
CEAI, Vol.23, No.2, pp. 3-13, 2021                                                                                                                   Printed in Romania 

An Improved Robust Distributed Model Predictive Control Based on Adaptive 
Feedback Weight 

 
Wu Tongyan*, Wang Liang*, Wan Jiangwen*, Li Yayu** 

 

* Beijing University of Aeronautics and Astronautics, Beijing,  
China (e-mail: zy1917301@buaa.edu.cn). 

** No. 704 Research Institute of China Shipbuilding Industry Corporation, Shanghai, China. 

Abstract: This paper proposes an improved distributed robust model predictive control algorithm based 
on adaptive feedback weight for the polyhedral uncertain system with input saturation. This strategy 
decomposes the system into several subsystems but retains independent states, and assigns robust model 
predictive controllers to these subsystems of which the control goals are global optimization. The feedbacks 
of these controllers are formulated with the subsystems’ independent states and the global state. In the 
presence of the control strategy, the weight changing the proportion of these states adaptively in the 
feedbacks can adjust the degree of coupling among the subsystems and hysteresis, so the subsystems 
transition from fast response to optimal stability. In a one-step iteration, the advanced strategy can not only 
make the steady-state value unaffected but also respond faster than the traditional distributed model 
predictive control algorithm. Finally, two simulation cases serve for study in the characteristics and 
advantages of this algorithm. 
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1. INTRODUCTION 

Model predictive control (MPC) is an important control 
strategy in complex control systems and play a significant role 
in industrial processes (Morato et al., 2020; Saltık et al., 2018). 
The existing body of research on MPC suggests that the MPC 
algorithm can not only address the issue of the polyhedral 
uncertain system but also solve the problem with input 
saturation (Oravec and Bakošová, 2015). And experts used the 
nominal system for algorithm optimization (Ding et al., 2007). 
Generally, the term ‘robust model predictive control (RMPC)’ 
is interpreted as the MPC for uncertain systems. Researches, 
such as that conducted by Cao (Cao and Lin, 2005), had shown 
that the design of the RMPC with input saturation is 
transformed into a linear matrix inequality (LMI) optimization 
problem by rewriting the input saturation function. Huang 
(Huang et al., 2011) chose the weight of feedback control to 
improve Cao’s algorithm. Wan (Wan and Kothare, 2003) and 
Ding (Ding et al., 2007) proposed the offline nominal system 
optimization to improve the speed of online computing. 
Oravec (Oravec and Bakošová, 2015) proposed a methodology 
for combining nominal system optimization and additional 
control input saturation, which was performed in the case 
study of the continuous stirred-tank reactor successfully. 

Although extensive research has been carried out on RMPC, 
the algorithm did not perform as stable and real-time as robust 
distributed model predictive control (RDMPC) on large-scale 
systems (Scattolini, 2009). Recently, RDMPC has received 
remarkable attention in the literature. The aim of RDMPC is 
to decompose an uncertain system into several subsystems. By 
designing RMPC strategy for each subsystem, researchers 
obtained the subsystems control inputs holding for the 

centralized system control input (Y. Zhang and Li, 2007). 
Wang studied the amount of information exchanged between 
subsystem controllers and classified the RDMPC algorithm 
(Wang and Wen, 2008). The subsystems controllers operating 
in a completely independent fashion is called decentralized 
control. Some information is transmitted among subsystem 
controllers. Hence these controllers can use the behaviour of 
others to make decisions, which is called distributed control. 
The distributed control can be divided into two types based on 
different optimization objectives (Scattolini, 2009; Y. Zhang 
and Li, 2007): Nash-based or cooperative RDMPC. The 
cooperative RDMPC, proposed by Gherwi (Al-Gherwi et al., 
2011), can solve subsystem optimization problems and 
achieved global optimization similar to RMPC. Zhang (L. 
Zhang et al., 2013) adopted the saturation-dependent 
Lyapunov function to reduced conservatism of the cooperative 
RDMPC. Shalmani (Shalmani et al., 2020) proposed an 
algorithm for an iterative Nash-based to achieve the overall 
optimal solution of the whole system in a partially distributed 
fashion. In order to deal with the problem of centralized target 
optimization under multiple constraints of subsystems, the 
researchers (Necoara et al., 2010) proposed a primal-dual 
decomposition method for solving convex optimization 
problems, which can increase the calculation speed. Besides, 
Gherwi (Al-Gherwi et al., 2013) used a closed-loop dual-mode 
approach to reduce the demanding computations of on-line. 
Such approaches, however, had failed to address the iteration 
problem. In view of the subsystem control solution, multiple 
iterations are required in each step of the control, so that the 
system performance can converge to that of the centralized 
RMPC. The insufficient iterative RDMPC algorithm account 
for performance degradation, and the control effectiveness is 
not as good as RMPC algorithm. Iterations can be reduced only 
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if computational error is acceptable. Some iterations of these 
algorithms were inevitable for the case of the negotiation 
among subsystems is non-real-time. Multiple iterations will 
make the RDMPC algorithm lose its real-time feature. 
Therefore, the major goal of this work is to get better 
performance in one-step iteration. 

This paper attempts to add some theories of RMPC and 
decentralized control to improve RDMPC algorithm. We 
preserve the full dimensional states of subsystems and assume 
that these states can be estimated from the partial states of the 
centralized system. The feedbacks of subsystems in our 
RDMPC are formed from the centralized system states and the 
subsystems’ states. The weights belonging to these states adapt 
themselves for optimal control effects over time. Besides, we 
simplify the algorithm by nominal system optimization. 
Finally, two simulation cases presented demonstrate our 
strategy, indicating that these improvements can achieve a 
satisfactory level of performance in one-step iteration. 

