
CEAI, Vol.23, No.1, pp. 3-12, 2021                                                                                                                   Printed in Romania 

Finite-Time Bounded Observer-Based Control for Quasi-One-Sided Lipschitz 

Nonlinear Systems With Time-Varying Delay 
 

Yali Dong *, Jing Hao *, Yang Si **, *** 

 
* School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China (e-mail: dongyl@vip.sina.com) 

** Key Laboratory of Efficient Utilization of Clean Energy, Tus-Institute for Renewable Energy, Qinghai University, Xining,     

Qinghai, 810016, China (e-mail: siyang@qhu.edu.cn) 
*** State Key Laboratory of Control and Simulation of Power System and Power Generation Equipment, Electric Machinery D

epartment, Tsinghua University, Bejing, 100084, China (e-mail: siyang@qhu.edu.cn) 

Abstract: This paper considers the problem of finite-time bounded observer-based control for a class of 

quasi-one-sided Lipschitz nonlinear systems with time-varying delay, time-varying parametric 

uncertainties and norm-bounded disturbances. The design methodology, for the less conservative quasi-

one-sided Lipschitz nonlinear systems, involves astute utilization of several matrix decompositions and 

Jensen's inequality. By using the delay-dependent Lyapunov-Krasovskii functional and using the matrix 

inequality method, the sufficient conditions are established to guarantee that the resulted closed-loop 

system is finite-time bounded with a prescribed H∞ performance. Based on these results, we have 

developed the robust observer-based controller synthesis strategy under parametric uncertainties. The 

proposed methodology ensures that the resulted closed-loop system is finite-time bounded. Finally,  

simulate examples are given to illustrate the effectiveness of the proposed method. 

Keywords: Finite-time bounded; observer-based control, quasi-one-sided Lipschitz nonlinearity, 

parametric uncertainty,  time-varying delay. 

1. INTRODUCTION 

The concept of Finite-Time Stability (FTS) was introduced in 

1960s. Up until now, much work has been done in this field. 

Given a bound on the initial condition, a system is said to be 

finite-time stable if the state does not exceed a certain 

threshold during a specified time interval. While external 

disturbances are considered, FTS is extended to Finite-Time 

Boundedness (FTB). In recent years, the problems of finite-

time stability, boundedness and stabilization have interested 

more and more researchers because the finite-time stable 

systems usually demonstrate some nice features such as faster 

convergence rates, higher accuracies and better disturbance 

rejection properties and so on (Wang et al., 2015; Dong et al., 

2017a; Chen and Yang, 2014; Zhang et al.,2012; Zhang et al., 

2015). 

Uncertainties and perturbations are frequently encountered in 

practical control systems. Due to factors such as 

environmental noises, data errors, ageing of systems, 

uncertain or slowly varying parameters, it is often very 

difficult to obtain exact mathematical models. The presence 

of uncertainties may cause instability and bad performances 

on a controlled system. Therefore, researchers have made a 

number of efforts to solve the problem of robust stability and 

stabilization of systems with parameter uncertainties. Some 

results generated by these efforts  were presented in  (Dong et 

al., 2017a; Zhang et al., 2015; Amato et al., 2011; Wang  et 

al., 2016; Wang et al., 2015). (Dong et al., 2017a) studied 

finite-time boundedness and H∞ control for switched neutral 

systems with mixed time-varying delays. (Zhang et al., 2015) 

considered finite-time stability and stabilization for uncertain 

continuous-time system with time-varying delay.  (Amato et 

al., 2011) investigated the robust finite-time stabilization for 

uncertain linear systems. 

In the recent years, one-sided Lipschitz nonlinear systems 

have gained importance as a class of nonlinear systems 

because: First, they are better at representing a more general 

form compared to the Lipschitz systems; Second, one-sided 

Lipschitz constant is superior than the Lipschitz constant (Cai 

et al., 2014; Boutayeb et al., 2012). The quasi-one-sided 

Lipschitz condition is shown to be an extension of one-sided 

Lipschitz condition and the Lipschitz condition (Hu, 2008; Fu 

et al., 2012), but it is less conservative. The finite-time H∞ 

control problem of a class of Lipschitz nonlinear systems 

with parameter uncertainties was studied in (Song et al., 

2015). A state feedback controller was designed to guarantee 

that the resulted closed-loop system is finite-time bounded.  

(Zhu and Hu, 2009) studied the stability for uncertain 

nonlinear time-delay systems with quasi-one-sided Lipschitz 

condition. The problem of stabilization of quasi-one-sided 

Lipschitz nonlinear systems was considered in (Fu et al., 

2012).  However, to the best of our knowledge, until now, no 

results have been yielded concerning the study of finite-time 

control of nonlinear systems with quasi-one-sided Lipschitz 

conditions by observer-based controller, which has motivated 

us to do the research presented in the paper. 

Our research focuses on finite-time bounded observer-based 

control for quasi-one-sided Lipschitz nonlinear systems with 

time-varying delay, time-varying parametric uncertainties 

and norm-bounded disturbances. By constructing a delay-

dependent Lyapunov-Krasovskii functional and using 

Jensen's inequality, we derive sufficient conditions to 

mailto:dongyl@vip.sina.com


4                                                                                                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 

guarantee that the resulted closed-loop system is finite-time 

bounded and satisfies a given H∞ constraint condition. Based 

on this, we further propose a robust observer-based controller 

synthesis strategy under parametric uncertainties. Finally, we 

present numerical simulation examples demonstrating the 

effectiveness of the proposed observer-based control scheme. 

