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Abstract: In this article, a comprehensive analysis of the Thermal Control System (TCS) with time-

invariant communication delays is presented. The first method, a precise approach, taking an account of 

Gain and Phase margin (GM &PM) is introduced to determine the stable/delay margin based on TCS 

parameters. The technique implements a deletion process to change the Transcendental Characteristic 

Equation (TCE) into a novel polynomial root of the crossing frequency in a complex plane. The positive 

or real roots of the polynomial equation are rightly equivalent to completely complex roots of the original 

system characteristic equation. The second technique, a graphical approach, is executed to resolve the 

stability province of controlled parameters for a given delay. The technique is fundamentally an extracting 

stable province and Stability Frontier Line (SFL) in the control parameter space having user-evident gain 

& phase margin (GMPM). The extensive simulation analysis shows that the proposed techniques give an 

optimized performance of a thermal control system with time-invariant communication delays. 

Keywords: Delay-dependent stability, thermal control system, time-invariant delay, gain margin and phase 

margin, stability region. 

 

1. INTRODUCTION 

The heat exchanger is a mechanical device which allows an 

exchange/transfer of the thermal energy from one medium (a 

liquid or gas) to another medium (liquid or gas) without 

coming into direct contact (Ramesh et al., 2003). However, 

heat exchangers are not only applicable to heating the medium, 

but are also used for cooling purposes (Ramesh et al., 2003; 

Donald, 2009). Heat-exchangers are widely used in various 

locations, generally working to heat or cool engines and 

machines to work with considerable efficiency. Different 

categories of heat exchangers can be classified based on their 

applications. They are (a) shell & tube heat-exchanger, (b) 

plate heat-exchanger, (c) plate& shell heat-exchanger, (d) 

Helical-coil heat-exchanger, (e) pillow plate heat exchanger, 

(f) Adiabatic wheel heat exchanger, (g) Plate fin heat-

exchanger, (h) Spiral heat exchanger, (i) fluid heat exchanger, 

(j) waste heat recovery units. A shell & tube heat-exchanger is 

the most common type of unit the name of which is derived 

from construction (Sarabeevi and LailaBeebi, 2016). The heat 

exchanger device is very essential in industries such as (1) 

marine applications (Propulsion Plant (PP), Starting Air 

System (SAS), Fuel Injection System (FIS), Refrigeration 

System (RS), A.C system, fresh water system, and steam 

turbine unit), (2) Electrical applications (solar water heating, 

transformer oil cooler, generators and motors coolers, Air blast 

cooler for application HVDC, radiating cooler, nuclear power 

plant, thermal power plant, process air heat batteries), (3) 

bioprocess applications (heating or cooling of liquid foods, 

freezing & evaporation of fluids for the making of ice creams, 

sorbet and fruit based Juices) (Padmakshi et al., 2014), (4) 

medical applications (In this era, high-technology medical 

apparatus are required to be more effective for controlling the 

temperature. As an alternative to increasing the heat load, 

Original Equipment Manufacturers (OEMs) prefer liquid 

cooling to heat loads for medical lasers, imaging equipment.  

Recirculation chillers, cold plates, ambient cooling systems, 

liquid to liquid cooling systems are the cooling techniques 

used in medical systems, Cardioplegia apparatus), (5) Heat 

exchanger applications are found not only in the above said 

areas but also in pharmaceutical industry, alcohol production, 

metallurgical process, petroleum refinery process and 

biochemical processing. The mission of network based 

Thermal Control System (TCS) is to get the value of sensor 

measurement from the shell & tube heat exchanger and control 

signal/information from a controller, to terminate and to 

implement obligatory control measures for adjusting the outlet 

temperature (Venkatachalam et al., 2017). The TCS needs a 

dedicated network for communication to obtain measured data 

and to transmit signals from the outlet of the heat exchanger 

unit to the controller; as a consequence, delays get introduced 

in the feedback loop (Venkatachalam et al., 2017; Manikandan  
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Fig. 1. Closed loop TCS with GMPMT. 

 

and Kokil, 2017; Ana Paula Batista et al., 2014).   

