
CEAI, Vol. 9, No. 2, pp. 59-67, 2007                                                                                          Printed in Romania 
 

SIMULATION MODELS OF DEFECT ENCODING VIBRATIONS 

Janetta Culita1, Dan Stefanoiu1, Florin Ionescu2

1 “Politehnica” University of Bucharest, Faculty of Automatic Control and Computer Science 
Splaiul Independentei 313, Bucharest – 060042, ROMANIA 

2University of Applied Sciences, Department of Mechatronics, Konstanz, GERMANY 
E-mails: jculita@yahoo.com, danny@indinf.pub.ro, ionescu@htwg-konstanz.de

Abstract: Comparing to signals such as speech or seismic, the vibration generated by oscillations 
of a mechanical system in exploitation is quite regular. At a glance, good models of vibration can 
be designed, without special precautions. However, some basic characteristics of this signal 
should be considered when constructing the model. For example, vibration can serve to search for 
faults threatening a system. In this case, the main properties of mechanical vibration yielding 
identification and isolation of faults have to be a priori known. The paper goal is to overview these 
properties and to present the most used models that allow performing the automatic fault 
diagnosis.  
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1. INTRODUCTION 
 
Vibration generated by mechanical systems is 
interesting, mainly for its capacity to encode 
information about the defects or faults. Several 
distinct efforts in detection of defects can be 
noted, but only in the last few decades the 
vibration has became crucial for automating this 
process. The earliest method, which dates back 
to the first days of machinery (and which is still 
in use today) is founded on a trained observer or 
listener referred to as (expert) analyst. A person 
with great deal of experience in working with a 
particular machine or engine can detect flaws in 
operating machinery, by simply “watching” or 
“listening” it. Very often, the resulting 
diagnosis, based on empirical observations and 
deductions, is amazingly accurate, but difficult 

to model. Other subsequent attempts became 
more systematic and used some parameters, 
such as: the lubricant temperature (which, 
unfortunately, gives a hint about defects after 
they are already severe), the oil cleanness 
(which requires an exhaustive and often 
inefficient analysis), the noise level of acoustic 
emission (which is in general enabled only by 
already fatigued elements), etc.  
 
But the most efficient methods in early detection 
of defects are using Signal Processing (SP) 
techniques [13]. Differently from many typical 
SP applications, where the noise attenuation is a 
fundamental requirement, when using 
vibrations, exactly the noise is the most 
concerned part within the analysis. This is due to 
the fact that not the natural oscillations of 
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machinery encode the defective behavior, but 
the noise corrupting them. Moreover, the 
applications revealed that the signal-to-noise 
ratio (SNR) is extremely small for vibrations 
encoding information about defects. Therefore, 
the models of vibration used in fault detection 
and diagnosis (fdd) are models of their noisy 
parts, encoding types and severity degrees.  
 
The paper is organized as follows. The next 
section emphasizes the differences between 
oscillation and vibration concepts and reveals a 
general model of vibration birth. The most 
common models of vibrations and their sources 
are described in sections 3-5. Conclusions and a 
references list are completing the article.  
 
 

2. GENERAL VIBRATION GENESIS 
MODEL 

 
The Theory of oscillations refers a distinctive 
part of Mechanical Sciences and traditional 
Mathematics. This theory mostly relies on the 
study of differential equations describing 
systems forced to evolve at their stability limit 
(associated to resonance oscillation). The oldest 
oscillatory system model with one freedom 
degree is expressed as a two order differential 
equation, provided by applying the second 
principle of Dynamics [8], [5]. The solution of 
this equation is referred to as oscillation, that 
suggests the natural behavior of the mechanical 
oscillatory system.   
 
In general, some of system parameters (mass, 
damping, elasticity) are unknown. Their 
estimation relies on measured data that usually, 
are affected by random noises. This is the case 
of non-deterministic model. The solution of the 
new equation is an oscillation that includes 
noises, referred to as vibration. Only the 
(measured) vibration data generates the model.  
 
In Figure 1, one can clearly distinguish between 
a natural attenuated oscillation –left and a 
vibration data – right. In general, but depending 
on the SNR, the original oscillation is difficult to 
distinguish from the graphic of a vibration. 
 