The rest of the paper is organized as follows.  Section 2 gives 

the description of the system and several necessary lemmas 

and assumptions. Section 3 presents sufficient conditions of 

finite-time bounded and controller design method for quasi-

one-sided Lipschitz nonlinear systems. Section 4 shows the 

application of the proposed methods to quasi-one-sided 

Lipschitz nonlinear systems. Finally, we recapitulate the 

paper in Section 5. 

Notations: The notations used in this paper are standard. The 

superscript T denotes matrix transpose, 
nR  denotes the n-

dimensional real Euclidean space. 
m nR 

 represents the set of 

all m n real matrices. The notation 0P   ( 0P  ) means 

that the matrix is positive definite (negative definite). ( )min    

and ( )max   denote the minimum and maximum eigenvalues 

of a matrix. For x, y  denotes Tx y . 

2. PROBLEM STATEMENT AND  PRELIMINARIES 

Consider the following uncertain  nonlinear  system with 

time-varying delay: 

( ) ( )( ) ( ) ( )( )
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( ) ( )  
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                    (1) 

where ( ) nx t R is the state, ( )( ) ( )x x t t ,w t = −   

 2 0qL ,+ is the external disturbances, ( ) pu t R is the 

controlled input, ( ) ly t R is  the  measured  output,  

( ) qz t R  is the controlled output. ( )t is a continuous initial 

state. ( )f t ,x  and ( )g t,x are the nonlinear functions with 

( )0 0f t , = and ( )0 0g t, .=
1 2, , , ,A A B C D are known real 

constant matrices. ( )1A t  and ( )2A t  are the unknown 

matrices representing time-varying parameter uncertainties, 

and are assumed to be of the form 

( ) ( )1 1 1 2 2 2, , =  =A M F t N A M F t N                                 (2) 

where ( )1 2i iM ,N i ,= are known real constants matrices and 

( )F t is an unknown real-valued matrix function satisfying 

( ) ( ) TF t F t I .                                                                      (3) 

( )t is the time-varying delay satisfying 

( ) ( )0 t , t .                                                            (4) 

To begin with the main result, the following preliminary 

assumptions and definitions are given. 

Assumption 1. The external disturbances input ( )w t  is time 

-varying and satisfies 

( ) ( )
0

fT
Tw t w t dt                                                             (5) 

where   and fT are positive constants.  

Assumption 2. The nonlinear function ( )f t ,x is a quasi-one- 

sided Lipschitz function, i.e., there exist a positive definite 

matrix
1P and a real symmetric matrix 

1S  which relined on 
1P  

such that 

( ) ( ) ( ) ( )1 1 2 1 2 1 2 1 1 2 ,− −  − −  
T

P f t,x f t,x ,x x x x S x x     (6) 

for all 1 2

nx ,x R . 

Assumption 3. The nonlinear function ( )g t,x is a quasi-one 

-sided Lipschitz function, i.e., there exist a positive definite 

matrix
1P  a real symmetric matrix 

2S  which relined on 
1P  

such that 

( ) ( ) ( ) ( )1 2 ,− −  − −  
T

ˆ ˆ ˆ ˆP g t,x g t,x ,x x x x S x x          (7) 

for all nˆx ,x R .    

Now, we consider the following observer dynamics 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

1 2 ,

, ,

,

 = + + +


+ + −


=

ˆ ˆ ˆ ˆx t A x t A x Bu t f t x

ˆ ˆg t x L y t y t

ˆ ˆy t Cx t



                         (8) 

where ( )( )ˆ ˆx x t t = − , ( )x̂ t and ( )ŷ t are the estimated state 

and output, respectively. L is the state estimator gain matrix 

to be designed. 

Define the error ( ) ( ) ( ) ,= − ˆe t x t x t  then the error-state 

system is governed by 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 2 1

2 1 2

ˆ, ,

ˆ, , ( ) ( ) ,

= − + − + 

+  + +  + 

e t A LC e t A e t t t x x

t x x Dw t A t x t A t x  


       (9) 

Where 

( ) ( ) ( ) ( ) ( ) ( )1 2, , , , , , , = −  = −ˆ ˆ ˆ ˆt ,x,x f t x f t x t x x g t x g t x .   

 We construct an observer-based controller for system (1)  

ˆ( ) ( ),= −u t Kx t                                                                    (10) 

where  
m nK R  is the controller gain. By (1), (9) and (10), 
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we obtain the following augmented closed-loop system: 

( ) ( ) ( )( ) ( )

( ) ( )

1 2 1

2

1 2 3

ˆ, ,

ˆ, , ,

( ) ( ) ( ( )) ( ),

= + − +

+ +

= + − +

z t A z t A z t t F t x x

F t x x Dw t

t H z t H z t t H w t

 



 

                          (11)   

where  

( )
( )

1 1 2 2

1 1 2 2

1 2

1 1 2 2

1

1

( ) [ ( ) ( )] , ( , 0), ( , 0),

( ) ( ) 0
, ,

( ) ( )

( , )
ˆ, , , ,

ˆ, ,

T T Tz t x t e t H H H H

A BK A t BK A A t
A A

A t A LC A t A

f t x D
F t x x D

t x x D

= = =

− +  +    
= =   

 −    

   
= =      

( )
( )2

2

( , )
ˆ, , .