This work is organized as follows: In Section 2 the model is 
presented. The preliminaries of input saturation are discussed 
in this section. In Section 3, review traditional algorithms and 
introduce a new algorithm. The analysis and stability proof of 
the algorithm are in Section 4. In Section 5, the application of 
the algorithm is illustrated using two polyhedral uncertain 
systems cases. And conclusions are presented in Section 6. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

2.1  Problem Formulation 

It is assumed that 𝛺 can be described as the convex hull of the 
family of linear polytopic uncertain system, Consider the 
linear time-variant discrete system is 

0( 1) ( ) ( ) ( ) ( ), (0)x k A k x k B k u k x x                                           (1) 

[ ( ), ( )] , ({[ , ], [1,2, , ]})l lA k B k convhull A B l L       (2) 

where 𝑥 𝑘 ∈ 𝑅 , 𝑢 𝑘 ∈ 𝑅 are the state vectors and control 
inputs, respectively, 𝑘  is the discrete-time index. 𝐴 𝑘 ∈
𝑅 means the matrix of system, 𝐵 𝑘 ∈ 𝑅 denotes the 
matrix of system inputs. Parameter 𝑙 is the number of vertices 
of a family of uncertain matrices, 𝐿 is the sum of 𝑙. According 
to the property of convex hull, the uncertainty of polyhedral 
system can be derived as 

1 1

[ ( ), ( )] [ , ], 1
L L

l l l l
l l

A k B k A B 
 

                                                 (3) 

where 𝜆  is a scalar and 0 𝜆 1. 

Divide up the input matrix 𝐵 𝑘  and control input 𝑢 𝑘  of the 
system by the method in (Al-Gherwi et al., 2011). 

1 1( ) ( ) ( ) ( )( 1) ( ) ( ) M M
Tx k A k x k B k B k u k u k         … … (4) 

In this method, the control input is decomposed into M parts. 
Each of the parts satisfies 𝑢 𝑘 ∈ 𝑅 , 𝑚 ∑ 𝑚 .

Similarly, 𝐵 𝑘  is decomposed into M parts and 𝐵 𝑘 ∈
𝑅 . The system matrix 𝐴 𝑘  and system states 𝑥 𝑘  are 
retained.  

Assuming that the overall system is controllable. For design 
RDMPC, the 𝑝th subsystem model can be defined by rewriting 
(4) as 

1,

( 1) ( ) ( ) ( ) ( ) ( ) ( )
M

p p p p q q
q q p

x k A k x k B k u k B k u k
 

          (5) 

where 𝑥 𝑘 ∈ 𝑅 , 𝑢 𝑘  is the manipulated input of the 𝑝th 
subsystem obtained through subsystem p control optimization, 
i.e., 𝑢  . 𝐵 𝑘  denotes the input matrix for 𝑢 𝑘 . 𝐵 𝑘  
and 𝑢 𝑘  are the input matrices and manipulated inputs 
belonging to the other subsystems. The centralized system is 
decomposed into M subsystems. Designing RMPC algorithm 
for each subsystem and solving the LMIs optimization 
problems enable the subsystems to figure out the control inputs. 
Combining these inputs into a centralized system input reaches 
the centralized system control. 

The purpose of this strategy is to reduce the dimension of the 
input matrix, so that it can relieve the burden of the 
computation. As mentioned in the literature (Copp et al., 2019), 
the number of inequalities involved in the optimal solution by 
typical RMPC is 𝑚 1 𝐿 2𝑚 . While each subsystem 
has only 𝑚 1  𝐿 2𝑚  inequality conditions to solve 
in the RDMPC algorithm, where 𝑚  is the dimension of 𝑢 𝑘 , 
and 𝑚 𝑚 . Accordingly, the strategy can provide high 
solving speed in optimization problem. 

2.2   Input Saturation 

In our method, the saturation characteristic of the control input 
is considered, which is |𝑢 | |𝑢 |. 

According to (Cao and Lin, 2005; Casavola et al., 2000), the 
saturation function  can be shown as (6). 𝐹, 𝐻 ∈ 𝑅  are 
two feedback gains of subsystem p. And 

∀𝑥 𝑘 ∈ 𝜒 𝐻 𝑘 𝑥 𝑘 : |𝐻 𝑘 𝑥 𝑘 | 𝑢  

We have 

( ( ) ( ) ( ) ( )), 1, ,2 pm

sat j p p j p pu convhull E F k x k E H k x k j                      

                                                                              (6) 
where 𝑚  is the input vector dimension of subsystem p. 
Suppose that 𝐸  is all the matrices whose diagonal elements 
are either 1 or 0, with amount is 2 . Considering 𝐸 𝐼
𝐸 , formula (6) can be represented as: 

2

( ( ) ( ) ( ) ( ))

( ) ( ( ))

mp

sat j j p p j p p
i j

p p

u E F k x k E H k x k

x k H k









 

 

                                (7) 

where ∑ 𝜂 1, 𝜂 0. By formula (7), we can add the 
saturation function into LMI. 
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3. AN IMPROVED RDMPC ALGORITHM DESIGN 

3.1   Traditional Robust Distributed Model Predictive 
Control 

Designing the RMPC algorithm solves the output 𝑢  of each 
subsystem based on (5), in the sense that solving the min-max 
problem shown in (8) for subsystem p.  