The interconnected closed-loop schematics of TCS contain a 

valve, controller, Heat Exchanger, and a sensor with delays 

𝜏1 and  𝜏2 as shown in Fig.1. The 𝜏1 indicates the feed forward 

path time-delay, i.e. the delay between Gain margin/Phase 

Margin Tester (GMPMT) and valve. The  𝜏2  indicates the 

feedback path time-delay, i.e., the delay between the sensor 

and the Proportional-Integral (PI) controller. Thus, the time 

delays are normally not taken into account when designing the 

controller; however, these time delays occur in the closed-loop 

TCS when the PI-controller is integrated into the real-time 

system. Although these delays are not known for their 

characteristics, they are commonly approximated to be time-

invariant; they can be merged into a single factor of delay 𝜏 =
𝜏1 + 𝜏2 . This paper works to quantify all stabilizing 

parameters of the PI controller which guarantee the desired 

dynamic TCS output with user-defined GMPMT. The solution 

is based on the locus of the stability limit: locus in the system 

theory means a set of points whose location is determined by 

specified conditions (e.g. root locus) which can be easily 

accomplished by equating the real and imaginary components 

of the characteristic equation with zero. For the synthesis of 

PI-controller and delayed TCS, the proposed approach has 

been effectively implemented. In inclusion to stability analysis, 

other relative stability specifications, performance such as 

GMPMT that gives assurance of desired performance is also 

considered in a delay margin computation process.  The effect 

on the stability area of the user-defined GMPMT is evaluated. 

The stability zone has been shown to become smaller as the 

GMPMT increases. 

2. TIME-DELAYED MODEL OF TCS 

The linear state-space model of TCS is used to analyze the 

performance and to design a controller (Venkatachalam et al., 

2017; Chhaya et al., 2011).  Fig.1 represents the closed loop 

thermal control system with network-induced delay with 

GMPMT. The user described GMPMT as a ‘virtual 

compensator’ is incorporated to TCS in the feed forward path 

as depicted in Fig.1. The GMPMT is frequency independent 

as represented below (Sahin and Saffet, 2016a,b; 

Ramakrishnan and Swarnalakshmi, 2018; Sahin  and Saffet, 

2019; Sahin and Saffet, 2017; Hakan et al., 2017). 

 

𝐶(𝐴, ∅) = 𝐴𝑒−𝑗∅                                                                      (1) 

where 𝐴  and ∅  are marked as (GMPM), respectively. The 

original characteristic equation of the thermal control system 

without a GMPMT is first received (Sahin and Saffet, 2019; 

Chang and Han, 1990; Hamamci and Koksal, 2010; Olgac and 

Sipahi, 2002).  

∆(𝑠, 𝜏) = 𝑃(𝑠) + 𝑄(𝑠)𝑒−𝑠𝜏 = 0                                             (2) 

where, the coefficients of 𝑃(𝑠) and 𝑄(𝑠)are: 

𝑃(𝑠) = 𝑝3𝑠4 + 𝑝2𝑠3 + 𝑝1𝑠2 + 𝑝0𝑠1

𝑄(𝑠) = 𝑞1𝑠 + 𝑞0
}                                   (3) 

with 

𝑝3 = 𝑇𝑉𝑇𝐻𝑇𝐹;     𝑝2 = 𝑇𝑉𝑇𝐹 + 𝑇𝑉𝑇𝐻 + 𝑇𝐻𝑇𝐹; 

𝑝1 = 𝑇𝑉 + 𝑇𝐹 + 𝑇𝐻;       𝑝0 = 1; 

𝑞1 = 𝐾𝑃𝐾𝑉𝐾𝐹𝐾𝐻;    𝑞0 = 𝐾𝐼𝐾𝑉𝐾𝐹𝐾𝐻; 

The new polynomial equation (1) of the modified TCS with 

GMPMT depicted in Fig. 1 is then obtained (V. 

Venkatachalam et al., 2019; V.Venkatachalam &D. 

Prabhakaran.,2018). 

∆(𝑠, 𝜏′) = 𝑃′(𝑆) + 𝑄′(𝑆)𝑒−𝑠𝜏′
= 0                                   (4) 

Where 

𝑃(𝑠) = 𝑃′(𝑠) = 𝑝3𝑠4 + 𝑝2𝑠3 + 𝑝1𝑠2 + 𝑝0𝑠1

𝑄′(𝑠) = 𝐴𝑄(𝑠) = 𝐴𝑞1𝑠 + 𝐴𝑞0 = 𝑞1
′ 𝑠 + 𝑞0

′
}                          (5) 

An exponential term in equation (4) is 𝑒−𝑠𝜏′
instead of 𝑒−𝑠𝜏 as 

in equation (4). It will be obtained by adding 𝑒−𝑠𝜏& 𝑒−𝑗∅ into 

a single form for 𝑠 = 𝑗𝜔𝑐 that is polynomial roots (4) on the s 

- plane. The correlation between 𝜏′ and 𝜏 is shown below 

𝜏′ = 𝜏 +
∅

𝜔𝑐
                                                                               (6) 

In equation (6), 𝜏′ represents the stable margin of the modified 

TCS with GMPMT and 𝜏 represents the time-invariant delay 

for which the TCS without GMPMT (Sahin and Saffet, 2019; 

Chang and Han, 1990; Hamamci and Koksal, 2010; Olgac and 

Sipahi, 2002; Venkatachalam et al., 2019). 
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3. COMPUTATION OF DELAY MARGIN WITH 

GMPMT 

It should be stressed that the maximum value of delay can be 

found using equation (4) of modified TCS roots on the 𝑗𝜔 axis, 

(Chang and Han, 1990; Hamamci and Koksal, 2010). 