ˆ, ,

g t x
F t x x

t x x



 

 
=  

 
                                      (12) 

Definition 1. (Dong et al., 2017a) (Finite-Time Bounded, 

FTB) For given positive constants 1, , fc T  and a symmetric 

matric 0,R  the resulting closed-loop system (11) is said to 

be robustly FTB with respect to 1 2( , , , , )fc c T R  , if there 

exists a constant 
2 1( )c c  such that 

1 2
0

sup ( ) ( ) ( ) ( ) , 0, .T T

f
t

t R t c z t Rz t c t T


 
−  

         

Definition 2. (Fu et al., 2013)  If there exists an observed-

based controller in form (10) such that the resulting closed-

loop system (11) is FTB with respect to 1 2( , , , , )fc c T R   and 

under the assumed zero initial condition, the system output 

satisfies the following cost function inequality for 0fT   and 

for all admissible ( )w t  which satisfy Assumption 1: 

2

0 0
( ) ( ) ( ) ( ) , 

f fT T
T Tt t dt w t w t dt                                     (13) 

then the controller (10) is called as the robust finite-time H
 

controller of the quasi-one-sided Lipschitz nonlinear system 

(1). 

The aim of the present study is to explore finite-time observer 

-based robust control strategies for quasi-one-sided Lipschitz 

nonlinear system (1) such that the closed-loop dynamic 

system(11) is robustly FTB. 

The following lemmas will be used to develop our main 

results. 

Lemma 1. (Cai et al., 2014) For any constant 0v   and 

known real matrices X, Γ and U of appropriate dimensions, 

the inequality 

( ) 1( ) ( ) ,
T T TX t U X t U v XX vU U− +   +  

holds, where Γ(t) is a time-varying uncertain matrix fulfilling 

( ) ( ) .T t t I  

Lemma 2. (Lee et al., 2017) For given positive definite 

matrix n nz R  , two scalars a, b with a > b and a vector-

valued function  : , na b R →  such that the following 

integrals are well defined, then 

( ) ( )

( ) ( )

2 2

( ) ( ) ( ) ( ) ( ) ,

( )
( ) ( )

2

( ) ( ) .

− − −

− − −

−

− +

− −

− + − +

− −  −

−
−

 −

  

 

   

a a a
T T

b b b

a t
T

b t

a t a t
T

b t b t

b a s Z s ds s ds Z s ds

b a
s Z s dsd

s dsd Z s dsd



 

   

  

   

 

Lemma 3. (Cai et al., 2015) Given a matrix q nC R   with 

rank(C) = q. Assume that n nX R   is a symmetric matrix, 

then there exist a matrix ˆ q qX R   such that ˆCX XC= , if and 

only if 

11

22

ˆ 0
,

ˆ0

T
X

X V V
X

 
=  

  

 

where 11
ˆ q qX R  and   

( ) ( )

22
ˆ .n q n qX R −  −        

3.  MAIN RESULTS 

The following theorem introduces the sufficient condition to 

guarantee the finite-time bounded of the closed-loop system 

(11). 

Theorem 1. Suppose that Assumption 1-3 are satisfied. For 

given positive constants 1, , , ,fc T   and a  symmetric  matrix 

0R  , the closed-loop system (11) is FTB with respect 

to 1 2( , , , , )fc c T R  , if there exist positive constant 
2c  and 

symmetric positive definite  matrices  
1 1 1 2( , ), ,P diag P P Q Q= ,  

and S such that  

11 2

1

2

2

0 0

* (1 ) 0 0 0

0,* * 0 0

* * * 2 0

* * * *

 
 

− − 
  = −
 

− 
 − 

PA PD

Q

Q

Q

I

 







      (14) 

2 4

1 1 2 1 3 1 0 22 2 2 (1 ) 2 ,f fT T
c c c e c e

 
      

− −
+ + + −         (15) 

where 

3

11 1 1 1 2

1 1 1 1 1 1

2 2 2 2 2 2
1 1 2 2

0 min 1 max 2 max 1 3 max 2

2 ,

, , ,

( ), ( ), ( ), ( ).

TPA A P S Q Q P

P R PR Q R Q R Q R Q R

P P Q Q

  

       

− − − − − −

 = + + + + −

= = =

= = = =

 

Proof. For the closed-loop system (11), consider the 

Lyapunov-Krasovskii functional 
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1
( )

0
2

2

( ) ( ) ( ) ( ) ( )

( ) ( ) .

t
T T

t t

t
T

t

V t z t Pz t z s Q z s ds

z s Q z s dsd



 



 

−

− +

= +

+



 
                           (16)   

From Assumption 2 and 3, one has 

1 1

2 2

ˆ( ) ( , , ) ( ) ( ),

ˆ( ) ( , , ) ( ) ( ),

T T

T T

z t PF t x x z t S z t

z t PF t x x z t S z t 




                                        (17) 

where  1 1 1 2 2 2( , ), ( , ).= =S diag S S S diag S S  

The derivative of ( )V t  along the trajectories of system (11) 

is 

3

1 1 1 2

2

2

1 2

( ) ( )( 2 ) ( )

2 ( ) ( ( )) 2 ( ) ( ) (1 )

( ( )) ( ( )) ( ) ( ) ,

T T

T T

t
T T

t

V t z t PA A P Q Q S z t

z t PA z t t z t PDw t

z t t Q z t t z s Q z s ds


 

  

  
−

 + + + +

+ − + − −

 − − − 

       (18) 

where 1 2+S S S= . 