( | ) [ ( ), ( ), ( )]
min max ( ), 0

p p q
pu k n k A k n B k n B k n

J k n
    

                                   (8) 

Suppose that the diagonal weighting matrix of the states in 
subsystem 𝑝  is Wx>0 and the manipulated input diagonal 
weighting matrix for all subsystems is Wui>0, i=1…, M. The 
subsystem cost index  𝐽 𝑘  can be defined as 

2 2

0 1

( ) ( ( | ) ( | ) )
i

M

p p pWx Wu
n i

J k x k n k u k n k


 

                  (9) 

Based on (9), each subsystem has a close cost index to that of 
the centralized system mentioned in the literature (Kothare et 
al., 1996; Schuurmans and Rossiter, 2000), as well as  the 
optimal solution obtained by solving (8) of each subsystem is 
similar to that obtained by solving the RMPC problem of the 
centralized system. Considering input saturation and 𝑙 0 , 
formula (5) can be rewritten as 

,

,
1,

( 1 | ) ( ) ( + | )

( ) ( )

( ) ( | )

p p

p sat p

M

q sat q
q q p

x k l k A k l x k l k

B k l u k l

B k l u k l k
 

   

  

  

                                     (10) 

According to formula (3), 𝐵  and 𝐵  also satisfy that 𝐵
∑ 𝜆 𝐵 , , 𝐵 ∑ 𝜆 𝐵 ,  , where 𝐵 ,  and 𝐵 ,  are obtained 
by decomposing the vertices of the input matrix 𝐵  in (2). 
Substitute (7) into (10), and substitute 𝑥  by 𝑥  in the presence 
of system 𝑝  solution, 

, ,

1,

( 1 | ) ( ) ( + | )

( )( ( ) ( )) ( | )

ˆ( ) ( ) ( | ), 1, , 2 p

p p

p p j p p j p p

M
m

q q q
q q p

x k l k A k l x k l k

B k l E F k E H k x k l k

B k l F k x k l k j



 

   

   

    

                  (11) 

where 𝐴 𝑘 𝑙 𝐴 𝑘 𝑙 ∑ 𝐵 𝑘 𝑙 𝐹 𝑘, , 
and 𝐹  is other subsystems’ feedback gains received from 
subsystem 𝑞 via communication. 

For the purpose of simplifying the min-max problem, define 
the quadratic function as 

,( ( | )) ( | ) ( | )T
p p p p k pV x k l k x k l k P x k l k                         (12) 

Suppose that Vp meets the following condition to keep the 
system stable (L. Zhang et al., 2013). 

1,

( ( 1 | )) ( ( | ))

( | ) ( | )

( | ) ( | )

( | ) ( | )

p p p p

T
p x p

T
p up p

M
T
q uq q

q q p

V x k l k V x k l k

x k l k W x k l k

u k l k W u k l k

u k l k W u k l k
 

    

  

  

  

                                (13) 

A stable system must satisfy 𝑉 𝑥 ∞|𝑘 0. We thus get 
(14) by adding both sides of (13) from 𝑙 =0 to 𝑙 =∞. 

( ) ( ( | )) ( )p p p pJ k V x k k k                                                   (14)  

where 𝛾 is the upper bound of 𝐽, We can give the following 
Semidefinite Program (SDP) to get 𝛾  for each subsystem 
based on nominal system optimization (Wan and Kothare, 
2003) and additional control input saturation (Cao and Lin, 
2005). 

( ) 0 , ( ), ( ), ( )
min ( )

p p p p
Q k k Y k Z k p

k
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s.t. 
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1, , ; 1, , 2 p
m

i L j    

where 𝑄 𝑘 𝛾 𝑘 𝑃 𝑘  is the invariant set of state 
variables, 𝐹 𝑘 𝑌 𝑘 𝑄 𝑘  is the control input at t=k, 
optimal control inputs can be formulated with 𝑢 𝑘
𝐹 𝑘 𝑥 𝑘 , 𝑍 𝑘 𝐻 𝑘 𝑄 𝑘 , 𝐼  is 𝛾 𝑘  

multiplied by the unit matrix of the appropriate dimension. 

𝐵 , 𝐵 derive from 𝐵 . The 𝐵  and 𝐴  are the analytic 
centre of the polytope Ω.  

The feedback gains 𝐹 𝑘  of subsystems are obtained by 
solving SDP of (15). The subsystem control objectives are 
close to the centralized system control objectives, so that the 
𝐹 𝑘  obtained by solving for each subsystem is similar to
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𝐹 𝑘  obtained by solving RMPC for the centralized system. 
Meanwhile the centralized control input 𝑢 𝑘  is formulated 
with the optimal control inputs 𝑢 𝑘  got from SDP of all 
subsystems. The initial values for all subsystems’ state are 𝑥 . 
Due to different 𝐵  and the delay of the 𝑢  defined in (5), 
subsystems retain divergent states at the beginning of control. 
The gaps among the states decrease gradually with the control 
process since all subsystems will convert their states into the 
centralized system stable state eventually. 

