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Abstract: Recently, failure prediction of discrete-event systems (DESs) has received increasing attention. 

In this paper, the problem of relative predictability of decentralized failure prognosis in DESs is 

investigated. The notion of r-step relative copredictability is formalized under the decentralized 

framework to capture the feature that the occurrence of at least a failure event can be predicted prior to r  

steps at most based on at least one local observation. It is deducted that the relative copredictability is 

weaker than copredictability and relative predictability. In order to achieve the prediction performance of 

a decentralized system, the necessary and sufficient condition for verifying the relative copredictability is 

presented. And a polynomial-complexity algorithm is developed to test the relative copredictability and 

compute the boundary number of steps prior to the occurrences of failure events. Furthermore, some 

examples are provided to illustrate the presented results. It is worth noting that the reported work 

generalizes the main results of relative predictability from the centralized systems to the decentralized 

setting and extends the results of copredictability introduced by Fuchun Liu to general cases. 

Keywords: predictability, discrete event systems, decentralized failure prognosis. 

 

1. INTRODUCTION 

This paper investigates the relative predictability of 

decentralized failure prognosis of DESs. The diagnosis of 

DESs which aims to timely detect the failures that cannot be 

observed directly according to the local behaviors of the 

system has been widely investigated (Sampath et al., 1995; 

Liu, 2015; Yao and Feng, 2016; Deng and Qiu, 2017; Zhao et 

al., 2017; Keroglou and Hadjicostis, 2018; Masopust and Yin, 

2019; Vianaand and Basilio, 2019) during the past two 

decades. The study of failure prediction (or prognosis) is 

inspired by the problem of failure diagnosis. Compared with 

failure diagnosis that focuses on identifying the failures after 

their occurrences, failure prediction is to accurately forecast 

failures prior to their occurrences based on the partial 

observation of the system. Recently, failure prediction of 

DESs has received increasing attention and many different 

approaches focused on the centralized framework (Genc and 

Lafortune, 2009; Takai, 2012; Chang et al., 2013;  Chen and 

Kumar, 2014; Yokotani et al., 2016) have been proposed, 

where there is a single site for collecting all the information 

about the system and there is only a prognoser performing 

failure prediction. Genc and Lafortune initiated the study of 

predictability of DESs and provided its formal definition and 

verification method (Genc and Lafortune, 2009). Takai 

discussed the robustness of failure prediction  and introduced 

a robust prognoser to predict the occurrences of failures for 

given a set of possible DES models. The notion of AAS-

predictability was introduced by Chang, Dong et al. and a 

necessary and sufficient condition for the property was 

presented (Chang et al., 2013). The framework introduced by 

Genc and Lafortune (Genc and Lafortune, 2009) was 

generalized to the case of stochastic models in (Chen and 

Kumar, 2014), and the notion of Sm-prognosability was 

formulated to capture the ability of predicting the occurrences 

of failures prior to at least m  steps in the setting of stochastic 

DESs. Yokotani et al. developed a theoretical framework for 

abstraction-based failure prognosis of partially observed 

DESs (Yokotani et al., 2016). 

However, for many complex large-scale systems, the 

centralized failure prediction may not always be appropriate, 

and instead failure prediction needs to be performed by 

decentralized sites where prediction information is collected. 