Define the following function:  

1
ˆ( ) ( ) ( ) ( ).= − − TJ V t V t w t w t                                           (19) 

It is easy to get from (16): 

0
2

2( ) ( ) ( ) ( ) ( ) .
t

T T

t
V t z t Pz t z s Q z s dsd

 
   

− +
−  − −      (20)             

According to Lemma 2, it’s easy to get: 

( ) ( )2

2 2( ) ( ) ( ) ( ) ,
− − −

−  −  
t t t

T T

t t t
z s Q z s ds z s ds Q z s ds

  
    

                                                                                             (21)       

( ) ( )

0
2

2

0 0

2

( ) ( )

2 ( ) ( ) .

t
T

t

t t
T

t t

z s Q z s dsd

z s dsd Q z s dsd

 

   

 

  

− +

− + − +

−

 −

 

   

       (22)  

From (18)-(22), one can get 

3

1 1 1 1 2

2

1

2

2

3

1 1 1 2

2

( )( 2 ) ( )

2 ( ) ( ( )) 2 ( ) ( )

(1 ) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( )

( )( 2 ) ( )

2 ( ) ( ( )) 2 ( ) ( )

−

 + + + +

+ − +

− − − −

− − −

 + + + + −

+ − +

−



T T

T T

T

t
T T

t

T T

T T

J z t PA A P Q Q S z t

z t PA z t t z t PDw t

z t t Q z t t

z s Q z s ds V t w t w t

z t PA A P Q Q S P z t

z t PA z t t z t PDw t



 



   

  

  



( ) ( )

1

2

2

0 0

2

(1 ) ( ( )) ( ( ))

( ) ( ) ( ) ( )

2 ( ) ( )

( ) ( ),

−

− + − +

− − −

− −

−

 



   

T

t
T T

t

t t
T

t t

T

z t t Q z t t

z s Q z s ds w t w t

z s dsd Q z s dsd

t t



   

   

 

  

 

      （23）   

where

0

( ) [ ( ), ( ( )), ( ) , ( ) , ( )]
t t

T T T T T T

t t
t z t z t t z s ds z s dsd w t

  
  

− − +
= −   

 and Σ is given by (14). The condition inequality (14) implies 

( ) ( ) ( ) ( ).TV t V t w t w t  +  

Multiplying the above inequality by te − , one get 

( )( ) ( ) ( ).t t Td
e V t e w t w t

dt

 − −  

By integrating the aforementioned inequality between 0 and t, 

we derive 

0
( ) (0) ( ) ( ) .

t
t s TV t e V e w s w s ds  − +                            (24) 

From (16), one has 

1 1

2 2

1 1
0

2 2
1

(0)

1 1
0 0

2 2 2
2

0

max max 1

0 0
2

max 2

1 1

(0)) (0) (0)

( ) ( )

( ) ( )

( ) (0) (0) ( ) ( ) ( )

( ) ( ) ( )

−

−

−

−



+

+

 +

+

 +



 



 

f

f

f

f f

f

f

Tt T

T T

T T

T TT T

T T

T

e V e z R PR z

e z s R Q R z s ds

e z s R Q R z s dsd

P e z Rz Q e z s Rz s ds

Q e z s Rz s dsd

c e









 

 





 





 

  

  

 2 4

2 1 3 1

1
.

2
+f fT T

c e c e
 

   

 

(25) 

On the one hand, the following inequality holds: 

0
( ) ( ) ( 1)f f

f

t T Tt s T

T

e e w s w s ds e e

e

  



 

 

−−  − −

= −

                     (26) 

From (24)-(26), one can get 

2 4

1 1 2 1 3 1

1
( ) .

2
 + + + −f f f fT T T T

V t c e c e c e e
   

             (27) 

From (16), one can get 

min

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ).





=

T

T

T

V t z t Pz t

P z t Rz t

z t Rz t





                                                     (28) 

From (27) and (28), one can obtain 

 
2 4

1 1 2 1 3 1

0

2 2 2 2
( ) ( ) .

2

−

−

+ + + −


f

f

T

T

T

c c c e
z t Rz t

e





      


       (29) 

Condition (15) implies that 

2( ) ( ) , 0, ,T

fz t Rz t c t T    
 

which implied that the system (11) is FTB with respect 

to 1 2( , , , , )fc c T R  . The proof is completed.  
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Furthermore, based on the proof of Theorem 1, the following 

corollary can be obtained easily. 