Literature (Al-Gherwi et al., 2011) proposed an algorithm in 
which the subsystems take into account the same state. The 
value of this state is determined by the global state 𝑥 𝑘  solved 
relying on (4) for the centralized system. The researchers 
simplified the processing of states and proved that the 
algorithm is stable. Besides, they had established that multiple 
iterations are used to obtain a state-feedback law until the error 
was tolerable in the current control cycle, but it may cost 
plenty of time. The main reasons for iterations in the previous 
algorithm are 

a. 𝑥  in formula (11) is substituted by 𝑥 , which causes errors 
in the coupling term of the subsystem. According to the 
literature (Al-Gherwi et al., 2011), multiple iterations will 
eliminate this error. 

b. In the act of solving the feedback gain 𝐹 𝑘  of the 
subsystem p, the algorithm needs to use the feedback gains  
𝐹 𝑘  of other systems. In order to ensure the feasibility of the 
algorithm, generally, 𝐹 𝑘 1  is used instead of the 𝐹 𝑘 . 

Literature (Siljak, 2011) defined the strategy using 
independent states to be referred as decentralized model 
predictive control. This algorithm can realize the local 
optimization for the subsystems but not the global 
optimization. It should be pointed out that it responds faster 
than the cooperative distribution model predictive control 
algorithm. 

3.2   Cooperative Adaptation Robust Distributed Model 
Predictive Control 

Based on the rapidity of decentralized model predictive control 
algorithm, this work reserved a set of states for each subsystem 
that had the same dimensions as the centralized state, and 
propose a method applying adaptive feedback weights to 
subsystems states feedback to obtain the global optimization. 
we select a set of adaptive weights and the improved 
subsystems feedback states are formulated as 

( ) ( ) ( ) (1- ( )) ( )= ( , , , )p p p p p px k k x k k x k g k x x               (20) 

where 𝜁 ∈ 𝑅  is the weight of states belong to subsystem p, 
1 𝜁  is the weight acting on the state of the centralized 
system, 𝜁 𝑘 ∈ 0,1  is a factor used to weaken the influence 
of 𝑥 . The function 𝑔 represents the input-output relationship 
of formula (20).  

Considering (20), and imitating the SDP of the previous 
algorithm, the optimization problem of the new control 
algorithm for subsystem p will be transformed into (21). 

( ) 0, ( ), ( ), ( ),
min ( )

p p p p
Q k k Y k Z k pp

k
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p p
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                                                                  (22) 

Algorithm 1. Cooperative adaptation robust distributed model 
predictive control (CARDMPC) algorithm. 

Step 0: Select a set of initial feasible control inputs 𝐹 0  and 
same initial states 𝑥 0  for subsystems. 

Step 1: When control interval t=k, directly collect or indirectly 
estimate 𝑥 𝑘  of each subsystem i based on the centralized 
system state 𝑥 𝑘 , and solve SDP for (21) to determine 
𝑄 𝑘 , 𝛾 𝑘 , 𝑌 𝑘 , 𝑍 𝑘 , 𝜁 𝑘 . Get the state feedback gain 
matrices 𝐹 𝑘  of subsystems by  𝐹 𝑘 𝑌 𝑘 𝑄 𝑘  and 
the improved subsystems feedback states𝑥 𝑘  by (20). The 
subsystem control inputs are formulated as 𝑢 𝑘
𝐹 𝑘 𝑥 𝑘 . 

Step 2: Apply 𝑢 𝑘 𝐹 𝑘 𝑥 𝑘  , 𝑢 𝑘 𝑢 𝑘 1  
to the subsystems by (5) and record the state 𝑥 𝑘 1  of 
these subsystems at next interval.  

Step 3: Combine the 𝑢 𝑘  obtained in Step 1 into the 
centralized system control input 𝑢 𝑘 . Then update the state 
𝑥 𝑘 1  of the centralized system according to (1). 

Step 4: Increase the control interval k = k + 1, return to step 1 
and repeat the procedure. 

This method is proposed based on the characteristics of 
decentralized and distributed algorithms. Firstly, by 
decentralized algorithm, we adopt the state 𝑥 𝑘  of the 
subsystem p itself to replace the states 𝑥 , 𝑘  of the other 
subsystems in (11), so as to reduce the interaction among the 
subsystems (Siljak, 2011). But the algorithm could only 
achieve the local subsystem optimization if feedback states are 
always 𝑥 𝑘 . Feedback states of subsystems need to be 
corrected and converge to the centralized states defined in 
distributed algorithms during the control process gradually. In 
this case, there is a reduced demand in the impact of 𝑥 𝑘  on 
state feedback and an increase demand in the weight of 𝑥 𝑘  
on the state feedback during this process which means adjust 
weight adaptively in the control process.  

4.  MECHANISM AND ROBUST STABILITY ANALYSIS 

In this part, The CARDMPC algorithm designed in 3.2 will be 
analysed further, including the working principle of adaptive 
algorithm, the approach to improve response speed, and 
algorithm stability analysis. 

4.1  Mechanism Analysis Of The Improved Algorithm 

Theorem 1. For a controllable system, when 𝜁 ∈ 0,1  , 
CARDMPC algorithm retains the other subsystems feedback 
gains 𝐹  with hysteresis, and puts the gains into the state 
update equation of the subsystem. As the control process goes 
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 by, the hysteresis of 𝐹  decreases gradually. Finally, the 
CARDMPC algorithm becomes the traditional collaborative 
RDMPC algorithm. 

Proof: The subsystem state update equation of the improved 
distributed robust model predictive control is (23). 

