measure of control-input energy. 

 The magnitude of peak voltage spike (Vp) detected in the 
control profile. 

These KPIs are used to critically examine the disturbance-
rejection behavior of the designed controllers in time-domain. 

 

Fig. 8. Pendulum’s response under sinusoidal noise signal. 

 

Fig. 9. Pendulum setup with 0.10 kg mass attached to arm. 
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Fig. 10. Pendulum’s response under modelling-error. 

The quantitative analysis of the graphical results, in terms of 
the aforementioned KPI’s, is summarized in Table 4. In every 
test-case, the fixed-gain LQR demonstrates poor position-
regulation behavior. The RLQR demonstrates significant 
enhancement in the time-domain response of α and θ as 
compared to the LQR. However, amid transient disturbances, 
the RLQR consumes considerably large control-input energy 
and exhibits significantly large peaks in control voltage 
profile, while rejecting the disturbances. The experimental 
results validate the enhanced robustness and relatively better 
control-input economy contributed by the proposed SRLQR. 
The SRLQR scheme exhibits rapid transits with improved 
damping strength against disturbances. It significantly 
minimizes the system’s overall control-input expenditure as 
compared to RLQR. Furthermore, the control energy 
consumption of SRLQR is reasonably comparable with that 
of LQR. Apart from demonstrating optimum state and control 
behavior, the SRLQR also maintains the system’s 
asymptotic-stability under every operating condition.  

 

Table 4. Summary of experimental results. 

Test KPI 
Controllers 

LQR RLQR SRLQR 

A 
RMSEθ (deg.) 0.75 0.49 0.52 
RMSEα (deg.) 14.90 10.38 9.55

MSV (V2) 8.32 11.02 6.82
 

B 

RMSEθ (deg.) 0.83 0.50 0.49
|Mp,θ| (deg.) 3.34 1.58 1.19

ts,θ (s) 0.70 0.66 0.65 
RMSEα (deg.) 15.88 9.88 10.44

Vp (V) 11.88 17.93 9.79
MSV (V2) 10.61 12.92 8.65

 

C 

RMSEθ (deg.) 1.11 0.58 0.61
RMSEα (deg.) 28.72 22.59 22.62

αp-p (deg.) 26.25 11.77 14.45
Eoffset (deg.) -32.83 -26.46 -26.47

Vp (V) 10.73 24.49 12.42
MSV (V2) 19.65 37.30 21.08

 

D 
RMSEθ (deg.) 0.63 0.56 0.44
RMSEα (deg.) 13.21 9.93 6.36

MSV (V2) 12.25 23.09 11.31
 

E 
RMSEθ (deg.) 1.41 1.13 1.06
RMSEα (deg.) 18.84 13.44 11.06

MSV (V2) 16.23 37.43 18.15

The qualitative analysis of the experimental results is 
presented as follows. In Test-A, the SRLQR controlled 
system exhibits minimum RMSE in the time-domain 
response of α. The SRLQR controlled system shows 30.0% 
reduction and only 6.1% increment in RMSEθ as compared to 
LQR and RLQR, respectively. The control-input energy 
utilized by SRLQR is approximately 42.1% and 56.2% lesser 
than the energy consumed by LQR and RLQR, respectively. 
In Test-B, the SRLQR exhibits minimum transient-recovery 
time to effectively attenuate the oscillations and shows 
minimum Mp in the time-domain profile of θ while 
compensating for the impulsive disturbances. Apart from 
minimizing the overall control energy expenditure, it 
successfully limits the peak actuating voltage to 9.79 V, 
which is 45.4% lesser than that of RLQR. In Test-C, the 
SRLQR shows similar time-domain behavior as RLQR. It 
contributes slightly larger peak-to-peak oscillations in the 
response of α, as compared to RLQR, while damping the 
step-disturbance. However, the SRLQR consumes 34.6% 
lesser control energy than RLQR. It also brings down the Vp 
to almost one-half of that utilized by RQLR while damping 
the same disturbance. In Test-D, the SRLQR controlled 
system tracks the reference position with minimum RMSE 
and minimum servo requirements. In Test-E, despite the 
disturbances caused by model variations, the SRLQR 
manages to balance the RIP system with minimum reference-
tracking error. It successfully damps the state fluctuations, 
while consuming almost 46.4% lesser control-input energy 
than the RLQR. The analysis justifies the superior 
adaptability of SRLQR in every testing scenario. 
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7. CONCLUSION 