When measuring vibrations from a mechanical 
system, several signals are combined together, 
in order to generate the data. In Figure 2, a 
general model of vibration birth is depicted.  
 
Thus, the running mechanical system under test 

can generate 3 signal classes: natural oscillations 
( ), interference signals (u ) due to interactions 
between its different parts; defect encoding 
noise ( ), indicating that something is wrong 
with one or more of its parts. Together with the 
environmental (background) noise ( e ), the 
signals above are mixed in a way that generates 
the crude (mechanical) vibration ( w ). This is 
converted into an (electrical) vibration ( v ) by 
means of a sensor connected to a transducer 
(which can also distort the crude vibration). 
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Fig. 1. A free damped oscillation and vibration data. 
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Fig. 2. General vibration genesis model. 

 
 
3. ON MECHANICAL SYSTEM MODELS 

 
The main problem in fdd using vibration data is 
to extract the defect encoding component (noise) 
and to remove or significantly attenuate all the 
other components (including the natural 
oscillations). If the machinery is defect free, 
then the resulting signal should be quasi white 
noise (as part of background noise). To solve 
this problem, several models of blocks in Figure 
2 have to be accounted.  
 
The model of mechanical system is often so 
complex that it cannot be really tackled. 
Fortunately, this model seems not to be so 
important in solving the problem above. 
Sometimes only simple equations or estimations 
of natural oscillation frequencies are sufficient. 
They can be used to identify the main harmonics 
of the oscillations to be removed. The other 
blocks are more important and some appropriate 
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models are described within next two sections.  
 
In order to illustrate how natural frequencies of 
a mechanical system could be estimated, take 
for example a radial-axial bearing with rolling 
balls. It consists of two races (inner and outer), 
several rolling balls and a cage aiming to 
preserve the balls clearance. The natural 
oscillation frequencies of bearing are intimately 
determined by its rotation speed and geometry.  
 
In general, one of the two races is rotating and 
another one is fixed. The case when both races 
are rotating is unusual, but possible. Therefore, 
one can consider the general case when a 
relative rotation between races exists, without 
specifying for the races whether they are fixed 
or not. Denote by rν  the frequency of relative 
rotation between races (in Hz). Then a set of 5 
natural oscillation frequencies could be derived: 
the ball pass frequency on the outer race ( outν ); 
the ball pass frequency on the inner race ( inν ); 
the cage rotation frequency  with respect to the 
outer race ( coutν ); the cage rotation frequency 
with respect to the inner race ( cinν ); the ball 
rotation frequency ( bν ). Concerning the 
geometry, all manufacturers have to comply to 
the existing standards. Usually, manufacturers 
describe their products in catalogues [6]. The 
geometrical parameters necessary to derive 
bearings natural frequencies are the following (3 
of them being illustrated in Figure 3): the 
number of balls , the pitch diameter bn pφ , the 

ball diameter bφ  and the contact angle between  
ball and races when the bearing is under load, 
α . This latter is also standardized, the values 
being listed in catalogues together with the other 
constructive characteristics.  
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Fig. 3. Geometry of a rolling balls bearing. 
 
The parameters above lead to the following 
natural frequencies for the bearing (by assuming 
the ball does not slide on the races):  
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Note that the highest frequency is inν  (and thus 
the inner race is the most exposed to failures, 
together with the balls) and: cin cout rν ν ν+ = ; 

in out b rnν ν+ = ν . Beside the natural frequencies 
above, some multiples of their values are also 
present into harmonic contents of vibration, but, 
usually, their amplitudes decay quite fast. 
Practically, beyond 7-10 times the highest 
frequency ( inν ), no harmonic due to natural 
oscillations is acting into vibration data. This 
means that the noisy part of vibration could be 
roughly isolated by high-pass pre-filtering of 
data, such that the natural frequencies and their 
significant multiples be removed.  
 
For more complicated mechanical systems, the 
natural frequencies are often not derived from 
motion equations (unsuccessful attempt due to 
equations complexity), but simply estimated by 
measuring some parameters.  
 