Therefore, the purely 𝑗𝜔 roots of the modified TCS equation 

at 𝑠 = ±𝑗𝜔𝑐 and the corresponding value of maximum 𝜏′ have 

to be determined. Then applying these values, the delay margin 

for the original TCS gain (𝐴) & phase (∅)could be simply 

obtained (Chang and Han,1990; Hamamci and Koksal, 2010). 

The stability of GMPM based thermal control system is 

evaluated by the location of the modified system characteristic 

equation roots as given in (4). For a system to be 

asymptotically stable all roots must be in the left half of s-plane 

for a stated maximum time-invariant delay. Note that (4) is a 

Transcendental Characteristic Equation (TCE) due to 

term 𝑒−𝑗𝜔𝑐𝜏′
. As a consequence of transcendental character, 

the modified equation (4) has infinitely much finite value of 

roots and to be quite difficult for the determination of the roots. 

Nevertheless, the main task is to obtain the maximum delay 

value for which the GMPM based Characteristic Equation (CE) 

roots on 𝑗𝜔 axis. Let consider that   ∆  ( 𝑗𝜔𝑐 ,  𝜏′ ) = 0 has 

polynomial roots located on the line of the imaginary axis 

at 𝑠 = 𝑗𝜔𝑐, for some limited values of 𝜏′ and same for the ∆ 
(−𝑗𝜔𝑐, 𝜏′) = 0. As a consequence, the problem of determining 

the delay margin 𝜏′  such that both  ∆ (𝑗𝜔𝑐 , 𝜏′) = 0  and  ∆ 
(−𝑗𝜔𝑐, 𝜏′) = 0  have the same value of roots at 𝑠 = 𝑗𝜔𝑐  (Sahin 

and Saffet, 2017; Hakan et al., 2017; Chhaya et al., 2011; 

Sahin and Saffet, 2016). These results could be stated as 

𝑃′(𝑗𝜔𝑐) + 𝑄′(𝑗𝜔𝑐)𝑒−𝑗𝜔𝑐𝜏′
= 0

𝑃′(−𝑗𝜔𝑐) + 𝑄′(−𝑗𝜔𝑐)𝑒𝑗𝜔𝑐𝜏′
= 0

}                                       (7) 

In (7), the two equations are possibly one could remove 

effortlessly 𝑒−𝑗𝜔𝑐𝜏′
and 𝑒𝑗𝜔𝑐𝜏′

 terms, to obtain a modified new 

polynomial equation without any transcendental terms as 

follows 

𝑊(𝜔𝑐
2) = 𝑃(𝑗𝜔𝑐)𝑃(−𝑗𝜔𝑐) − 𝑄(𝑗𝜔𝑐)𝑄(−𝑗𝜔𝑐) = 0           (8) 

By substituting the 𝑃′(𝑠) and 𝑄′(𝑠) polynomials given in (5) 

into (7), the new polynomial equation of the modified thermal 

control system with GMPMT is determined in terms of system 

parameters as given below  

𝑊(𝜔𝑐
2) = 𝑡4𝜔𝑐

8 + 𝑡3𝜔𝑐
6 + 𝑡2𝜔𝑐

4 + 𝑡1𝜔𝑐
2 + 𝑡0 = 0                 (9) 

where 

𝑡4 = 𝑝3
2;    𝑡3 = 𝑝2

2 − 2𝑝3𝑝1;   𝑡2 = 𝑝1
2 − 2𝑝2𝑝0;  𝑡1 = 𝑝0

2 −

𝑞1
′ 2

;  𝑡0 = −𝑞0
′ 2

; 

It clearly shows, that any approximation to the deletion process 

of the exponential terms is not be used. Therefore, real positive 

roots in (9) exactly coincide with the imaginary roots in (4).  

Based on the positive roots in (9), there are two possible 

categories of stability as described below:  

1. Equation (9) does not have any real positive root of all 

finite value of delay 𝜏′ ≥ 0, so the GMPM based thermal 

control system is said to be delay-independent stable,  

indicating that all the roots of original characteristic 

equation (4) lie in the left of the s-plane (Sahin and Saffet, 

2019). 

2. If equation (9) has at least one real positive root, then the 

GMPM based thermal control system is said to be delay-

dependent stable. In the presence, some roots in equation 

(4) transverse the 𝑗𝜔 −axis at 𝑠 = 𝑗𝜔𝑐 for a finite value of 

communication delay 𝜏′, is called the stable delay margin 

(Sahin and Saffet, 2019). 