In the decentralized setting, there is a family of local 

prognosers running at several sites processing local 

observation. Each local prognoser may only observe part of 

the dynamic behavior of the system and make local 

prognostic decision based on its own observation. In (Takai 

and Kumar, 2011, 2012; Yin and Li, 2016, 2019; Liu, 2019), 

decentralized failure prediction under different architectures 

was studied. The decentralized prognoser defined by a map to 

prognostic decision "1" or "φ" was employed to perform 

coprediction (Takai and Kumar, 2011), where "1" means a 

failure is inevitable and"φ" means either a failure is not 

inevitable or its inevitability is not known. The notion of 

joint prognosability was introduced by Takai to describe the 

property that the occurrence of each failure can be predicted 

by at least one local prognoser (Takai and Kumar, 2012). The 

notion of k-reliable coprognosability was proposed (Yin and 

Li, 2016) as the necessary and sufficient condition for the 

existence of a decentralized prognoser under the presence of 

unreliable local prognostic decisions. Yin and Li proposed 

two novel decentralized protocols (Yin and Li, 2019) for the 

purpose of fault prognosis. In (Liu, 2019), the notion of 

copredictability of DESs was formalized to capture the 

feature that the occurrences of failure events can be predicted 

in advance based on at least one local observation and the 
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coverifier-based approach was developed to verify the 

predictability. 

Inspired by the wide-spread adaptability of decentralized 

framework, the paper aims to deal with relative predictability 

of DESs in the setting of decentralized framework. The work 

is a continuation of the previous work related to relative 

predictability of DESs (Zhao et al., 2019). It also draws on 

the study of the work ( Liu, 2019) and its main contributions 

are as follows: 1) formalizing the notion of r-step relative 

copredictability of DESs; 2) introducing some new concepts 

such as failure branch, predictive vector and step vector; 3) 

deriving the necessary and sufficient condition of the 

property; 4) designing a polynomial-time verification 

algorithm. 

The results presented in the article are mainly related to the 

work of following references: Takai and Kumar, 2012, Yin 

and Li, 2019, Liu, 2019 and Zhao et al., 2019. However, the 

distributed prognosis discussed by Takai (Takai and Kumar, 

2012), Yin (Yin and Li, 2019) and Liu (Liu, 2019) is a 

completely joint predictable property, which is clearly 

different from the relative copredictability introduced by this 

paper. The completely joint predictable property requires that  

the occurrence of each failure event can be predicted by at 

least one local site, whereas relative copredictability only 

requires that the occurrence of a failure event can be 

predicted by at least one local observation. It should be 

pointed out that the authors of this article (Zhao et al., 2019) 

have studied the problem of relative predictability of failure 

event occurrences, but we dealt with the issue under the 

centralized framework. This paper extends these results to 

distributed framework. Moreover, the notion of failure branch 

is redefined so that it can be applied to more general DESs; 

the concept of predictive vector is introduced to accurately 

describe the relative copredictability of a DES. Through the 

value of the predictive vector, which failure branches in the 

system are copredictable can be known clearly. In addition,  

this paper presents a polynomial-time algorithm for 

accurately computing the predictive vector and the boundary 

number of steps prior to the occurrences of failure events. It’s 

worth noting that the algorithm is also used to verifying 

copredictability (Liu, 2019) and relative predictability (Zhao 

et al., 2019). Therefore, the research results of this paper have 

wide applicability.  

The remainder of the paper is organized as follows. In section 

2, the necessary background on DESs is presented. In section 

3, the notions of r-step relative copredictability is introduced. 

In section 4, an algorithm is presented for verifying the 

property. Finally, in section 5, conclusions are drawn. 

2. PRELIMINARIES 

A DES is modeled as an automaton 
0( , , , )= G Q q , where 

Q is the finite set of states,  is the set of events, 

:  →Q Q is the transition function and 
0 q Q is the initial 

state. * is the set of all finite strings over  , including the 

empty string . Given an event    and a string 
* ,s if 

 appears at least once in s , then denote it as .  s The 

language of G denoted by ( )L G or L is defined as 

*

0{ : ( , ) }=  L s q s Q . Given a trace ( )s s L , s is the the 

prefix-closure of s , */ ={ : } L s t st L denotes the post 

language of L after s and s represents the length of 

.s Under partial observation, the event set is partitioned into 

two disjoint subsets , =  o uo
where o

and
uo are 

respectively the observable and unobservable event sets. 

When a string of events occurs, the sequence of observable 

events is filtered by the usual projection * *:  → oP . And 

the inverse projection is *

1( ) { : ( ) }−


=  =

o
L y

P y s L P s y . 