 

4. ON MIXER AND SENSOR MODELS 
 
One might believe that the mixing mechanism is 
a kind of magic, since the algorithm is actually 
unknown. However, several plausible models 
have been proposed so far, especially in case of 
bearings and gears. For example, in [7], all the 
signals are added: , which 
constitute a coarse model, since the defect noise 
seems not only to add to, but also to modulate 
the natural oscillation. However, the authors 
have shown that, for their invention, the mixing 
model is not so important.  

w x u d e≡ + + +

 
The concept of oscillation modulation, 
especially by defect noise, has been used in 
many papers such as [4], [1], [3]. Simple 
amplitude modulation has been considered in 
the beginning ( )(w d e x u)≡ + + where the 
noises  and  play the role of enveloping 
signal. A more complicated model (claimed as 
“more realistic” by the authors) would be 

e d
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(1 )( )w d e x≡ + + + u , where addition and 
modulation are both considered. This model 
have been considered when analyzing the 
vibration generated by sea waves, rolling 
element bearings, gears or working wheels of 
pumps (turbines).  
 
Another more sophisticated model relies on 
frequency modulation instead of amplitude 
modulation as before:  

( )( ) ( )
k

w t A t kT t
∈

= +∑
Z

λ ,   t∀ ∈R ,               (2) 

where  is the harmonic modulated 
signal with average period T  and 

A x u≡ +
1 d e≡ + +λ  

is the noisy frequency modulating part. This 
model has been used for analysis of vibrations 
produced by electrical machines with pulsating 
electromagnetic torque.  

 
Note that in the first three models, the noise  is 
just added to the noise of interest, . Actually, 
the original expressions in the cited papers have 
not explicitly considered both noises. Only in 
case of defect free machinery,  is present. 
There is no serious reason to consider that the 
noises are modulated each other, i.e. to replace 

 by . Moreover, the additive noise 
model is suitable for SP analysis framework, 
since usually, the SNR (  – signal and  – 
noise) is now reasonable.  

e
d

e

d e+ d e⋅

d e

 
Other authors considered that the noise d e+  is 
input of an oscillatory system ([10], [11]). 
Moreover, the defect noise is considered as 
series of shock pulses with some period T  and 
constant amplitude , produced by defects 
(especially on rolling parts in contact):  

A

( )0( )
k

d t A t kT
∈

= +∑
Z
δ ,   ,                  (3) t∀ ∈R

where 0δ  is the unit impulse. This model reveals 
a different approach: the noise is now filtered by 
(or convoluted with the impulse response of) an 
oscillatory system. But the periodicity of defect 
noise hypothesis is not actually viable. For 
example, a chop on a ball inside a bearing 
produces quasi-random non-periodical shocks. 
Also, this noise could be generated without 
shocks, especially by worn mechanical parts. 
However, the idea that the defect noise is 
basically generated by visible or microscopic 
quasi-random shocks has been largely accepted 
today. Actually, although the model introduced 

in [10] is regarding the bearings and the 
transmission path of vibration from defect to 
measured data, it has been adopted (and 
furthermore generalized) by many authors in the 
literature. More details on this model are 
described within the next section.  
 
The key device in vibration data acquisition is 
the sensor. An exhaustive description of sensors 
(and their models) employed on this purpose is 
performed for example in [8]. Within 
applications, the seismic sensors with 
piezoelectric crystals (and especially the 
accelerometers) are the most preferred, for their 
good properties of sensitivity and linearity. 
Beside their small size and weight, there are at 
least 2 main reasons to take piezoelectric sensors 
into consideration. Firstly, they are able to 
introduce only an imperceptible distortion 
between the crude and measured vibrations in 
absence of defect noise. (Also, the very low 
frequency noises are attenuated.) Secondly, the 
defect noise, if present, is emphasized within 
measured vibration. This behavior could be 
easily seen by looking at the typical frequency 
response of such a sensor. The most accurate 
model is considered to be a rational transfer 
function with 3 poles and one zero (accounting 
both the mechanical and electrical parts):  

{0 1

1( )
( )(

electrical mechanical

sH s G
s s s s s s

=
− − −1 44 2 4 432 )

                      (4) 

Here, s  is the Laplace variable, whereas the 
amplification factor  and the poles G 0s , 1s , 

2
*
1s s=  ( 1,2Re 0s < ) are derived from 

constructive specifications. The specific pole 
placement in model (4) leads to the frequency 
response drawn in Figure 4.  
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Fig. 4. Typical frequency characteristic of sensors. 
 