If the real positive root in equation (9) is found, the 

corresponding delay margin of GMPM based thermal control 

system is obtained by using equation (4) as given below (Sahin 

and Saffet, 2019; Chang and Han, 1990, Hamamci and Koksal, 

2010; Olgac and Sipahi, 2002; Venkatachalam et al., 2019). 

∆(𝑗𝜔𝑐 , 𝜏′) = 𝑃′(𝑗𝜔𝑐) + 𝑄′(𝑗𝜔𝑐)𝑒−𝑗𝜔𝑐𝜏′
= 0 

  𝑒−𝑗𝜔𝑐𝜏′
= cos(𝜔𝑐𝜏′) − 𝑗𝑠𝑖 𝑛(𝜔𝑐𝜏′) = −

𝑃′(𝑗𝜔𝑐)

𝑄′(𝑗𝜔𝑐)
              (10) 

cos(𝜔𝑐𝜏′) = 𝑅𝑒 {−
𝑃′(𝑗𝜔𝑐)

𝑄′(𝑗𝜔𝑐)
};   

𝑠𝑖 𝑛(𝜔𝑐𝜏′) = 𝐼𝑚 {
𝑃′(𝑗𝜔𝑐)

𝑄′(𝑗𝜔𝑐)
} 

𝜏′ =
1

𝜔𝑐
𝑇𝑎𝑛−1 (

𝐼𝑚{𝑃(𝑗𝜔𝑐)/𝑄(𝑗𝜔𝑐)}

𝑅𝑒{−𝑃(𝑗𝜔𝑐)/𝑄(𝑗𝜔𝑐)}
) +

2𝜋𝑟

𝜔𝑐
;                        (11) 

𝜏 ′ =
1

𝜔𝑐
𝑇𝑎𝑛−1 (

𝑎5𝜔𝑐
5+𝑎3𝜔𝑐

3+𝑎1𝜔𝑐
1

𝑎4𝜔𝑐
4+𝑎2𝜔𝑐

2+𝑎0𝜔𝑐
0) +

2𝜋𝑟

𝜔𝑐
;                           (12) 

𝑟 = 0,1,2, … , ∞ 

where the respective coefficients are given below: 

𝑎0 = 0 ; 𝑎1 = −𝑝0𝑞0
′ ; 𝑎2 = 𝑝0𝑞1

′ − 𝑝1𝑞0
′ ; 𝑎3 = 𝑝2𝑞0

′ −
𝑞1

′ ;  𝑎4 = 𝑝3𝑞0
′ − 𝑝2𝑞1;  𝑎5 = 𝑝3 

It should be clearly expressed that the modified new 

polynomial equation given in (9) may have more than one real 

positive root whose set is given by 

{𝜔𝑐} = {𝜔𝑐1, 𝜔𝑐2 , … , 𝜔𝑐𝑞}                                                  (13) 

To determine the corresponding value of delay by employing 

(12) for each positive root 𝜔𝑐𝑚 , 𝑚 = 1,2, … , 𝑞.  These values 

of maximum delay will be set of delay margins which are 

interval spaced and defined as shown in the repeated period. 

{𝜏𝑚
′ } = {𝜏𝑚1

′ , 𝜏𝑚2
′ , … , 𝜏𝑚∞

′ }, 𝑚 = 1,2, … , 𝑞                       (14) 

where 

𝜏𝑚,𝑟+1
′ − 𝜏𝑚,𝑟

′ =
2𝜋

𝜔𝑐
                                                             (15) 

Eventually, the minimum of 𝜏𝑚
′ , 𝑚 = 1,2, … , 𝑞 is stable delay 

of the GMPM based TCS. 

τ′ = 𝑚𝑖𝑛(𝜏𝑚
′ )                                                                      (16) 

3. The GMPM based TCS, it could easily obtain the time-delay 

of TCS without GMPM will have the desired gain margin and 

phase margin as follows (Sahin and Saffet, 2019). 

𝜏 = 𝜏′ −
∅

𝜔𝑐
                                                                         (17) 

 



CONTROL ENGINEERING AND APPLIED INFORMATICS                       27   

4. DETERMINATION OF STABILIZING REGION 

WITH GMPMT 

To determine the stable frontier line for a given constant delay 

𝜏′ and desired GMPMT, substitute 𝑠 = 𝑗𝜔𝑐 with 𝜔𝑐 > 0 into 

the modified characteristic equation (4). 