Corollary 1.   Suppose that Assumption 1-3 are satisfied. For 

given positive constants 
1, ,c   , ,fT   and a symmetric 

matrix 0R  , the closed-loop system (11) with ΔA1(t) =ΔA2(t) 

= 0 is FTB with respect to 1 2( , , , , )fc c T R  , if there exist 

positive constant 
2c  and symmetric positive definite matrices  

1 1 1 2( , ), ,P diag P P Q Q=  and S such that 

11 2

1

2

2

0 0

* (1 ) 0 0 0

0,* * 0 0

* * * 2 0

* * * *

 
 

− − 
  = −
 

− 
 − 

PA PD

Q

Q

Q

I

 







        (30)   

2 4

1 1 2 1 3 1 0 22 2 2 (1 ) 2 ,f fT T
c c c e c e

 
      

− −
+ + + −   

where 

3

11 1 1 1 2

1 2

1 2

1 2

1 1 1 1 1 1

2 2 2 2 2 2
1 1 2 2

2 ,

0
, ,

0 0

, , ,

TPA A P S Q Q P

A BK BK A
A A

A LC A

P R PR Q R Q R Q R Q R

  

− − − − − −

 = + + + + −

−   
= =   

−   

= = =

 

0 min 1 max 2 max 1 3 max 2( ), ( ), ( ), ( ).P P Q Q       = = = =  

Theorem 2. Suppose that Assumption 1-3 are satisfied. For 

given positive constants 1, , , ,fc T   and a symmetric 

matrix 0,R the closed-loop system (11) is FTB with respect 

to 1 2( , , , , )fc c T R  and satisfies the cost function (13), if there 

exist positive constants 2 ,c   and symmetric positive definite 

matrices 1 1 1 2( , ), , ,=P diag P P Q Q and S such that the 

following inequality and condition (15) hold: 

11 2 1

1 2

2

2

3

0 0

* (1 ) 0 0 0

* * 0 0 0
0,

* * * 2 0 0

* * * *

* * * * *

T

T

T

PA PD H

Q H

Q

Q

I H

I

 









 
 

− − 
 −

 
− 

 −
 

−  

     (31) 

where  

3

11 1 1 1 22 . = + + + + −TPA A P S Q Q P  
  

Proof. Select the same Lyapunov-Krasovskii functional can-

didate as Theorem 1 and define the following function 

1ˆ( ) ( ) ( ) ( ) ( ) ( ).TJ V t V t w t w t t t    −= − − +

We have 

1( ) ( ) ( ) ( ).T TJ t t t t    −  +  

Applying Schur complement, from (31) we have 

0.J   

So, it follows that 

1( ) ( ) ( ) ( ) ( ) ( ).T TV t V t w t w t t t    −−  −  

Multiplying the above inequality by te −  results in 

( ) ( )1( ) ( ) ( ) ( ) ( ) .t t T Td
e V t e w t w t t t

dt

     − − − −  

By integrating the aforementioned inequality between 0 and 

Tf , under the assumed zero initial condition, we get 

1

0

1

0

( ) ( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( )) .

f
f

f
f

TT s T T

f

TT T T

V T e e w s w s t t ds

e w s w s t t ds

 



   

   

− −

−

 −

 −





 

So, we have 

0 0
( ) ( ) ( ) ( ) .

f fT T
T Tt t dt w t w t dt     

Leting  = , we get that the closed-loop system (11) is 

FTB with respect to 1 2( , , , , )fc c T R  and satisfies the cost 

function (13). This completes the proof. 

Remark 1. The conditions (14) and (15) are nonlinear matrix 

inequalities that difficult to be solved directly. To overcome 

this limitation, the following theorem give some solvable 

LMI-conditions. 

Theorem 3. Suppose that Assumption 1-3 are satisfied. For 

given positive constants 1 1, , , , ,fc T v   and a symmetric 

matrix 0,R the closed-loop system (11) is FTB with respect 

to 1 2( , , , , ),fc c T R  if there exist positive constants 

2 2 1 2 3, , , , ,c v     symmetric positive-definite matrices 

1 2, ,Q Q S and
1 1( , )X diag X X= ), real matrices Y, G, such that 

the following LMIs hold: 

1 2

3

0,
*

  
 =  

 

                                                        （32） 

1 1 1 1 1 1

1 2 1 3 2, , ,− − − − − −     R X R R Q R R Q R   （33）                                                        

1 1 1

2 22 2 2
2 1 1 1

1

2

3

(1 )

* 0 0 0,

* * 0

* * * 2

f fT T
e c e c c c

 
   







− − 
− − 

 −  
− 

 
− 

      （34） 

where 
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11 2 1

1

1 2

2

0 0

* (1 ) 0 0 0

,* * 0 0

* * * 2 0

* * * *

 
 

− − 
  = −
 

− 
 − 

A Q D

Q

Q

Q

I

 







 

1 1 1 2

29

2

0

0 0 0 0 0

,0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 

 
  =
 
 
 
 

M v XN M X X

 

1 3

3 1 1 2 2 1 2( , , , , , ).− − = − − − − − −diag v I v I v I v I Q Q   

 

 

1 2 2

1 2 1 1 2

1 2 2

11 1 1 2 2

1 1

29 2 1 2 1

1 1

11

1 1 1

22

0
, , 0 , ,

0

2 , 0 ,

, ,
0

ˆ 0
ˆ , .

ˆ0

T

T

T

M M A
M M N N A

M M A

A X XA S X N N

A X BY BY
v Q N A X

A X GC

X
CX X C X V V

X



     
= = = =     

     

 = + + − =

− 
 = =  

− 

 
= =  

  

 

Furthermore, if the conditions (32)-(34) have feasible 

solutions, the desired observer gain L and controller gain K 

can 

be given by
1 1

1 1
ˆ, .− −= =K YX L GX

 

Proof. Considering the uncertainties in equality (14),  (14) 

can be rewritten as 

0, =  +                                                                     (35) 

where   is given by (30) and 

1 1 2 0 0 0

* 0 0 0 0

,* * 0 0 0

* * * 0 0

* * * * 0

  +  
 
 
  =
 
 
 
 

TP A A P P A

 

1 2

1 2

1 2

0 0
, .