There are 3 zones: (a) a quite small bandwidth 
attenuation zone for low frequency signals, up to 

 (also removing the constant 
component, if present); (b) a large bandwidth 

0 (0 ,100] Hzν ∈
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quasi-constant pass band zone between 0ν  and 
 (that replicates the input 

signal with minimum distortions); (c) the 
“resonance” high frequency zone beyond 

1 [10, 60] kHzν ∈

1ν , 
with central natural/resonance pulsation 

 and rapid attenuation of 
very high frequency signals. The electrical part 
of sensor (the transducer) controls the lowest 
frequency sub-band, but the resonance is due to 
the mechanical part. As mentioned before, the 
resonance zone is far away from vibrations 
localization band (usually, [0 ), with 
more than 90 % of energy concentrated in the 
first half ([0 ). Obviously, if  is the 
sensor impulse response then (where 
‘ ’ stands for convolution. ). 

2 [60 ,100] kHzν ∈

,20] kHz

,10] kHz h
v h w≡ ∗

∗
 
In fdd, the resonance zone (c) is the most 
concerned, since only the sensor resonance is 
able to extract the defect noise from crude 
vibration, independently of how the mixer 
works. This property is either not explained or 
the explanation is extremely unclear in the 
overwhelming majority of related publications, 
except for [7], where the authors have stressed 
that the sensor resonance frequency is the only 
carrier of information about defects in 
mechanical systems. Actually, only the defect 
noise is able to put the sensor in state of 
(attenuated) resonance. The other crude 
vibration components are replicated 
approximately as they are, except for the very 
low and very high frequency ones, which are 
attenuated (as proven by Figure 4). In general, 
very low and very high frequency noises are 
produced by environmental sources. So, the 
sensor performs moreover a preliminary useful 
denoising of crude vibration.  
 
An intuitive representation of how the sensor 
works is illustrated Figure 5. Consider a crystal 
glass (or a musical tuning fork) that oscillates in 
front of a wall with high quality surface such 
that, when touching the wall, the glass speed is 
null (Figure 5(a)). Normally, the crystal sound 
could hardly be perceived. Eventually, if the 
oscillation frequency is sufficiently high, then 
the glass starts ringing with small intensity. 
Assume now that a (small) bump appeared from 
the wall in the contact zone with the glass 
(Figure 5(b)). Obviously, every time the glass 
touches now the wall, the crystal starts ringing 
with high intensity since the impact speed is non 
null. This resonance sound dominates the weak 

ringing before (that continue to exist however) 
and indicates the existence of wall irregularity. 
The defect severity is encoded by the acoustic 
intensity of dominating sound. Actually, Figure 
5 also reveals another interesting phenomenon: 
the spectrum of vibration  has been split into 2 
sub-bands. The low frequency one groups all the 
components of crude vibration excepting for the 
defect noise, the spectral interference and the 
high frequency background noise, which are 
grouped inside high frequency (resonance) sub-
band. Unfortunately, the separation is not sharp, 
the zones are strongly overlapped. 

v
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Fig. 5. Resonance effect of sensors – an intuitive 

image. 
 
And yet, practically, two vibration components 
could be identified within v : a non-defect 
encoding one ( ) and a defect encoding one 
( ). How these components are mixed inside 

, it is difficult to say, especially because their 
spectra are not disjoint. All one can say is that 
the energy of  is mainly localized at low 
frequency (since the spectrum of natural 
oscillations generated by the mechanical system 
decays rapidly with increasing frequency), 
whereas the spectrum of  is mainly localized 
at middle or high frequencies (since the defect 
noise and, eventually, the interference forced the 
sensor to resonate).  

ndv

dv
v

ndv

dv

 
A simple model of  could be additive: v

nd dv v v≡ + . If one accounts the different 
modulation models of  (described before), 
another models could be: 

w

nd dv v v≡ ⋅ , 

nd dv v v≡ ∗ , etc. This model is less important in 
vibration analysis than the structure of defect 
encoding component, . According to sensor 
behavior, shocks and interference are carried by 
the resonance signal. Hence, the signal  could 
have the shape depicted in Figure 6.  

dv

dv

 
Practically,  is a modulated resonance signal:  dv
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d de dv v v≡ ⋅ r , where  is the envelope signal 
(low frequency) and  is the carrier resonance 
signal (high frequency). Depending on sensor 
mechanical characteristics, the natural resonance 
pulsation is 

dev

drv

2n sω = , the envelope decays as 

 and the carrier (damped) 

pulsation is 

( 2exp Re( )s )
2Im( )d s=ω .  