∆(𝑗𝜔𝑐 , 𝜏′) = 𝑝3(𝑗𝜔𝑐)4 + 𝑝2(𝑗𝜔𝑐)3 + 𝑝1(𝑗𝜔𝑐)2 + 𝑝0𝑗𝜔𝑐 +

(𝑞1
′ 𝑗𝜔𝑐 + 𝑞0

′ )𝑒−(𝑗𝜔𝑐)𝜏′
= 0                                                 (18) 

Substituting 𝑒−𝑗𝜔𝑐𝜏′
= cos(𝜔𝑐𝜏′) − 𝑗𝑠𝑖 𝑛(𝜔𝑐𝜏′)into equation 

(18) and dividing by (𝐾𝑃 ,  𝐾𝐼)controller gainsthe following 

equation is obtained (Olgac N & Sipahi R.,2002;V. 

Venkatachalam  et al., 2019): 

∆(𝑗𝜔𝑐 , 𝜏′) = 𝑝3𝜔𝑐
4 − 𝑗𝑝2𝜔𝑐

3 − 𝑝1𝜔𝑐
2+𝑝0𝑗𝜔𝑐

+ 𝑗𝑞1
′ 𝜔𝑐 cos(𝜔𝑐𝜏′) + 𝑞1

′ 𝜔𝑐 sin(𝜔𝑐𝜏′)
+ 𝑞0

′ cos(𝜔𝑐𝜏′) − 𝑗𝑞0
′ sin(𝜔𝑐𝜏′) 

    ∆(𝑗𝜔𝑐 , 𝜏′) = [𝑝3𝜔𝑐
4 − 𝑝1𝜔𝑐

2 + 𝑞1
′ 𝜔𝑐 sin(𝜔𝑐𝜏′) +

            𝑞0
′ cos(𝜔𝑐𝜏′)] + 𝑗[−𝑝2𝜔𝑐

3+𝑝0𝜔𝑐 + 𝑞1
′ 𝜔𝑐 cos(𝜔𝑐𝜏′) −

             𝑞0
′ sin(𝜔𝑐𝜏′)]                                                           (19)                                                             

Equating the real and the imaginary parts of  ∆ (−𝑗𝜔𝑐, 𝜏′) = 0 

the following equation is obtained. 

𝐾𝑃𝐴1(𝜔𝑐) + 𝐾𝐼𝐵1(𝜔𝑐) + 𝐶1(𝜔𝑐) = 0

𝐾𝑃𝐴2(𝜔𝑐) + 𝐾𝐼𝐵2(𝜔𝑐) + 𝐶2(𝜔𝑐) = 0
}                             (20) 

where 

𝐴1(𝜔𝑐) = 𝑞1
′ 𝜔𝑐 sin(𝜔𝑐𝜏′) ; 𝐵1(𝜔𝑐) = 𝑞0

′ cos(𝜔𝑐𝜏′) ;  𝐶1(𝜔𝑐)
= 𝑝3𝜔𝑐

4 − 𝑝1𝜔𝑐
2 

𝐴2(𝜔𝑐) = 𝑞1
′ 𝜔𝑐 cos(𝜔𝑐𝜏′) ;  𝐵2(𝜔𝑐)

= −𝑞0
′ sin(𝜔𝑐𝜏′) ;  𝐶2(𝜔𝑐)

= −𝑝2𝜔𝑐
3+𝑝0𝜔𝑐 

To solve the equation (20) and to identify stable frontier locus 
(𝐾𝑃 , 𝐾𝐼 , 𝜔𝑐) on (𝐾𝑃 , 𝐾𝐼)plane. 

𝐾𝑃 =
𝐵1(𝜔𝑐)𝐶2(𝜔𝑐)−𝐵2(𝜔𝑐)𝐶1(𝜔𝑐)

𝐴1(𝜔𝑐)𝐵2(𝜔𝑐)−𝐴2(𝜔𝑐)𝐵1(𝜔𝑐)

𝐾𝐼 =
𝐴2(𝜔𝑐)𝐶1(𝜔𝑐)−𝐴1(𝜔𝑐)𝐶2(𝜔𝑐)

𝐴1(𝜔𝑐)𝐵2(𝜔𝑐)−𝐴2(𝜔𝑐)𝐵1(𝜔𝑐)

                                           (21) 

It must be noted that the line (𝐾𝐼 = 0) is also in a frontier 

curve because a positive root of ∆(𝑗𝜔𝑐, 𝜏′) = 0 in (18) can 

cross the imaginary castle at  𝑠 = 𝑗𝜔𝑐 = 0  for  𝐾𝐼 = 0 

(Venkatachalam and Prabhakaran, 2018; Sahaj and Yogesh, 

2018; Saffet, 2008). As a result, the frontier locus(𝐾𝑃 , 𝐾𝐼 , 𝜔𝑐) 

and the line 𝐾𝐼 = 0 split (𝐾𝐼 , 𝐾𝑃)  plane into two territories 

which are unstable and stable. This area of the frontier locus is 

known as Real Root frontier (RRF) and also obtained in (21) 

and is described as Complex Root Frontier (CRF) of the 

stability regions (Sahin et al., 2016; Sahin et al., 2016; 

Olugbenga et al., 2017). That refers to the real root crossing 

over the imaginary axis at 𝑠 = ∞  and might be noticed 

depending on the delayed system characteristics equation. 