0 0

A A
A A

A A

    
 =  =   

    

 

Noticing the uncertainties which described as the form in (2), 

one has 

( ) ( )1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) .
T T

F t F t F t F t =   +   +  +    

where 

1 1 1 1

2 2 2 2

( ) 0 0 0 0 , 0 0 0 0 ,

( ) 0 0 0 0 , 0 0 0 0 .

T
T

T
T

PM N

PM N

    =  =   

    =  =   

 

Using Lemma 1, we can obtain 

1 1

1 1 1 1 1 1 2 2 2 2 2 2 .T T T Tv v v v− −    +   +   +                       (36) 

Then, the inequality (35) can be guaranteed by 

1 1

1 1 1 1 1 1 2 2 2 2 2 2 0.T T T Tv v v v− − +   +   +   +                     (37) 

Applying Schur’s complement, (37) holds if and only if the 

following inequality holds: 

1 2

3

0,
*

  
 

 

                                                                    (38) 

where 

11 2

1

1

2

2

1 1 1 2

2 2

2

3 1 1 2 2

0 0

* (1 ) 0 0
,

* * 0

* * * 2

0

0 0 0 0
,

0 0 0 0 0

0 0 0 0 0

( , , , , ).

T

T

PA

Q

Q

Q

PD PM v N PM

v N

diag I v I v I v I v I

 







 
 

− −  =
 −
 

−  

 
 
  =
 
 
  

 = − − − − −

 

From Lemma 2, there exists an appropriate dimensions 

matrix 1X̂
such that 1 1

ˆCX X C=
. Let 1

ˆG LX=
. 

Pre- and post-multiplying above result inequality (38) by 

block-diagonal matrix 1( , , , , , , , , )diag P I I I I I I I I− , and 

letting 

1 1

1

1

0
, ,

0

X
X P Y KX

X

− 
= = 

 

 

one get 

1 2

3

ˆ ˆ
0,

ˆ*

  
 

  

                                                                 (39) 

where 

11 2

1

1 2

2

1 1 1 2

2 2

2

3 1 1 2 2

3

11 1 1 1 2

ˆ 0 0

* (1 ) 0 0 0
ˆ ,* * 0 0

* * * 2 0

* * * *

0

0 0 0

ˆ ,0 0 0 0

0 0 0 0

0 0 0 0

ˆ ( , , , ),

ˆ 2 ,

T

T

A D

Q

Q

Q

I

M v XN M

v N

diag v I v I v I v I

A X XA XSX XQ X XQ X X

 







  

 
 

− − 
  = −
 

− 
 − 

 
 
 
  =
 
 
 
 

 = − − − −

 = + + + + −
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Applying the schur’s complement, we have that (38) holds if 

following inequality holds: 

1 2

3

0,
*

  
 =  

 

                                                        （40） 

where 

11 2

1

1 2

2

0 0

* (1 ) 0 0 0

,* * 0 0

* * * 2 0

* * * *

A D

Q

Q

Q

I

 







 
 

− − 
  = −
 

− 
 − 

 

1 1 1 2

2 2

2

1 3

3 1 1 2 2 1 2

11 1 1

1 1

1 1 2 2

0

0 0 0 0 0

,0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ˆ ( , , , , , ),

ˆ 2 ,

, , .

T

T

M v XN M X X

v N

diag v I v I v I v I Q Q

A X XA S X

Q Q Q Q S XSX

 



− −

− −

 
 
 
  =
 
 
 
 

 = − − − − − −

 = + + −

= = =

 

Pre- and post-multiplying above result inequality (40) by 

block-diagonal matrix 1 2 2( , , , , , , , , , , ),diag I Q Q Q I I I I I I I the 

inequality (32) can be obtained by means of simple manipul- 

tion. 

Let 
1 1 1 1 1 1

2 2 2 2 2 2
1 1 2 2

ˆ ˆ, , ,X R XR Q R Q R Q R Q R= = =  

and set 

1 min max 2 min 1

max 1 3 min 2 max 2

ˆ( ), ( ) 1, ( ),

ˆ ˆ ˆ( ) 1, ( ), ( ) 1,

X X Q

Q Q Q

    

   

  

  
 

then (15) can be held by the following inequality: 

1 2 1 4 1

1 1 1 2 1 3 2(1 2) (1 ) .f fT T
c c c e c e

 
     

− −− − −+ + + −        (41) 

Using Schur’s complement and eigenvalue transformation, 

we can get LMIs (33) and (34). This completes the proof. 

According to Theorem 2, the following theorem can be 

obtained. 