1,

( 1) ( ( ))= ( ) ( ) ( ) ( ) ( )

( ) ( 1) ( )

p p p p p p

M

q q p
q q p

x k h x k A k x k B k F k x k

B k F k x k
 

  

 

  


           (23)                               

ℎ is a function describing the iteration of the subsystem state. 
Algorithm 1 is used to solve 𝐹 𝑘 , which can be regarded as 
a function 𝑓. 𝐹 𝑘 𝑓 𝑥 𝑘 , 𝐹 𝑘 1 , where 𝐹 𝑘 1  
is obtained by communication. Suppose the initial feedback 
gain and initial state of each subsystem are same, as 𝐹 0
𝐹 0 ⋯ 𝐹 0 , 𝑥 0 𝑥 0 𝑥 0 ⋯ 𝑥 0  . 

 After the feedback gains 𝐹 𝑘 i 1,2 ⋯ , M of all 
subsystems have been fixed, the system state of the centralized 
system can be updated by the formula (24). 

1

1 1

( 1) ( ( ))

= ( ) ( ) [ ( ) ( )][ ( ) ( )] ( )T
M M

x k h x k

A k x k B k B k F k F k x k

 

  
             (24) 

𝑥 𝑘  of the formula (23) is defined in (20). When  𝜁 0 for 
subsystem p, the new algorithm becomes the traditional 
collaborative RDMPC. 𝑥 𝑘 𝑥 𝑘 , 𝑥 𝑘 is only 
determined by formula (24). The control function is 𝐹 𝑘
𝑓 𝑥 𝑘 , 𝐹 𝑘 1 . In this case, the algorithm does not 
involve formula (23). 𝑥  is neither employed nor calculated. 

When 𝜁 1, the algorithm becomes a decentralized RDMPC. 
𝑥 𝑘 𝑥 𝑘 , 𝑥 𝑘  is only determined by formula (23). 
The control function is 𝐹 𝑘 𝑓 𝑥 𝑘 , 𝐹 𝑘 1 . In this 
case, the algorithm does not involve formula (24). The formula 
(23) can be rewritten as formula (25). The interaction between 
subsystems is incomplete because of 𝐹 , which has a one-step 
delay. The assumption cannot obtain the global optimization. 

1,

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( 1) ( )

p p p p p

M

q q p
q q p

x k A k x k B k F k x k

B k F k x k
 

  

 
                             (25) 

When 𝜁 ∈ 0,1 , the CARDMPC algorithm will perform 
normally. Under the same initial conditions, and assuming 
𝐹 1 𝐹 0 , the state of traditional cooperative RDMPC 
and CARDMPC algorithms can be determined by (23) and (24) 
at k=1. The result is 𝑥 1 𝑥 1  . Then update the state at 
k=2, as shown in formula (26) and (27). 

1

1 1

(2) ( (1))

(1) (1) [ (1) (1)][ (1) (1)] (1)T
M M

x h x

A x B B F F x



   
                     (26) 

1,

(2) ( ( (1), (1), (1)))

(1) (1) (1) (1) (1)

(1) (0) (1)

p p p

p p p p

M

q q p
q q p

x h g x x

A x B F x

B F x



 



 

 

 



                                                 (27) 

where 𝐹  used in (26) delay one step behind that in (27). At the 
early stage of control, generally, the feedback gain 𝐹 promotes 
the system to reach stability gradually, while |𝐹| itself tends to 
decrease from large to small. Accordingly, 𝐹 0 |𝐹 1 |. 
This hysteresis may lower the system performance 𝛾 
temporarily. But a larger |𝐹| is good for the regulation of 𝑥 i.e., 
|𝑥 2 | |𝑥 2 |. At the middle and later stages of control, the 
hysteresis may cause overshooting of state or long-setting-
time. Therefore, it’s necessary to eliminate the hysteresis of 
feedback gain gradually in the control process. Finally, the 
system can restore the global optimization defined by 
traditional collaborative DRMPC algorithm. 

When k>1, by the functions 𝑔and ℎ, 𝑥 𝑘 1  can be further 
expressed as 

1

( 1) ( ( 1), ( 1), ( 1))

( ( ( )), ( ( )), ( 1))p

p

p

p px k g x k x k k

g h x k h x k k





    

 




                           (28) 

As long as 0 𝜁 1, based on the formulation of ℎ, 𝑥  will 
converge to 𝑥 and the hysteresis effect will be smaller over 
time. In other words, the system will achieve the global 
optimization as defined in equation (8) eventually. A constant 
𝜁  will also satisfy the definition in (3.2). The variation of 𝜁  
does not need to be take into account. Based on the above 
analysis, the algorithm only needs to determine a constant 
value of 𝜁  in application. As long as the magnitude of  𝜁  is 
fixed, the system can automatically eliminate the bad influence 
of hysteresis in the control process. 

Case 1 noted in section 5 has proved this part in practice setting 
different constant values for 𝜁 . The algorithm in section 3.2 
can solve the dynamic value 𝜁, which not only increases the 
calculation burden, but also the weight optimization result will 
quickly drop to 0 in the calculation process. It is worth noting 
that the maximum 𝜁  can be obtained at the beginning of 
solving the optimization. Because ∀𝜁 ∈ 0,1  can gradually 
attenuate the influence of 𝑥 𝑘 , this article chooses the 
average of the 𝜁  optimization results of the first three-time 
intervals as the constant value of 𝜁.  This method will be 
applied to the weight solution in Case 2. 