5. RESULTS AND DISCUSSIONS 
 

5.1 GMPM Based Delay Margin Computation 

In this division, the delay 𝜏′ for the stability of various sets of 

(𝐾𝐼 , 𝐾𝑃) and GMPMT is computed by using (12).  Theoretical 

values of the delay are verified by Linear Matrix Inequalities 

(LMI) tool in MATLAB/Simulink (V. Venkatachalam et al., 

2019). The parameters of TCS as given below (Venkatachalam 

et al., 2017; Venkatachalam and Prabhakaran, 2017; 

Venkatachalam and Prabhakaran, 2018). 

Table 1. Parameters values of TCS. 

System Gain Time-Constant 

Heat Exchanger 𝐾𝐻 = 34 𝑇𝐻 = 30 

Valve 𝐾𝑉 = 1.25 𝑇𝑉 = 3 

Sensor 𝐾𝐹 = 0.08 𝑇𝐹 = 2 

Table 2. Maximum value of delay 𝜏 ′  when 𝑨 is varying 

𝑲𝑰 

𝐴 = 0.5;   ∅ = 0° 

𝑲𝑷 = 𝟎. 𝟓 𝑲𝑷 = 𝟏. 𝟎 𝑲𝑷 = 𝟏. 𝟓 𝑲𝑷 = 𝟐. 𝟎 
𝑲𝑷

= 𝟐. 𝟓 
𝑲𝑷 = 𝟑. 𝟎 

0.02 42.3595 30.6206 18.8219 12.7610 9.3543 7.2192 

0.04 20.2379 20.5495 15.7720 11.5785 8.7669 6.8760 

0.06 12.3346 14.6560 13.0438 10.3769 8.1565 6.5200 

0.08 8.2501 10.9378 10.7937 9.2267 7.5419 6.1567 

0.10 5.7525 8.4044 8.9780 8.1664 6.9385 5.7917 

𝑲𝑰 𝐴 = 1;   ∅ = 0° 

0.02 20.5495 11.5785 6.8760 4.5766 3.2630 2.4252 

0.04 10.9378 9.2267 6.1567 4.2533 3.0816 2.3092 

0.06 6.5747 7.2104 5.4294 3.9208 2.8958 2.1909 

0.08 4.1169 5.6017 4.7283 3.5858 2.7072 2.0710 

0.10 5.2470 4.3355 4.0745 3.2540 2.5175 1.9500 

𝐾𝐼  𝐴 = 2;   ∅ = 0° 

0.02 9.2267 4.2533 2.3092 1.3704 0.8591 0.4806 

0.04 5.6017 3.5858 2.0710 1.2490 0.7550 0.4304 

0.06 3.3311 2.9304 1.8284 1.1257 0.6800 0.3796 

0.08 1.8620 2.3202 1.5859 1.0014 0.6045 0.3286 

0.10 0.8534 1.7709 1.3470 0.8768 0.5285 0.2773 

𝐾𝐼  𝐴 = 3;   ∅ = 0° 
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0.02 6.9385 2.9891 1.5201 0.8106 0.4009 0.1371 