Theorem 4. Suppose that Assumption 1-3 are satisfied. For 

given positive constants 1, , , ,fc T   and a symmetric 

matrix 0,R  the closed-loop system (11) is FTB with 

respect to 1 2( , , , , )fc c T R   and satisfies the cost function (13), 

if there exist positive constants 2 1 2 1 2 3, , , , , ,c v v     , 

symmetric positive-definite matrices 1 2, ,Q Q S  and 

1 1( , )X diag X X= ), real matrices Y, G, such that the 

following matrix inequality and conditions (33) and (34) hold: 

1 2

3

0,
*

  
 

 
                                                        (42) 

where 

11 2 1 1

1 1 2

1 2

2

3

0 0

* (1 ) 0 0 0

,* * 0 0 0

* * * 2 0 0

* * * *

 
 

− − 
  = −
 

− 
 − 

T

T

T

A Q D XH

Q Q H

Q

Q

I H

 







 

1 1 1 2

29

2

2

1 3

3 1 1 2 2 1 2

0

0 0 0 0 0

,0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

( , , , , , , ).− −

 
 

 
  =
 
 
 
 

 = − − − − − − −

M v XN M X X

diag I v I v I v I v I Q Q  

 

 

 

1 2 2

1 2 1 1 2

1 2 2

11 1 1 2 2

1 1

29 2 1 2 1

1 1

11

1 1 1

22

0
, , 0 , ,

0

2 , 0 ,

, ,
0

ˆ 0
ˆ , .

ˆ0

T

T

T

M M A
M M N N A

M M A

A X XA S X N N

A X BY BY
v Q N A X

A X GC

X
CX X C X V V

X



     
= = = =     

     

 = + + − =

− 
 = =  

− 

 
= =  

  

 

Furthermore, if the conditions (33), (34) and (42) have 

feasible solutions, the desired observer gain L and controller 

gain K can be given by
1 1

1 1
ˆ,K YX L GX− −= = . 

Proof. The proof is similar to the proof of Theorem 3. Thus, 

it is omitted. 

According to Theorem 2, the following corollary can be 

obtained. 

Corollary 2. Suppose that Assumption 1-3 are satisfied. 

For given positive constants 1, , , ,fc T   and a symmetric 

matrix 0,R  the closed-loop system (11) with 

1 2( ) ( ) 0A t A t =  =  is FTB with respect to 1 2( , , , , )fc c T R   

and satisfies the cost function (13), if there exist positive 

constants 2 1 2 3, , , , ,c      symmetric positive-definite 

matrices 1 2, ,Q Q S and 1 1( , )X diag X X= , real matrices Y, G, 

such that the following matrix inequality and conditions (33) 

and (34) hold: 

1 2

3

0,
*

  
 

 

                                                               （43） 

where 
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11 2 1

1

1 2

2

0 0

* (1 ) 0 0 0

,* * 0 0

* * * 2 0

* * * *

 
 

− − 
  = −
 

− 
 − 

A Q D

Q

Q

Q

I

 







 

1

1 2

1 3

2 3 1 2

3

0 0

, ( , , ).0 0 0

0 0 0

0 0

− −

 
 
 
  =  = − − −
 
 
 
 

T

T

T

XH X X

Q H

diag I Q Q

H

    

2

2 11 1 1 1 1

2

0
ˆ, 2 , ,

0

 
=  = + + − = 

 

T
A

A A X XA S X CX X C
A

  

1 1 11

1 1

1 1 22

ˆ 0
, .

ˆ0 0

 − 
= =   

−    

T
A X BY BY X

A X X V V
A X GC X

 

Furthermore, if the conditions (33), 34) and (43) have 

feasible solutions, the desired observer gain L and controller 

gain K can be given by
1 1

1 1
ˆ,K YX L GX− −= = . 

Remark 2. Linear and nonlinear state-feedback control 

approaches for different forms of one-sided (or quasi-one-

sided) Lipschitz nonlinear system have been investigated in 

recent works (Song and He, 2015; Cai et al., 2014; Cai et al. 

2015; Fu et al., 2013). These techniques cannot be applied to 

the stabilization of nonlinear systems and finite-time bounded 

of non-linear systems if the full state vector is not known. 

The present work, contrastingly, employs observers for state-

estimation of nonlinear systems, the proposed control 

strategy utilizing the estimated states rather than the true 

values. We derive a finite-time bounded condition, which 

guarantees simultaneous finite-time bounded of the system’s 

state vector and the estimation error, for the overall closed-

loop system. 

Remark 3. (Dong et al., 2015) considered the problem of 

state observer design for a class of nonlinear dynamical 

systems with interval time-varying delay. (Dong et al., 2017b) 

investigated the nonlinear observer design for one-sided 

Lipschitz systems with time-varying delay and uncertainties. 

But, the problem of finite-time bounded for nonlinear system 

was not considered in (Dong et al., 2015, 2017b). In this 

paper, we study the problem of finite-time bounded observer-

based control for a class of quasi-one-sided Lipschitz 

nonlinear systems with time-varying delay. 

4. SIMULATION EXAMPLES 

In this section, we give simulation examples to illustrate the 

effectiveness of the proposed methods. 

Example 1. Consider system (1) with the following 

parameters: 

 

 

 

1 2

2

1 1

2 2

322 134 43.25 0 0
, , ,

150 300 0 54.25 0.1

00.01 0
0.1 0 , , ( , ) ,

0.6sin( )0 0.01

0.07
( , ) 0, , 0.1 0 ,

0.07

0.03
, 0.01 0.15 ,

0.03

A A B

C D f t x
x

g t x M N

M N



− − −     
= = =     

− −     

  
= = =   

   

 
= = = 

 

 
= = 

 

 

Observing that 

1 1( , ), 0.6 , TP f t x x x Px  

we have 
1 10.6 ,S P= then 0.6 .S XSX X= =  

Taking 1 1 2 30.01, 1.8, 0.1, 0.2, 0.1,c    = = = = = 3 ,fT s=  

1 2

1 0.2
0.7, 0.002, 0.001, 0.1, .