Let { } =  f f
 denote the set of failure events which are to 

be predicted. For set  f
,  f

represents the number of failure 

events contained in the set.  

*=   f fL L  denotes the set of all traces of L  that end in a 

failure event and *

~ ( )=   − f fL L denotes the set of all 

traces in L containing no failure events. Define 
'

~ ~{ : ( / ) }=    f f fL s L t L s t as a subset of 
~ fL in which 

the post language of L after s contains failure events and 
''

~ ~{ : ( / )=   f fL s L t L s } f t as another subset of 
~ fL in 

which the post language of L after s contains no failure 

events. ' ''

~ ~ ~= f f fL L L .  

Let q  be a state of .G  The feasible event set of q  is denoted 

by ( ) { : ( , ) }   =  q q Q . 

Definition 1 (Liu, 2019): Let L  be the language generated by 

plant G with a failure event set . f
 Assume there are m  local 

projections * *

,:  → i o iP ,where i I and {1,2,..., }.=I m L is 

said to be copredictable w.r.t.  f
 and { } i i IP  if 

~( )( )( )( )[ ( ) 1],         =f f jn s L j I t s L t  

where is the set of natural number and the condition ( )j t  

is defined as follows: 

1

~1 ( / ( ( ( )) ))( ( ))
( ) { (1)

0

−     
= j j f f

j

if v L P P t L v n v
t

otherwise

Intuitively, L  being copredictable means that for each failure 

event, there is at least one location to predict its future 

occurrence by limited observable events. 

3. R-STEP RELATIVE COPREDICTABILITY 

In this section, the definitions of relative copredictability and 

predictive vector are given firstly. Then based on the 

definitions, the formal description of r-step relative 

copredictability is introduced. 

3.1. Definition of relative copredictability 

Let 
0( , , , )= G Q q  be a plant with a failure event set  f

. 

Assume there are m  local projections * *

, ,:  → i o iP where  

i I and {1,2,..., }.=I m The m local projections are  

supposed to be independent, namely, without communicating 

their observation to each other.  
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Definition 2: Let L be the language generated by G  with  f
. 

A trace  fs L  is said to be copredictable w.r.t.  f
and { } i i IP  

if 

~

1

~/( )( )( ) )( ( ( ( ) ))−         f j j fn t s L v L P t Lj PI

[ ( )].  fv n v  

Remark 1: Here, t is referred to as predictive prefix of .s  

Suppose 
1 2, ,..., lt t t are predictive prefixes of s w.r.t. ,jP

 
where .l If for =1,2,..., ,i l {1,2,..., } k l such that 

k it t , then
kt is called the shortest predictive prefix of s  

w.r.t. ,jP
 
denoted by ( )jt s .  

Definition 3: Let L  be the language generated by G  with  f
. If 

there is a trace s  ( ) fs L and s  is copredictable w.r.t.  f
and 

{ } i i IP  , then L is said to be relatively copredictable w.r.t.  f
and 

{ } i i IP .  

Intuitively, L  being relative copredictable means that there is 

at least one failure trace where the future occurrences of 

failure events can be inferred based on at least one local 

observation. 

Remark 2: Relative predictability (Zhao et al., 2019) of 

DESs can be viewed as a special case of the relative 

copredictability with one location ( i.e. 1=m ).  

Remark 3: Comparing with Definition 1, it is deduced that 

copredictability introduced by Liu is a special case of the 

relative copredictability. If L is copredictable, it must be 

relatively copredictable, but not vise versa. 

Example 1: Consider the plant G described by Fig.1, 

where
0 1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , , }=Q q q q q q q q q q q q , 0q is the initial 

state, { , , , , , } = a b c d u f and { } =f f  is a failure event set. 

Assume that there are two local projections * *

, ,:  → i o iP  

where 1,2=i , and 
,1 { , , } =o a b c , 

o,2 { , , } = a c d . 

 

Fig. 1. Plant G of Example 1. 

Now the property of copredictability of G
 
will be analysed.  