 
 

Time 

dv

Carrier resonance signal 

Envelope 

t1 t2 t3 

 
Fig. 6. Modulation of defect encoding vibration.  

 
The shocks producing the resonance could not 
be necessarily equally spaced, as illustrates the 
variable distance between instants ,  and  
in Figure 6. This corresponds well to the real 
shocks produced by defects.  

1t 2t 3t

 
Unfortunately, not only the shocks are 
stimulating the sensor to resonate, but the 
interference too. In this case, they are carried by 
the resonance signal as well, creating confusion 
between real and virtual defects. Interference 
signals could appear within mechanical systems 
with a certain degree of complexity, even they 
are defect free. But the interference effect could 
be neglected for simple machinery. A quite 
simple and efficient method to remove the 
interference components from vibration is 
described in [6]. This method mainly relies on 
Fourier filtering, a technique that yields 
canceling the energy inside some narrow bands 
of the spectrum. Moreover, the center 
frequencies of narrow bands (the interference  
frequencies, in fact) are automatically detected 
within this method by simply inspecting the real 
and imaginary parts of vibration Fourier 
Transform (FT) and selecting the “very extreme 
values” (according to an energy criterion) that 
have to be removed.  
 
The concept of envelope used in this context is 
related to signal modulation techniques and not 
to original definition from SP, which relies on 
the analytical signal construction by using the 
Hilbert filter [13]. Constructing the envelope of 

a signal is easier than in SP, as described within 
[9] and [12]. It practically consists of 2 
operations: wave rectification (full, by taking the 
absolute values or half, by taking the non 
negative values of data) and smoothing by 
(exponential) interpolation between maxima. A 
device performing this task is referred to as peak 
follower or envelope detector and is 
commercialized today as an integrated chip.  
 
The envelope of a signal has the energy 
concentrated towards lower frequency sub-
bands than the signal itself. This effect is mainly 
due to the rectification, but the interpolation also 
has some contribution. As mentioned above, the 
rectification could be full or half type, as 
suggested by Figure 7.  
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Fig. 7. Wave rectification principles.  
 
The wave sample at current instant  is 
either accounted without its sign (for full 
rectification) or totally ignored if negative (for 
half rectification), as illustrated by the bent 
arrows in the figure. Observe how the 
derivatives are changed from abrupt genuine 
values to smoother rectified values in Figure 7. 
It is well known that the signal derivative 
reflects the local (instantaneous) frequency 
contents: low instantaneous frequency signals 
have smooth derivatives, whereas within high 
instantaneous frequency signals the derivatives 
are abrupt. Hence, by rectification, the 
frequency content is shifted from high to low 
frequency sub-band. The interpolation is 
practically employed only for half wave 
rectification, because the full wave rectification 
provides in general not null values at the current 
instant (there are no gaps inside the resulted 
signal).  

1n +

 
In case of high frequency signals (vibrations), 
full or half wave rectification is almost 
equivalent to taking the whole envelope (i.e., 
practically, the interpolation doesn’t count any 
more). Actually, in many research reports, the 
authors just ignore the interpolation and deal 
only with full wave rectification. One can prove 
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by simulation that, in case of these signals, the 
spectra of rectified signals are practically 
indistinguishable from the spectra of their 
envelopes.  
 
 
5. MCFADDEN-SMITH DEFECT MODELS 
 
One of the first sound models concerned with 
vibration generated by single point defects in 
bearings was introduced by McFadden and 
Smith in [10]. In this subsection, their model 
and its generalizations are succinctly presented, 
because all these models seem to describe how 
the defect is encoded by vibration in a more 
accurate and natural manner than the previous 
models.  
 