This paper presents the formulation of a pragmatic indirect 
self-tuning strategy that enhances the robustness of adaptive 
state-feedback controllers for under-actuated electro-
mechanical systems. The proposed self-tuning framework is 
synthesized by dynamically adjusting the control penalty-
factor associated with the controller’s QPI. The control 
penalty-factor is adaptively modulated online via a state-
error-dependent self-regulating online adaptation mechanism. 
The experimental outcomes yielded by the proposed SRLQR 
are equated with the fixed-gain LQR and the baseline RLQR 
scheme to analyze the benefits afforded by it. The QNET 2.0 
RIP system is used as the benchmark to conduct hardware 
experiments and comparatively assess the performance of 
each controller. The results clearly validate that the proposed 
SRLQR renders superior robustness with a reasonably good 
control economy. It significantly enhances the response speed 
and damping strength of the system against exogenous 
disturbances caused by environmental indeterminacies. There 
is a lot of room for future enhancements. Soft computing 
techniques, iterative learning schemes, and intelligent tuning 
mechanisms can be investigated for flexible online 
modulation of the control penalty-factor. The efficacy of the 
proposed adaptive control scheme can be further explored by 
using it to control other under-actuated mechatronic systems. 

REFERENCES 

Balamurugan, S., Venkatesh, P., and Varatharajan, M. 
(2017). Fuzzy sliding-mode control with low pass filter 
to reduce chattering effect: an experimental validation on 
Quanser SRIP, Sadhana, 42(10), pp. 1693-1703. 

Basua, B., and Nagarajaiaha, S. (2008). A wavelet-based 
time-varying adaptive LQR algorithm for structural 
control. Engineering Structures, 30, pp. 2470–2477. 

Batmani, Y., Davoodi, M., and Meskin, N. (2017). Nonlinear 
Suboptimal Tracking Controller Design Using State-
Dependent Riccati Equation Technique. IEEE 
Transactions on Control Systems Technology, 25(5), pp. 
1833-1839. 

Bavili, R.E., Khosrowjerdi, M.J., and Vatankhah, R. (2015). 
Active Fault Tolerant Controller Design using Model 
Predictive Control. Control Engineering and Applied 
Informatics, 17(3), pp. 68-76. 

Bhatti, O.S., Mehmood-ul-Hasan, K., and Imtiaz, M.A.. 
(2015). Attitude Control and Stabilization of a Two-
Wheeled Self Balancing Robot. Control Engineering and 
Applied Informatics, 17(3), pp. 98-104. 

Bhatti, O.S., Tariq, O.B., Manzar, A., and Khan O.A. (2018). 
Adaptive intelligent cascade control of a ball-riding 
robot for optimal balancing and station-keeping, 
Advanced Robotics, 32(2), pp. 63-76. 

Boubaker, O., and Iriarte, R. (2017). The Inverted Pendulum 
in Control Theory and Robotics: From Theory to New 
Innovations. Institution of Engineering and Technology, 
Stevange, England. 

Filip, I. and Szeidert, I. (2017). Tuning the control penalty 
factor of a minimum variance adaptive controller. 
European Journal of Control, 37, pp. 16-26. 

Filip, I., Vasar, C., Szeidert, I., and Prostean, O. (2019). Self-
tuning strategy for a minimum variance control system 

of a highly disturbed process. European Journal of 
Control, 46, pp. 49-62. 

Filip, I., Dragan, F., Szeidert, I., and Albu, A. (2020). 
Minimum-Variance Control System with Variable 
Control Penalty Factor. Applied Sciences, 10(7), 2274, 
pp. 1-21. 

Ghartemani, M.K., Khajehoddin, S.A., Jain, P., and 
Bakhshai, A. (2011). Linear quadratic output tracking 
and disturbance rejection. International Journal of 
Control, 84(8), pp. 1442-1449. 

Jian, Z., and Yongpeng, Z. (2011). Optimal Linear Modeling 
and its Applications on Swing-up and Stabilization 
Control for Rotary Inverted Pendulum, Proceedings of 
the 30th Chinese Control Conference, Yantai, China, 
July 22-24, 2011; IEEE: pp. 493-500.  

Kavuran, G., Ates, A., Alagoz, B.B., Yeroglu, C. (2017). An 
Experimental Study on Model Reference Adaptive 
Control of TRMS by Error-Modified Fractional Order 
MIT Rule. Control Engineering and Applied 
Informatics, 19(4), pp. 101-111. 

Lewis, F.L., Vrabi,e D., and Syrmos, V.L. (2012). Optimal 
Control. John Wiley and Sons, New Jersey, USA. 

Mahmoud, M. (2018). Advanced Control Design with 
Application to Electromechanical Systems. Elsevier 
Science, New York, pp. 177-253. 

Nekoo, S.R., and Geranmehr, B. (2014). Nonlinear observer-
based optimal control using the state-dependent Riccati 
equation for a class of non-affine control systems. 
Control Engineering and Applied Informatics, 16(2), pp. 
5-13. 

Nekoo, S.R., and Rahaghib, M.I. (2018). Recursive 
approximate solution to time-varying matrix differential 
Riccati equation: linear and nonlinear systems, 
International Journal of Systems Science, 49(13), pp. 
2797-2807. 