Case 1: Take =s af  ( ) fs L
 
and =t a

~( ( ))  ft s L . If 1=j , 

then for any n , there is 1

1 1 ~( ( ( )) )−  fta P P Lu and 

= nv cc such that /v L ua  and v n , but f v . So s is not 

predictable w.r.t.  f
 and 

1P . Similarly, it is known that s  is 

not predictable w.r.t.  f
 and 

2P .  

In this case, the occurrence of event f contained in s  can not 

be predicted by either of two locations. So it is known that 

=s af is not copredictable w.r.t.  f
and 

{1 2}{ } ，i iP by Definition 

2.  

Case 2: Take =s adf  ( ) fs L and =t ad
~( ( )) ft s L . If 

1=j , then for any n , there is 1

1 1 ~( ( ( )) )− fa P P t Lu and 

= nv cc such that /v L ua  and v n , but f v . But if 2=j , 

1

2 2 ~( ( ( )) ) { }.− =fP P t L ad Then for any ,n there is 

= nv fc such that /v L ad , v n  and f v . 

In this case, the occurrence of event f contained in s can not 

be predicted by the first location, but can be predicted by the 

second location. So =s adf is copredictable w.r.t.  f
and 

{1 2}{ } ，i iP . 

Case 3: Take =s baf  ( ) fs L and =t ba
~( ( )) ft s L . If 

1=j , 1

1 1 ~( ( ( )) ) { }− =fP P t L ba . Then for any n , there is  

= nv fc such that /v L ba  , v n and f v . But if 2=j ,  

then for any ,n there is 1

2 2 ~( ( ( )) )− fua P P t L  

and = nv cc such that /v L ua and v n , but f v .  

In this case, the occurrence of event f contained in s can be 

predicted by the first location, but can not be predicted by the 

second location. So =s baf  is copredictable w.r.t.  f
and 

{1 2}{ } ，i iP . 

By Definition 3, it is known that L  is relative copredictable 

w.r.t.  f
 and 

{1 2}{ } ，i iP . But according to Definition 1, L is 

identified as non-copredictable.  

3.2. Definition of predictive vector 

Definition 4 ( failure states ) Let G be a deterministic 

automaton and { } =f f
 be the failure event set. State q Q  

is referred to as a failure state if ( ) f q ; And the set of 

failure states is denoted by Θ. 

Definition 5: Path 
0 0 1 -1( , , ,..., , ) n nq q q of G  is referred to as a 

failure branch if 
n q ; And the set of failure branches is 

denoted by 
fB  . 

Definition 6: Let  fb B be a failure branch of G  and ( )L b  be 

the language generated by b . Branch b  is copredictable w.r.t. 

 f
 and { } ,i i IP  if s ( )  L b  and s f fL is copredictable w.r.t. 

 f
 and { } i i IP . 

Definition 7: Let 
1 2{ , ,..., }=f nB b b b be the set of failure 

branches of G . Predictive vector ζ of G  is defined as:  

1 2( , ,..., )   = n
.                                                               (3) 

If 
jb is copredictable w.r.t.  f

and { } i i IP , where 1,2,...,=j n , 

then =1 j
; otherwise, =0 j

.  
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Remark 4: If (1,1,...,1) = , L generated by G is copredictable 

w.r.t.  f
 and { } i i IP ; If 

1(0 ,0,...,0), = the language L is not 

relatively copredictable w.r.t.  f
and { } i i IP ; otherwise, the 

language L  is relatively copredictable w.r.t.  f
and { } i i IP .  

The predictive vector describes the copredictability of a 

decentralized DES in detail. The more 1 in the vector, the 

more copredictable failure branches exist in the system. That 

is to say, the system has stronger copredictable performance. 

3.3. Definition of r-step relative copredictability 

Definition 8: Let L  be the language generated by G  with 

 f
and trace  fs L be copredictable w.r.t.  f

and { } i i IP . 