According to the analysis, the initial value selection of 𝜁  is 
related to multiple parameters such as the uncertainty stability, 
setting time and Initial state of system. In the future, the 
relationship between the optimal value of 𝜁  and system 
parameters will be further studied. 

4.2  Convergence and Stability of the CARDMPC 

The stability analysis of the system is mainly to verify the 
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convergence of the system error. Roman (Roman et al., 2020) 
studied the stability of nonlinear algorithms by analysing limit 
cycle. Rigatos (Rigatos et al., 2017) proved the stability of 𝐻  
algorithm in application by Lyapunov stability analysis. The 
new algorithm uses positive robust invariant set (22), which 
can construct the Lyapunov function conveniently. 

Theorem 2. (Kerrigan, 2001) For subsystem p, a set of 
solutions, 𝑌 𝑘  ,𝑄 𝑘  ,𝛾 𝑘  , are obtained by solving the 
problem (15) when t=k without feedback weight 𝜁. As a result, 
the ellipsoid 𝐸 𝑥 : 𝑥 𝑄 𝑥 1  is the robust invariant 
set of the subsystem p concerning the controller 𝑢 𝑘
𝑌 𝑘 𝑄 𝑘 𝑥 𝑘 . 

Proof: If the problem (15) is solvable, we can get (29) from 
(15).  

1( ) ( ) ( ) 1T
p p px k Q k x k                                                                     (29) 

When 𝑙 0, the right term of (13) must be negative, so the left 
term of (13) as:  

( ( 1 | )) ( ( | )) 0p p p pV x k l k V x k l k                                  (30) 

Inequality (30) can be rewritten as following in combination 
with (12). 

1

1

( 1) ( ) ( 1)

( ) ( ) ( )

T
p p p

T
p p p

x k l Q k x k l

x k l Q k x k l





   

  
                                                    (31) 

It means that: 

1( ) ( ) ( ) 1T
p p px k l Q k x k l                                                       (32) 

and proves that 𝐸  is the robust invariant set of the controller 
𝑢 𝑘 𝑌 𝑘 𝑄 𝑘 𝑥 𝑘  got by solving (21). 

Lemma 1. (Al-Gherwi et al., 2011) In the solution process, 
when the states of the subsystems are the same as the 
centralized system, the invariant set 𝐸  of the centralized 
system is the intersection of the invariant sets 𝐸  of the 
subsystems. 

By lemma 1, the centralized system state is used for the 
optimization of all subsystems. But our strategy retains 
subsystems states. Observing (4) and (5), subsystem state 
equations are reformulated from the centralized system state 
equation. And the optimization goal (8) of each subsystem 
includes the overall state and all control variables. The 
subsystem control inputs are calculated each other via 
communication. It means that the control variables obtained by 
each subsystem through the algorithm is close to the global 
optimization in the control process but are only manipulated 
by the corresponding subsystems. In addition, the combination 
of all subsystem solutions is a globally optimal solution. The 
reserved state of the subsystem also converges to the 
centralized system state with the control process. So new 
algorithm corresponds to lemma 1.  We get: 

Inference 1. For CARDMPC algorithm, the states of each 
subsystem converge to the states in RDMPC algorithm and 

have the following properties: the intersection of the robust 
invariant sets 𝐸  obtained by the solution of the subsystems 
contains the robust invariant set 𝐸  of the centralized system 
finally. 

The robust invariant set of centralized systems will gradually 
converge proved in (Kerrigan, 2001). According to Inference 
1, the new algorithm will gradually approach the traditional 
algorithm, and the intersection of the invariant sets 𝐸  of 
subsystems will be the robust invariant set  𝐸  of centralized 
systems finally. Therefore, the final result of the subsystem 
obtained by the new algorithm will also reach convergence. 

Theorem 3. For the CARDMPC algorithm, the initial states of 
the subsystems are all 𝑥 . And these subsystems are solvable 
for the optimization problem (21) at k=0. Accordingly, the 
system using this control algorithm is closed-loop asymptotic 
stable. 

Proof: For ∀𝑖 0, when the control input is 𝑢 𝑘 , the robust 
invariant set of the subsystem p’s state 𝑥  is 𝐸  as:  

 1( ) : ( ) 1T
p p p p p px k i E x x Q k x                                       (33) 

Due to the centralized system control input is the combination 
of all subsystem control inputs, the robust invariant set 𝐸  of 
the centralized state x is 

( ) cx k i E                                                                                    (34) 

By Inference 1, we can get: 

( ) px k i E                                                                                   (35) 

Based on the definition of (20), 𝑥 𝑘 1  satisfies the 
inequation as: 

( ) max( ( ), ( ))p px k i x k i x k i                                            (36) 

Combining (33) and (35), we can get (37) as: 

( )p px k i E                                                                                 (37) 

According to theorem 2, 𝐸  is the robust invariant set of the 
controller 𝑢 𝑘 . Then the (31) can be reformulated as: 

1 1( 1) ( ) ( 1) ( ) ( ) ( ) 1T T
p p p p p px k Q k x k x k Q k x k                         (38) 

In the process of solving the problem (21), only invariant set 
constraint takes system state update into account. Therefore, a 
set of optimal solutions of the subsystem p 𝑌 𝑘  ,𝑄 𝑘  and 
𝛾 𝑘  obtained at t=k are still feasible solutions of the 
subsystem when t=k+1. We have: 