Ning, H., Zhang, J., Jing, X, and Tian, T. (2019). Robust 
Online Learning Method Based on Dynamical Linear 
Quadratic Regulator. IEEE Access, 7, pp. 117780-
117795.  

Önkol M, Kasnakoğlu C. Adaptive Model Predictive Control 
of a Two-wheeled Robot Manipulator with Varying 
Mass. Measurement and Control, 2018, 51(1-2), pp. 38-
56. 

Prasad, L.B., Tyagi, B., and Gupta, H.A. (2014). Optimal 
Control of Nonlinear Inverted Pendulum System Using 
PID Controller and LQR: Performance Analysis Without 
and With Disturbance Input. International Journal of 
Automation and Computing, 11(6), pp. 661–670. 

Saleem, O., Hassan, H., Khan, A., and Javaid, U. (2017). 
Adaptive Fuzzy-PD Tracking Controller for Optimal 
Visual-Servoing of Wheeled Mobile Robots. Control 
Engineering and Applied Informatics, 19(3), pp. 58-68. 

Saleem, O., Abbas, F., Khan, M.U., Imtiaz, M.A., and 
Khalid, S. (2018). Adaptive Collaborative Position 
Control of a Tendon-Driven Robotic Finger. Control 
Engineering and Applied Informatics, 20(2), pp. 87-99. 

Saleem, O., Rizwan, M., and Ahmad, M. (2018). Augmented 
Linear Quadratic Tracker for Enhanced Output-Voltage 
Control of DC-DC Buck Converter. Control Engineering 
and Applied Informatics, 20(4), pp. 40-49. 



33                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

Saleem, O., and Rizwan, M. (2019). Performance 
optimization of LQR-based PID controller for DC-DC 
buck converter via iterative-learning-tuning of 
state-weighting matrix. International Journal of 
Numerical Modelling, 32(03), e2572, pp. 1-17.  

Saleem, O., Rizwan, M., Shiokolas, P.S., and Ali, B. (2019). 
Genetically Optimized ANFIS-based PID Controller 
Design for Posture-Stabilization of Self-Balancing-
Robots under Depleting Battery Conditions. Control 
Engineering and Applied Informatics, 21(4), pp. 22-33. 

Saleem, O., Shami, U.T., Mahmood-ul-Hasan, K., Abbas, F., 
and Mahmood, S. (2019). Robust-Optimal Output-
Voltage Control of Buck Converter using Fuzzy 
Adaptive Weighted Combination of Linear Feedback 
Controllers. Control Engineering and Applied 
Informatics, 21(2), pp. 43-53. 

Saleem, O., and Mahmood-ul-Hasan, K. (2019). Robust 
stabilisation of rotary inverted pendulum using 
intelligently optimised nonlinear self-adaptive dual 
fractional order PD controllers, International Journal of 
Systems Science, 50(7), pp. 1399-1414. 

Saleem, O., and Mahmood-ul-Hasan, K. (2020). Indirect 
Adaptive State-Feedback Control of Rotary Inverted 
Pendulum Using Self-Mutating Hyperbolic-Functions 
for Online Cost Variation, IEEE Access, 08(01), pp. 
91236-91247. 

Saleem, O., Rizwan, M., Mahmood-ul-Hasan, K., and 
Ahmad, M. (2020). Performance Enhancement of 
Multivariable Model-Reference Optimal Adaptive Motor 
Speed Controller using Error-Dependent Hyperbolic 
Gain Functions. Automatika, 61(1), pp. 117-131. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shahab, E., Nikoobin, A., Ghoddosian, A. (2017). Indirect-
based Approach for Optimal Swing up and Stabilization 
of a Single Inverted Pendulum with Experimental 
Validation. Control Engineering and Applied 
Informatics, 19(4), pp. 61-71, 2017. 

Szuster, M., and Hendzel, Z. (2017). Intelligent Optimal 
Adaptive Control for Mechatronic Systems. Springer, 
Berlin, Germany. 

Ullah, S., Khan, Q., Mehmood, A., and Akmeliawati, R. 
(2019). Integral backstepping integral sliding mode 
control of underactuated nonlinear electromechanical 
systems. Control Engineering and Applied Informatics, 
21(3), pp. 42-50, 2019 

Varga, A. (2008). On solving periodic Riccati equations, 
Numerical Linear ALgebra with Applications, 15(09), 
pp. 809-835. 

Yang, S., and Zheng, M. (2018). H∞ Fault-Tolerant Control 
for Dynamic Positioning Ships based on Sampled-data. 
Control Engineering and Applied Informatics, 20(4), pp. 
32-39. 

Zhang, H., Wang, J., and Lu, G. (2014). Self-organizing 
fuzzy optimal control for under-actuated systems. 
Journal of Systems and Control Engineering, 228(8), pp. 
578-590. 