Assume the occurrences of failure events contained in s  are 

predictable by projections 
1 2 k, ,..., ( )P P P k m  and ( )jt s is the 

shortest predictive prefix of s  w.r.t. 
jP , where 1,2,..., .=j k (a) 

If take ( ) (min( ) ( ) 1)= − −j jr s s t s , then s is predictable prior 

to ( )jr s steps at most w.r.t.  f
and 

iP . (b) If take 

1 2( ) min{ ( ), ( ),..., ( )}，= kr s r s r s r s then s is said to be 

copredictable prior to ( )r s  steps at most w.r.t.  f
 and { } i i IP .  

Definition 9: Let  fb B  be a failure branch of , ( )L b G  be 

the language generated by b . Suppose ( )s L b ,  f fs L  

and  fs  is copredictable prior to ( )r s  steps at most w.r.t.  f
 

and { } i i IP  . Take ( ) ( )=r b r s , then b  is copredictable prior to 

( )r b  steps at most w.r.t.  f
 and { } i i IP . Suppose ( )s L b , 

 f fs L  and  fs  is not copredictable w.r.t.  f
 and { } i i IP  , 

then take ( ) ( )== r b r s  (  denotes infinity).  

Definition 10: Let L  generated by G  be copredictable with 

 f
and { } i i IP . Suppose 

1 2{ , ,..., }=f nB b b b . (a) Take 

1 2( ( ), ( ),..., ( )) = nr b r b r b ,   is referred to as step vector of 
fB , 

where if 
ib  ( 1,2,..., )=i n is not copredictable w.r.t.  f

 and 

{ } i i IP , then ( ) = ir b . (b) If take 
1 2min{ ( ), ( )..., ( )}= ir r b r b r b , 

then L  is said to be copredictable prior to r  steps at most 

w.r.t.  f
 and { } i i IP .  

4. AN ALGORITHM FOR VERIFYING RELATIVE 

COPREDICTABILITY 

In the section, an algorithm based on the verifier (Jiang et al., 

2001; Yoo and Lafortune, 2002) is presented to verify 

relative copredictability of DESs and to compute the 

boundary number of steps prior to occurrences of failure 

events. Furthermore, some examples are provided to illustrate 

the algorithm. 

4.1. A verification algorithms based on a verifier 

Algorithm 1: 

Let L be the language generated by G
 
with  f

. Assume 

there are m  local projections 
* *

,:  → o iP , where i I . 

 

 

Input:  

0( , , , )= G Q q , =fB , 0=k  , 0=n . 

Step 1: Mark all failure states of G . 

Find all failure states of G  and mark them with double solid 

circles. 

Step 2: Construct non-failure automaton 
NG .  

= N NG G A  models the normal behavior of G , where 
NA  is 

composed of a single state N with a self-loop labeled with all 

events in \  f
 .  

Step 3: Put all failure branches of 
NG in the set 

fB and 

construct automata for them. 

Find all failure branches of 
NG  by Definition 5 and denote 

them by 
1 2, ,..., nb b b . 

1 2{ , ,..., }=f nB b b b , where = fn B  is the 

number of failure branches. Let 
ib  be a branch of 

fB and 

( )iL b  be the language generated by 
ib , where 1,2,...,=i n . 

Construct the automata 1 1 1 1 0( , , , )= i i i iG Q q  for ( )iL b , 

where 1 { := iQ q Q q is the state in the branch }ib , 

1 { : ( )}  =  i iL b  and 
1i 1i 1i1 Q Q= | .   →i  

Step 4: Initialize predictive vector and step vector. 

Predictive vector 
1 2=( ),n, , . . . ,    step vector

1( ),( = r b  

2( ),..., ( )),nr b r b where =0,i ( ) = ir b  and 1,2,...,=i n .  

Step 5: Construct an automaton for ''

~ fL  . 