The first model is based on the following 
assumptions (see Figure 8):  

θ(t)
Load

Defect

 
 

Fig. 8. Assumptions within McFadden-Smith model. 
 

a) The outer race is frozen, whereas the inner 
race is rotating with constant frequency rν  
(the ball pass frequency on the inner race 
( inν ) is computed following (1)). 

b) The defect is located only on the inner 
race (but extensions to another cases are 
possible).  

c) The bearing has a radial load and the 
defect is located at the angle ( ) 2 rt tθ πν=  
(at instant t ) by the vertical axis). ∈ R

 
Denote when the defective inner race rotates, in 
absence of load. Then it is very likely that  
constitutes a series of equally spaced shock 
pulses of certain amplitude (in general 
determined by the severity degree of defect), 
produced when balls strike the defect:  

p

0 0( ) ( )in
k

p t p δ t kT
∈

= −∑
Z

,   , (5) t∀ ∈R

where: 0p  is the severity degree of defect; 0δ  is 
the (continuous time) unit impulse ( 0 ( ) 1tδ =  if 

0t =  and null otherwise); 1/in inT ν=  is the 
period between successive shock pulses. One 
can prove that the extension of FT to a series of 
periodic pulses like p  is also a series of 
periodic pulses, but in frequency. Thus:  

( )0 0( ) in in
k

P p δ k
∈

= −∑
Z

ν ν ν ν ,   ∀ ∈Rν . (6) 

The load model is given by Stribeck equation:  

0 m, [ ,
1

( ) 1 (1 cos )
2

n

q q θ θ θθ θ
ε

∈ −= − −
⎡ ⎤
⎢ ⎥⎣ ⎦ ax max ]  (7) 

where:  is the maximum load intensity; 0q ε  is 
the load distribution factor;  for ball 
bearings (or 

3 / 2n =
9/10=n  for roller bearings); 

 is the maximum angle for which the 
load is transmitted towards the inner race (see 
Figure 9).  

max 0θ >

 

 
 

Fig. 9. Stribeck model of load distribution. 
 
Since the inner race rotates (i.e. θ  varies in time 
in (7)), the load on the defective zone is 
variable. By convention, the load is null when θ  
varies beyond the range specified in (7). Hence:  

0
1( ) 1 (1 cos(2 ))
2

n

rq t q v t⎡ ⎤= − − π⎢ ⎥ε⎣ ⎦
 (8) 

for [ ]max max(2 )% 2 ,rtπν π∈ −θ + − θ  and 0 
otherwise. The notation %2α π  denotes the 
“reminder” of angle α  in range ( , ]π π− +  (i.e. 
after all integer multiples of 2π  have been 
removed). The FT of load, , could be derived 
in a complicated closed form that is not very 
interesting. 

Q

 
When the bearing is under load, the shock pulses 
are modulated by the load distribution. Thus, 
from (5) and (8), one could derive that the defect 
noise (denoted by d  in Figure 2) is given by 
d p q≡ ⋅ , which, by the Inverse Convolution 
Theorem [13], leads to D P Q≡ ∗ . This noise is 

+θmax

Load 

− θ maxDefect 
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combined with the main oscillation of the 
bearing, denoted by x  in Figure 2. As the inner 
race rotates, but the transducer is frozen on the 
outer race, the oscillation and the defect noise 
are received as signals varying in amplitude 
according the position of transducer. Moreover, 
the defect position directly affects the intensity 
of received signal. This is maximum when the 
defect is located at minimum distance to the 
transducer and minimum when the distance is 
maximum. Practically, the oscillation x  that 
modulates the defect noise looks like in Figure 
10. 
 

Time Tr=1/νr 

M
ag
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tu

de
 

 
Fig. 10. Defect noise amplitude perceived by sensor. 
 
The waveform is periodical with period 

1/rT rν=  and thus, the crude vibration  is 
expressed as the product between the 
oscillation and the defect noise (so, the 
defect noise is not additive) 

, or, equivalently, as a 
convolution between 3 FTs: W P . 

w

w d x p q x≡ ⋅ ≡ ⋅ ⋅
Q X≡ ∗ ∗

Here, X  – the FT of oscillation x  – is simply a 
couple of rays (spectral lines) at rν± .  
 