0.04 4.3571 2.5175 1.3430 0.7176 0.3430 0.0973 

0.06 2.5707 2.0483 1.1632 0.6234 0.2846 0.0572 

0.08 1.3487 1.6006 0.9830 0.5285 0.2258 0.0170 

0.10 0.4827 1.1858 0.8045 0.4335 0.1608 * 

Table 3. Maximum value of delay 𝜏 ′when 𝑨 and ∅ is varying 

𝐾𝐼  
𝐴 = 0.5;   ∅ = 5° 

𝐾𝑃 = 0.5 𝐾𝑃 = 1.0 𝐾𝑃 = 1.5 𝐾𝑃 = 2.0 𝐾𝑃 = 2.5 𝐾𝑃 = 3.0 

0.02 39.5693 28.8741 17.6766 11.9007 8.6541 6.6211 

0.04 18.3234 19.0543 14.6734 10.7296 8.0705 6.2794 

0.06 10.7836 13.3411 12.0015 9.5449 7.4661 5.9259 

0.08 6.6099 9.7527 9.8066 8.4147 6.8592 5.5669 

0.10 4.5539 7.3171 8.0414 7.3760 6.2649 5.2051 

𝐾𝐼  𝐴 = 0.5;   ∅ = 10° 

0.02 36.7790 27.1275 16.5312 11.0404 7.9540 6.0229 

0.04 16.4089 17.5591 13.5747 9.8807 7.3742 5.6829 

0.06 9.2326 12.0263 10.9591 8.7128 6.7757 5.3319 

0.08 5.5697 8.5677 8.8195 7.6027 6.1765 4.9754 

0.10 3.3553 6.2298 7.1048 6.5855 5.5913 4.6186 

𝐾𝐼  𝐴 = 1;   ∅ = 5° 

0.02 19.0543 10.7296 6.2794 4.1014 2.8588 2.0680 

0.04 9.7527 8.4147 5.5661 3.7797 2.6780 1.9521 

0.06 5.5640 6.4417 4.8477 3.4497 2.4931 1.8343 

0.08 3.2195 4.8748 4.1576 3.1180 2.3058 1.7150 

0.10 1.7305 3.6461 3.5159 2.7903 2.1178 1.5947 

𝐾𝐼  𝐴 = 1;   ∅ = 10° 

0.02 17.5591 9.8807 5.6829 3.6262 2.4547 1.7107 

0.04 8.5677 7.6027 4.9754 3.3060 2.2744 1.5951 

0.06 4.5533 5.6731 4.2660 2.9786 2.0905 1.4777 

0.08 2.3222 4.1479 3.5869 2.6503 1.9045 1.3590 

0.10 0.9140 2.9567 2.9573 2.3267 1.7187 1.2395 

𝐾𝐼  𝐴 = 2;   ∅ = 5° 

0.02 8.4147 3.7797 1.9521 1.0720 0.5666 0.2429 

0.04 4.8748 3.1180 1.7150 0.9509 0.4926 0.1927 

0.06 2.6747 2.4713 1.4741 0.8281 0.4179 0.1421 

0.08 1.2599 1.8715 1.2338 0.7045 0.3426 0.0912 

0.10 0.2936 1.3332 0.9976 0.5807 0.2671 0.0401 

𝐾𝐼  𝐴 = 2;   ∅ = 10° 

0.02 7.6027 3.3060 1.5651 0.7736 0.3041 0.0052 

0.04 4.1479 2.6503 1.3590 0.6528 0.2303 * 

0.06 2.0182 2.0122 1.1198 0.5305 0.1558 * 

0.08 0.6577 1.4228 0.8816 0.4076 0.0808 * 

0.10 * 0.8955 0.6481 0.2847 0.0056 * 

Delay margin that assures the desired GMPM is computed by 

using (12) to (17) for a various sets of control parameter and 

for various GMPM. Table 2 provides a delay margin for 𝐴 =
1 and   ∅ = 0°.  Corresponds to this case, the conventional 

method of delay margin analysis, where the GM & PMs are 

not included. Therefore ,  𝜏′ = 𝜏  since ∅ = 0° as shown in (5). 

From the result at a fixed value of  𝐾𝑃  , 𝜏′decreases as 𝐾𝐼  

increases. As 𝐾𝐼  increases, the system response would be less 

stable. Note that a fixed  𝐾𝐼  and 𝜏′  decrease for every  𝐾𝑃 . 

However, 𝜏′ is increases when 𝐾𝑃  is (0-0.5) in range and 𝜏′ 

decreases when the 𝐾𝑃 lies in the range of (0.5 - 8.50) and for 

a fixed value of 𝐾𝐼 = 0.02. Next, the GMPM is selected as 

A=0.5;   =   A=1;   = ; A=2;   =   A=3;   =  to 

analyze the effect of GM alone on the stable delay margin. The 

related results are depicted in Table 2. It is obvious from the 

Table 2 that the addition of GM notably delay margin has 

reduced for all values of control parameter as tabulated (Table 

2). The reduction in delay results in significant increases of 

gain margin 𝐴. In graphical representation effects of GM with 

various values of PM are depicted in Fig. 2. From Fig. 2, it is 

very easy to infer the power of time-delay on the stability of 

TCS (Venkatachalam et al., 2017; Hernández-Pérez et al., 

2018) and Fig. 3 vice versa.  

The effect of PM (∅) is also analyzed in Table 3 which gives 

the results of A=0.5;  =  A=0.5;  = ;  A=1; 
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 =   A=1;   =   A=2;   =   A=2;    = . 

Similar to the GM (𝐴) case, the analytical results clearly bring 

out that the maximum delay margin reduces as for all 
(𝐾𝑃  𝑎𝑛𝑑 𝐾𝐼)  control parameters when the PM (∅)  is 

considered. The reduction in delay is less than that of the GM 

case as tabulated (Table 3). Finally, both GMPMs are 

incorporated in the analytical computation of delay margin. 

The maximum delay margin for various values of GMPMs 

with  𝐾𝑃 = 0.5; 𝐾𝐼 = 0.02 . It clearly indicates that the 

integrated effect of GMPM on maximum delay is more 

noticeable than their separate impacts as shown in Fig 4. 