Construct automaton 
2 2 2 2 0( , , , )= G Q q  for ''

~ ,fL where 2  

''

~{ : ( )=    fs L },  s 2 0

''

~{ : （ )=  =    fQ q Q q q Ls

0( , ) } =q s q  and 
2 2 22 Q Q= | .   →  

Step 6: For each j I  and 1,2,...,=i n , construct verifier 

automaton 
3

j

iV  according to 
2G , 

1iG  and 
jP . 

Based on local projection ，jP
 
automata 

2G  and 
1iG , construct 

verifier automaton 
3

j

iV . The verifier automaton is a finite-state 

automaton 

3 ,0( , , , )= j j j j

i Vi Vi Vi vV Q q
 
                                            (4) 

where 
2 1 j

Vi iQ Q Q is the set of states; 2 1 =   j

Vi i ; 

,0 0 0( , )=vq q q ;  j

Vi
 is the state transition function defined as 

follows: 

for any state 
1 2( , )  j

Vix x Q , if  o
 for the local projection 

jP , 

2 2)1( x ,  Q  and 
1i 1)2( x ,   iQ , then  

1 2 2 1 1 2(( , ), ) ( ( , ), ( , ));     =j

Vi ix x x x
 

if  uo
 for the local projection 

jP , then  
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(a) if 
2 2)1( x ,  Q  and 

1i )2( x ,   is not defined in the 
1iG , 

then 

1 2 2 1 2(( , ), ) ( ( , ), );   =j

Vi x x x x  

(b)  if
2 )1( x ,  is not defined in the 

2G and 
1 2 1( , )  i ix Q , 

then 

1 2 1 1i 2(( , ), ) ( , ( , ));   =j

Vi x x x x  

(c)  if 
2 2)1( x ,  Q  and 

1 2 1( , )  i ix Q , then 

1 2 2 1 2 1 1i 2 2 1 1i 2(( , ), ) {( ( , ), ), ( , ( , )), ( ( , ), ( , ))}.         =j

Vi x x x x x x x x

 

Step 7: Check if there exists a state in the 
3

j

iV  satisfying the 

condition (5) given by Theorem 1 below.  

If the answer is yes for each j I , then =0i
; otherwise 

=1i
 and 1= +k k .  

Theorem 1: Let 
3

j

iV  be the verifier of branch 
ib under the 

location projection 
jP . The branch 

ib  is not copredictable 

w.r.t.  f
 and 

jP  iff there exists a state
1 2( , )  j

Vix x Q   such that 

1 2 i[ x ] [ x ] ,  i  
                                   (5)  

where  i
 denotes the set of failure states in the branch 

ib . 

Proof: (Sufficiency) Suppose there exists a state 
1 2( , )  j

Vix x Q  

such that 
1x i

and 
2 ix  . By the  construction of 

3

j

iV , 

there exists a string ''

~ fs L  and '

~ ft L such that ( ) ( )=P s P t , 

1 0( , )=x x s and 
2 0( , ).=x x t Since ( ) ( ),=P s P t ib is not 

copredictable w.r.t.  f  
and 

jP
 
by Definition 2 and Definition 

6.   

 (Necessity ) Suppose that 
ib  is not copredictable w.r.t.  f

 

and 
jP . Then it is known that there exists '

~ fs L such that 

0( , ) ix s . And there exists ''

~ ft L
 
and ( ) ( )=P s P t  such 

that 
0( , ) ix t . According to the definition of 

3

j

iV , there 

exists a state 
1 2( , )  j

Vix x Q such that
0 1( , ) , =x s x  

0 2( , ) =x t x and 

1 2 i[ x ] [ x ]  i
. Thus, the condition(5) holds.  

If there is a j I such that the condition (5) does not hold, 

then the branch 
ib is copredictable w.r.t.  f

and .jP Let 

( ) is L b  and  f fs L , compute ( ) (min( ) ( ) 1)= − −j jr s s t s . 

And ( ) ( ).=j j

ir b r s Suppose the occurrences of failure events 

contained in 
ib are predictable by projections

1 2, ,P P  

..., ( )kP k m , then 1 2( ) min{ ( ), ( )..., ( )}= k

i i i ir b r b r b r b .  