The crude vibration is transformed into 
measured vibration data by means of the sensor. 
The sensor transfer function is mainly a first 
order linear one, due to electrical constructive 
part (usually, the mechanical part provides 
negligible time constants), as proven by 
equation (4). Thus, the sensor impulse response 
is very close to a decaying exponential with 
some (unknown) time constant :  0eT >

0( ) e
t

Teh t h
−

≅  ,                                  (9) t +∀ ∈R

This system is causal (null impulse response for 
negative instants). Its input is the crude vibration 

, whereas, to the output, the vibration  is 
generated:  
w v

( ) (in time)
( ) (in frequency)

v h w h p q x
V H W H P Q X
≡ ∗ ≡ ∗ ⋅ ⋅⎡

⎢ ≡ ⋅ ≡ ∗ ∗⎣
(10) 

The vibration spectrum reveals 2 types of rays:  

a. located at multiples of rν , such as: rν± , 
rν2± , rν3± , ...;  

b. located at frequencies such as: inν± , 
rin νν ±± , rin νν 2±± , rin νν 3±± , ..., inν2± , 

rin νν ±±2 , rin νν 22 ±± rin νν 32 ±± , etc.  
 
In general, the defect is announced by rays at 
frequencies { } ,in r m n

m n
∈

ν + ν
Z

, i.e. the ball pass 

frequency on the inner race (where the fault 
appeared) is directly involved within the 
spectrum. In general, natural frequencies (1) 
could reveal defects located on the bearing 
constructive parts that generated them ( inν  for 
inner race, outν  for outer race, cinν  or coutν  for 
cage, etc.). This idea seems to be very important 
for bearings fdd. It is thereby confirmed by one 
of the simpler and widely employed fdd 
methods in bearings industry: the Envelope 
Analysis [2]. The method also confirmed that 
the height of rays (the spectral power) or their 
decaying speed encodes the severity degree of 
defect. 
 
The model (10) has been employed in many 
applications, in spite of its obvious limitations. It 
also was the source of some generalizations 
aiming to overcome its drawbacks. The same 
authors provided first generalizations in [11]. 
The main goal was to extend the model from 
single to multiple-point defects. In this aim, the 
following assumption has been added: if the 
mechanical system is linear, the FT of crude 
vibration ( w ) is the superposition of FT 
produced by every defective point.  
 
Experimentally, this hypothesis has been 
verified in a satisfactory manner and only for 2 
defective points located on the inner race. 
Authors noted however in [11] that the sum of 
FT could be distorted by another FT provided by 
interference signals (u  in Figure 3). One of 
such interference signals could be generated by 
cage rotation, which is distorting the FT phases. 
In this case, for a single point defect on inner 
race, the rays indicating the possible defect are 
located at frequencies 
( ){ } ,cout m nb rmn n m

∈
+ −

Z
ν ν  (since (1) involves: 

).  ( )in b r coutnν ν ν= −
 
The idea introduced in [11] has been better 
exploited later by other authors (Su and Lin), in 
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[14]. Their model could be represented like in 
Figure 11. Although the mathematics are not 
very accurate in [14], the authors’ point of view 
could be easily understood. The shock pulses p  
(5) input the system in Figure 11. At the first 
tage, they are modulated by different loads 
applied on the mechanical system (also referred 
to as contact energy points): { } 1,i i m

q
∈

 (for 

example, expressed by Stribeck equations (7) or 
(8)). The defect noise p  is the sum of all  
modulated shock pulses, as first manifestation of 
superposition hypothesis. This arrives to the 
sensor following different transmission paths 
generated by the relative location of defects: 

m

{ } 1,i i n
x

∈
. Each oscillation modulating now the 

defect noise is a finite sum of elementary 
harmonic signals with certain frequencies. The 

 crude vibration components n { } 1,i i n
w

∈
 

obtained so far are converted by the sensor into 
 raw vibration signals. n
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Fig. 11. Multiple-point defect model (Su and Lin). 
 
The sensor impulse response function in (9) is 
replaced here by a set of  weighting functions, 
harmonic, but exponentially decaying (looking 
like in Figure 1, left). The superposition 
assumption is invoked again to build the raw 
vibration  from the resulting vibration signals. 

n

v
This model is general enough, but quite 
complex. Many unknown parameters have to be 
estimated (or set), such as the frequencies of all 
invo ed harmonic signals, the sensor damping 
cons nts, etc.  

 
With
raw 
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