1 1( 1) ( 1) ( 1) ( 1) ( ) ( 1)T T
p p p p p px k Q k x k x k Q k x k               (39) 

Substituting (39) into (38), we get 

1 1( 1) ( 1) ( 1) ( ) ( ) ( )T T
p p p p p px k Q k x k x k Q k x k                         (40) 

which can be rewritten as: 
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( 1) ( 1) ( 1) ( ) ( ) ( )T T
p p p p p px k P k x k x k P k x k                            (41) 

Suppose the Lyapunov function of subsystem is 𝑉 𝑥
𝑥 𝑘 𝑃 𝑘 𝑥 𝑘 0, It shows that the Lyapunov function of 
the algorithm is monotonically decreasing, i.e., 𝑉 𝑥 0. At 
the same time, 𝑉 𝑥  satisfies radially unbounded. When k=0, 
all subsystems are solvable for the problem (21), all 
subsystems are closed-loop asymptotically stable(JJE Slotine, 
1991). The state of subsystems will gradually converge to the 
equilibrium point 𝑥 0. In addition, the control goal of the 
algorithm is global optimization, so the centralized system is 
also progressively stable. 

5.  CASE STUDIES 

In this part, we modified the basic functions of the MUP 
toolbox (Version 20200224) (Bakošov’a and Oravec, 2014) to 
implement our algorithm for the cases. In the toolbox, we 
choose the YALMIP toolbox (Version R20200116) for 
optimal planning of (21) and solve via solver SeDuMi 
(Version 1.3). These cases were simulated by MATLAB 
R2017b under the condition of CPU I7-8550U, 1.8GHz 
computer. By comparing the control performance of different 
cases, we can analyse the characteristics of our CARDMPC 
algorithm. 

5.1  Case Study 1 

Consider a third-order uncertain system that has been used for 
traditional RDMPC (Wang and Wen, 2008). In the system, the 
vertices of the system matrix and the input matrix are 

𝐴
1 1 0.5
0 1 1
0 0 1

, 𝐴
1 1.5 0.5
0 1 1
0 0 1

 

𝐵
0.5 1.67
1 0.5
0 1

, 𝐵
0.6 1.7
1 0.6
0 1

 

Suppose 𝑢 𝑘 ∈ 1,1  is the saturation limited input, 𝑥 𝑘 ∈
2,2  is the saturation limited state. 𝑥 0 2,0.5,1.5  is 

the initial state of the system. Based on (L. Zhang et al., 2013), 
we decompose the centralized system into two subsystems of 
which the initial states are both 𝑥 0 , and use the collaborative 
adaptive RDMPC to design the controllers for the two 
subsystems respectively. We set  𝑊 𝐼 , 𝑊 𝑊
𝐼  and substitute the following uncertainty coefficients into 
the system by (3). 

21 0.2 0.2cos(0.2 ), 0.8 0.2cos(0.2 )k k                    (42) 

In order to study the influence of the feedback weights on the 
system, we substitute 𝜁 0.5, 𝜁 0.3, and 𝜁 = 0.1 into the 
control algorithm respectively. The results of the centralized 
system are shown in the figures below. 

According to figure 1-5, it shows that the feedback weight 
affects the control performance apparently. A large weight will 
cause states overshoot and control inputs fluctuation in the 
system. It means that the 𝜁 is so large that the time-delay effect 
cannot be attenuated in time, which exceeds the adaptive 
capacity of the algorithm. It means the large weight affects the 

robustness of the system. On the contrary, the final values of 
the system state under different weight are the same, which is 
consistent with the analysis of Inference 1. While choosing the 
appropriate feedback weight will make the system respond 
faster without overshooting and loss of robustness. In essence 
the algorithm with appropriate 𝜁  can adjust the weight 
adaptively to eliminate the adverse effects caused because of 
hysteresis. 

In order to express the cost of different algorithms 
conveniently, we define the current cost index function as: 

2 2

0 1

( ) ( ( | ) ( | ) )
x ui

k M

c W p W
n i

J k x k n k u k n k
 

    ‖ ‖ ‖ ‖             (43) 

 

Fig. 1. Dynamic responses of 𝑥  with different 𝜁. 

 

Fig. 2. Dynamic responses of 𝑥  with different 𝜁. 

 

Fig. 3. Dynamic responses of 𝑥  with different 𝜁. 
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Fig. 4. Dynamic responses of 𝑢  with different 𝜁. 

 

Fig. 5. Dynamic responses of 𝑢  with different 𝜁. 

 

Fig. 6. Final value of   𝐽  with different s 

where 𝑥 𝑘  is the state of the centralized system. Compared 
with (43) and (9), the state in (43) is the centralized system 
state. 𝐽  directly represents the global performance, the state in 
(9) belongs to the subsystem, 𝐽  is the subsystem performance. 
Meanwhile, (9) involves the infinite time domain, and (43) is 
solved in the finite time domain. When the time k is long 
enough, 𝐽  will be equal to 𝐽 . 

We designed an experiment to determine the optimal value of 

𝜁. In the experiment, we set the maximum 𝜁 to 0.3, reduce 𝜁 
according to formula (44), and recorded the cost index 𝐽  at the 
end of control. The results are shown in figure 6. 

1 2 0.3 0.3* / 60s                                                               (44) 

In formula (44), 𝑠  is the slope adjustment coefficient. The 
change step is 1, and 𝑠 ∈ 1,60 .  