Step 8: Compute the value of predictive vector  , step vector 

 and r .  

1 2( , ,..., )   = n and 
1 2( ( ), ( ),..., ( )) = nr b r b r b . min{ ( )}= ir r b , 

where 1,2,...,=i n .  

Output:  and r . 

If =(1,1,...,1) , then L  is copredictable prior to r steps at 

most w.r.t. { } i i IP  and ; f
  

if = 0,0,...,0)( , then L  is not relatively copredictable w.r.t. 

{ } i i IP  and  f
; 

otherwise, L  is relatively copredictable prior to r steps at 

most w.r.t. { } i i IP  and . f
  

Now, the computational complexity of the algorithm is 

discussed. 

Given the system 
0( , , , )= G Q q , the number of feasible 

transitions from a reachable state q Q is  in the worst 

case. So the time complexity of the first step is ( )O Q . The 

number of states of G  is Q , and the number of feasible 

transitions of every state is ( - )  f
, so the construction of 

NG takes 
f( - ))（ O Q time. In the third step, because 

automaton 
1iG has 

1iQ states and every state has 
1 i

feasible 

transitions at most, so the the time complexity of construction 

of 
1iG is 

1 1( )i iO Q . Likewise, the time complexity of the 

construction of
2G in the fifth step is 

2 2( ).O Q The 

computational complexity of the sixth step and the seventh 

step is based on a verifier. The construction of the verifier 

takes time 2( )O n Q  in the worst case. Overall, the 

complexity of the algorithm is polynomial.  

4.2. Illustrative examples 

Example 2: Consider again plant G  described in Example 1. 

Example 1 shows that L is relative copredictable w.r.t.  f  
and 

1 2{ , }P P by using the Definition 3. In the following, the 

conclusion will be verified by Algorithm 1.  

 

Fig. 2. Plant G of Example 2. 

According to Definition 4, it is known that 
2q , 

6q  and 
7q are 

failure states of G , which are marked with double solid circle 

and highlighted by red color as that in Fig.2.
 

 

Fig. 3. 
NA  

NA  is described by Fig.3. Non-failure automaton 
NG  is 

constructed based on 
NA  as shown in Fig.4 . 
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Fig. 4. 
NG  of Example 2. 

As Fig.4 shows, 
NG  has three failure branches: 

1 (0, ,2)=b a , 

2 0, ,2, ,6（ ）=b a d and 
3 0, ,3, ,7( ) .=b b a Put them in the set 

fB . 

1 2 3{ , , }=fB b b b and 3.= =fn B Let  i
denote the set of the 

failure states in the branch 
ib , then 

1 {2} = , 
2 {6} = and 

3 {7} = .  

Automata 
11G , 

12G and 
13G are constructed for 

1( )L b , 
2( )L b  

and 
3( )L b  as shown in Fig.5(a), Fig.5(b) and Fig.5(c) 

respectively. 

 

(a) 
11G  

 

(b)
12G  

 

(c)
13G  

Fig. 5. 
1 ( 1,2,3)=iG i  of Example 2. 

Since 3=n , 1 2 3( ), ,   = , 
1 2 3( ), ( ), ( ))( = r b r b r b , where 

=0i
, ( ) = ir b  and 1,2,3=i . 

Now construct automaton 
2G  as that in Fig.6. 

 

Fig. 6. 
2G of Example 2. 

Based on local projections 1 2, ,P P automata
11G and 

2 ,G construct verifier automata 1

31V and 2

31V  as described in 

Fig.7. 

 

Fig. 7. 1

31V  or 2

31V  

With the similar method, automata 1

32V and 2

32V are constructed 

as that in Fig.8(a) and Fig.8(b); automata 1

33V and 2

33V are 

constructed as that in Fig.9(a) and Fig.9(b). 

 

(a) 1

32V  

 

(b) 2

32V  

Fig. 8. i

32 ( 1,2)=V i of Example 2. 