0.2 1
v v R 

 
= = = = =  

 
 

Using the Matlab LMI control toolbox, we solve (32)-(34) 

and obtain a set of feasible solutions as follows: 

 

1

445.9752 25.6030 0 0

25.6030 462.8791 0 0
,

0 0 445.9752 25.6030

0 0 25.6030 462.8791

561490 467570 ,

1.6493 0.0755 0.2227 0.0069

0.0755 1.4901 0.0069 0.2566

0.2227 0.0069 1.6458 0.1158

0.0069 0.2566 0

− 
 
−

 =
 −
 

− 

= − −

− −

− −
=

− −

− −

X

Y

Q

2

1

,

.1158 1.6517

0.1478 0.0052 0.0128 0.0016

0.0052 0.1434 0.0016 0.0080
,

0.0128 0.0016 0.1458 0.0001

0.0016 0.0080 0.0001 0.1499

431420
ˆ, 445.9752.

119580

 
 
 
 
 
 

− 
 

−
 =
 − −
 
− − 

− 
= = 

− 

Q

G X

 

The observer gain and state feedback controller gain can be 

given by 

  2

967.3567
1321.2 1083.2 , , 47.4192.

268.1263

− 
= − − = = 

− 
K L c  

We assume the disturbance input 5( ) 0.8 0 .
T

tw t e− =   Fig.1 

shows the closed-loop system state. Fig.2 shows the time 

history of ( ) ( )Tx t Rx t . From these figures, it is easy to see



CONTROL ENGINEERING AND APPLIED INFORMATICS                       11 

 

     

 

that the closed-loop system is finite-time bounded via the 

obtained observer-based controllers. 

 

Fig. 1.  The trajectories of 
1( )x t  and 

2 ( )x t  in Example 1. 

 

Fig. 2.  Time histories of ( ) ( )Tx t Rx t  during the finite-time in

terval 0, fT   in Example 1. 

Example 2. Consider system (1) with 1 2( ) 0, ( ) 0A t A t =  =  

and the following parameters: 

     

 

1 2

1 2 3

2

120 14 34.25 0 0
, , ,

15 70 0 24.25 0.1

0 0.1 , 0 0.1 , 0 0 , ( , ) 0,

00.01 0
0.1 0 , , ( , ) .

0.6sin( )0 0.01

A A B

H H H g t x

C D f t x
x



− − −     
= = =     

− − −     

= = = =

  
= = =   

   

 

We have 1 10.6 ,S P= then 0.6 .S XSX X= =  

Taking 1 1 20.01, 1.6, 0.1, 0.2,c   = = = =  

3

1 0.2
0.1, 0.7, 0.4, 0.1, , 2 .

0.2 1

 
= = = = = = 

 
fR T s     

Using the Matlab LMI control toolbox, we solve (40), (33) 

and (34) and obtain a set of feasible solutions as follows: 

 

5.5785 0.5706 0 0

0.5706 11.3220 0 0
,

0 0 5.5785 0.5706

0 0 0.5706 11.3220

726.5204 710.0484 ,

X

Y

− 
 
−

 =
 −
 

− 

= − −

 

1

2

0.0876 0.0098 0.0233 0.0019

0.0098 0.1881 0.0019 0.0500
,

0.0233 0.0019 0.1267 0.0013

0.0019 0.0500 0.0013 0.2228

75.7052 0.0365 25.2437 0.0285

0.0365 75.7227 0.0285 25.2462

25.2437 0.0285 62.9374 0.0350

0.028

Q

Q

 
 
 =
 −
 

− 

=

1

,

5 25.2462 0.0350 62.9663

1942.7
ˆ, 5.5785, 295.4756.

1471.4
G X 

 
 
 
 
 
 

 
= = = 

− 

 

According to Corollary 2, the system (11) is FTB with 

respect to 1 2( , , , , )fc c T R  and satisfies the cost function (13)  

with γ = 21.7431. The observer gain and state feedback 

controller gain can be given by 

 

8

2

137.3588 69.6367 ,

348.2505
10 , 43.5474.

263.7622

K

L c

= − −

 
= = 

− 

  

We assume the disturbance input 5( ) 0.8 0 .
T

tw t e− =   Fig.3 

shows  the  closed-loop  system state.  Fig.4  shows  the  time 

history of ( ) ( )Tx t Rx t . From these figures, it is easy to see 

that the closed-loop system is finite-time bounded via the 

obtained observer-based controllers. 

 

Fig. 3.  State trajectories of the closed-loop system in 

Example 2. 
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Fig. 4. Time histories of ( ) ( )Tx t Rx t  during the finite-time 

interval 0, fT    in Example 2. 

5. CONCLUSION 

In this paper, we investigated the finite-time bounded 

observer-based control problem for a class of continuous-

time nonlinear systems with time-varying delay, time-varying 

norm-bounded parameter uncertainties and admissible 

external disturbances. The nonlinearities are assumed to 

satisfy the quasi-one-sided Lipschitz nonlinear constraint 

conditions. Some sufficient conditions for the finite-time 

bounded of the resulted closed-loop system are developed. 

On this basis, robust observer-based controller synthesis 

strategy under parametric uncertainties is proposed. 

Illustrative examples are given to illustrate the effectiveness 

and applicability of the proposed design method. 
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