In figure 6, 𝐽  is the current cost index with different s, 𝐽  is 
the current cost index of the traditional RDMPC algorithm. 
This experiment shows that different feedback weights will get 
different results. The appropriate value of 𝜁  can achieve a 
lower cost index than that of the traditional algorithm. 

Table 1 lists the final index of  𝐽  for various values of 𝜁 . 

Table 1.  Final value of  𝑱𝒄 with different cases. 

Cases Final value of Jc 

𝜁 =0 (traditional algorithm) 12.1756 

𝜁 =0.1 12.1689 

𝜁 =0.3 12. 2565 

𝜁 =0.5 12.6949 

𝜁 =0.21(optimum) 12.1681 

 
It can be found from the table 1 that the new algorithm can 
improve the performance by selecting the appropriate 
feedback weight. Unsuitable coefficient 𝜁  may have poor 
performance. Therefore, after determining a series of 
parameters of the system, we can also determine the 
appropriate weight 𝜁 through experiments. 

5.2  Case Study 2 

A discrete state-space model proposed by Zhang to study 
distributed model predictive control of positive systems in 
literature (J. Zhang et al., 2020). The two-vertex uncertain 
model can be described as: 

𝐴
0.34 0.36 0.35
0.35 0.33 0.36
0.32 0.35 0.34

, 𝐴
0.45 0.37 0.36
0.36 0.44 0.37
0.42 0.36 0.35

 

𝐵
0.01 0.02
0.02 0.01
0.02 0.03

, 𝐵
0.05 0.03
0.04 0.03
0.03 0.06

 

Suppose 𝑢 𝑘 ∈ 192.6,192.6  is the saturation limited 
input, 𝑥 𝑘 ∈ 21.4,21.4  is the saturation limited state 
 𝑥 0 1,2,1.5  is the initial state of the system. we also 
decompose the centralized system into two subsystems of 
which the initial states are 𝑥 0 , and adopte centralized robust 
model predictive control (CRMPC), traditional RDMPC 
(TRDMPC) and collaborative adaptive RDMPC (CARDMPC) 
to design the controllers for the two subsystems respectively. 
For all of them, 𝑊 𝐼 , 𝑊 𝑊 𝐼 . Similarly, we 
set the uncertain parameters of the system as (42). 

Solving the optimization results of the first three-time intervals, 
and taking the average value of these results. Finally, we put 
𝜁 𝜁 0.8 into collaborative adaptive RDMPC. 
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For the three algorithms, we adopt a one-step iteration method. 
The control results of the centralized system with different 
algorithms are compared as follows. 

 

Fig. 7. Dynamic responses of 𝑥  with different algorithms. 

 

Fig. 8. Dynamic responses of 𝑥  with different algorithms. 

 

Fig. 9. Dynamic responses of 𝑥  with different algorithms. 

 

Fig. 10. Dynamic responses of 𝑢  with different algorithms. 

 

Fig. 11. Dynamic responses of 𝑢  with different algorithms. 

 

Fig. 12. Dynamic responses of 𝛾  with different algorithms. 
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Fig. 13. Dynamic responses of 𝛾  with different algorithms. 

Table 2.  System stabilization time with different 
algorithms. 

State Ts 
 (CRMPC) 

Ts  
(RDMPC) 

Ts 
(CARDMPC)

𝑥  21(27) 7(7) 5(5) 
𝑥  21(27) 7(7) 5(5) 
𝑥  21(26) 6(6) 4(6) 

 
Table 2 lists the setting time belonging to the three state 
variables with different algorithms. The unit of time is an 
algorithm period. The value outside the brackets is the stability 
time under the condition of 5% error, and the inside is the 
stability time under the condition of 2% error. The table shows 
that the state setting time of the new algorithm reduces by   
28.6% to 33.3% compared with that of the traditional 
cooperative RDMPC, and 76.2% to 80.9% compared with that 
of CRMPC under the condition of 5% error in this case. 

Figure 7 to figure 11 is the curve of the system response with 
the traditional RDMPC and the collaborative adaptive 
RDMPC respectively. Our new algorithm can reach stability 
faster based on them. And both of two algorithms can achieve 
the same result, which indicates that CARDMPC converges to 
TRDMPC eventually. Analysing the upper bound of cost 
index for two algorithms, 𝛾 of subsystem 1 and 𝛾  of 
subsystem 2, in figure 12 and 13, we find that the 𝛾 of the new 
algorithm can be reduced to 0 more quickly. 

6. CONCLUSIONS 

In this paper, we propose an improved distributed model 
predictive control algorithm with adaptive feedback weight, 
which can also be called cooperative adaptive model 
predictive control. The algorithm preserves a set of 
subsystem’s states. At the initial control stage, we use the 
independent full-dimension state of subsystems to delay the 
coupling terms of other subsystems, which maintains an 
effective control input and increases system control speed. It 
achieves an effect closing to decentralized control. By 
modifying the weight of hysteresis term about subsystem’s 
states automatically with the control process, the state of the 

subsystems participating in the feedback is equal to the state 
of the centralized system, which means restoring the 
distributed control to make the system reach the performance 
of RDMPC. We have proved that CARDMPC can achieve 
better control performance than traditional RDMPC in a one-
step iteration by the appropriate weights 𝜁 through two cases. 
At present, 𝜁 are obtained only by experiment. In the future, 
the method to determine the appropriate 𝜁 will be studied in 
combination with a series of parameters of the controlled 
object. 
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