Simulation results presented to demonstrate the causes of 

GMPM should be considered in the computations of delay 

margin. Fig. 5 shows the step response of thermal system for 

A=1;  = A=1;  = ;A=2;  =  From the Table 2, it 

can be observed that stable delay is found to be 𝜏 = 4.2533, 
when the control parameters are   𝐾𝑝 = 2.0, 𝐾𝐼 = 0.04. 

 

Fig. 2. Deviation of Network Delay versus Gain Margin. 

 

Fig. 3. Delay margin for various values of Phase Margin 

(PM). 

 

Fig. 4. Delay margin for various values of GMPMT with 

𝐾𝑝 = 0.5; 𝐾𝐼 = 0.02. 

 

Fig. 5. Damping effect of GMPMT to the thermal control 

system. 

 

Fig. 6. Stability Region for various values of GMPMT. 
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Fig. 7a. Stability region for without considering GMPMT. 

 

Fig. 7b. Stability region for without considering GMPMT. 

As seen in Fig. 5, TCS shows the sustained oscillations for the 

maximum delay value. However, such sustained oscillations 

in the output response are not considerable for operational 

overview. To reduce such an unpleasant oscillation, it has to 

refer GMPM in computation process.  As can be found in 

Table 3, delay bound based on GMPM is computed as 𝜏 =
3.3060  for 𝐴 = 1;  ∅ = 10°  and 𝜏 = 0.6528  for 𝐴 = 2;  ∅ =
20°. As compared with 𝐴 = 1;  ∅ = 0°, it is seen clearly from 

Fig. 5 that the output response quickly shrinks for 𝜏 = 0.6528 

when 𝐴 = 2;  ∅ = 20°  is examined. These results clearly 

indicate that GMPM must be incorporated into a computation 

process to need better dynamic response of TCS. 

5.2 Stability Regions Based on GMPM 

The networked-delay is elected as 𝜏 = 5 𝑠𝑒𝑐𝑠  and crossing 

frequency 𝜔𝑐  range is elected as 𝜔 ∈ [0, 5]  for Stability 

Frontier Locus (SFL). The first task is to analyze the stability 

values of controller gains 𝐾𝑃  and 𝐾𝐼  such that modified 

characteristic equation (4) with (5) should be Hurwitz stable 

with GMPM. Suppose the desired GMPMs are 𝐴 = 0.5, 1, 2, 3 

and ∅ = 0°, 5°, 10°, 20° respectively, then put 𝐴 = 3 and ∅ =
20°   in equation (19) to (21) and could obtain the SFL as 

shown in Fig. 6. The corresponding region is marked on 𝑅4. 

Consequently, by putting various gain and phase margins it is 

indicated as 𝑅1, 𝑅2, 𝑅3 respectively. Finally, the stable region 

of PI parameter without considering GMPM is obtained by 

putting 𝐴 = 1  and ∅ = 0° in equations (19) to (21). The 

stability region is represented in Fig.7a and 7b. It can be 

noticed that the relative stability curve with the desired 

GMPM, 𝑅2, 𝑅3, 𝑅4  is much smaller and 𝑅1  is much greater. 

Next, three points are selected, (𝐾𝑃 = 1; 𝐾𝐼 = 0.085) in 𝑅5 

(without considering GMPM case) (𝐾𝑃 = 1; 𝐾𝐼 = 0.07) 

in𝑅2, (𝐾𝑃 = 0.5; 𝐾𝐼 = 0.04)  in  𝑅3 , (𝐾𝑃 = 0.25; 𝐾𝐼 = 0.02) 

in 𝑅4 regions. Fig. 8 depicts the performance of the TCS. It is 

clearly seen that the output responses are stable.  Anyhow, the 

step functions for (𝐾𝑃 = 1; 𝐾𝐼 = 0.085)  carry undesirable 

performance compared with the other responses. From the 

controlling and operating point of view, such unpleasant 

deviations are not acceptable. It is obvious that the dynamic 

performance of TCS is rapid without oscillatory for control 

parameter (𝐾𝑝, 𝐾𝐼) elected from the regions 𝑅3, and 𝑅4  with 

desired GMPM. 

 

Fig. 8. Step response of TCS with GMPMT. 

6. CONCLUSION 

In this article, the networked-controlled TCS with delays has 

been investigated. The impact of GMPM on the stability 

margin of TCS is ascertained as an employed conventional 

TCE method. The delay almost takes places in the system 

feedback path owing to the uses of pneumatic valve, sensors, 

employment of data communication links for exchanges. The 

time-delay unchanged exerts an instability effect on the overall 

system performance. The implications of time delays on TCS 

stability can be obtained by employing the proposed criteria. 

The results drawn can be employed as guidelines for 

compilation control parameters for the networked TCS. 
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