 

(a) 1

33V  

 

(b) 2

33V  

Fig. 9. i

33 ( 1,2)=V i of Example 2. 

As Fig.7 shows, state (4,2) in the 1

31V or 2

31V  satisfies condition 

(5), i.e., 
14  , but 

12  . Therefore, 
1b is not copredictable 

w.r.t.  f
 and 

{1,2}{ } i iP , i.e. 
1=0 .  

From Fig.8(a), it is clear that state (4,6) in the 1

32V satisfies 

condition (5), i.e., 
24 , but 

26 . So 
2b  is not predictable 

w.r.t.  f
 and 

1P . But in Fig.8(b), there is no state of the 

2

32V satisfies condition (5), so 
2b is predictable w.r.t.  f

and 
2 .P

 
According to the definition 2 and 6, 

2b is copredictable w.r.t. 

 f
 and 

{1,2}{ } i iP , i.e., 
2 =1 . Let =s ad , then 

2L( )s b and 

 f fs L . As seen from 2

32V , a  is not the shortest predictive 

prefix of the trace  fs since there is an indistinguishable 

string ua . Its the shortest predictive prefix is ad , i.e., 
2 ( ) . =ft s ad

 
Therefore, 2( ) (min( ) = −f fr s s  

2( ) 1) 0 − =ft s  
i.e., 

2( ) 0=r b . 

By a simple inspection Fig.9(a), there is no state in the 1

33V  

satisfies condition (5), so 
3b  is predictable w.r.t.  f

 and 
1P . 

As Fig.9(b) shows, state (4,7) in the 2

33V satisfies condition (5), 

i.e., 
34 , but 

37  . So
3b  is not predictable w.r.t.  f

 and 

2 .P According to the definition 2 and 6, 
3b is copredictable 

w.r.t.  f
and 

{1,2}{ } ,i iP i.e., 
3 =1. Let ,=s ba then 

3( )s L b and 

 f fs L . As seen from 1

33V , b  is the shortest predictive prefix 

of the trace  fs since there is no indistinguishable string with 

the string ,b i.e., 1 ( ) . =ft s b Therefore, 1( ) (min( =fr s  

1) ( ) 1) 1 − − =f fs t s  
i.e., 

3( ) 1=r b . 

According to the above analysis, it is known that 

= 0,1,1)( , ( ,0,1) =   and 
1 2 3min{ ( ), ( ), ( )} 0= =r r b r b r b . 
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The result shows that w.r.t.  f
 and 

{1,2}{ } i iP , failure branch 
1b  

is not copredictable, failure branch 
2b is copredictable prior to 

0 steps at most, while failure branch 
3b is copredictable prior 

to 1 steps at most. That is to say, two of three failure branches 

of G are copredictable. Therefore, the same conclusion as 

Example 1 that L is relatively copredictable w.r.t.  f
and 

{1,2}{ } i iP is drawn. Moreover, we know that L is relatively 

copredictable prior to 0 steps at most w.r.t.  f
 and 

{1,2}{ } i iP .  

Example 3: Consider the plant G shown in Fig.10, where 

{ , , , , } = a b c d f with a failure event set { } =f f and 
0q is the 

initial state. Assume that there are two local projections 
* *

,:  → i o iP , where 1,2=i , 
,1 { , , , } =o a b c d , and 

,2 { , , } =o a b c . 

 

Fig. 10. Plant G  in Example 3. 

In the following steps,  Algorithm 1 will be used to test the 

copredictability of G  . 

From Fig.10, it is known that 
1q and 

4q are failure states. 

Mark them with double circle as that in Fig.11. 

 

Fig. 11. Plant G  of Example 3 with failure states. 

NG  is obtained by  NG A  as shown in Fig.12. 

 

Fig. 12.
NG  of Example 3. 

As Fig.12 shows, 
NG  

has two failure branches: 
1 (0, ,1)=b a , 

2 (0,d,4)=b . Therefore, 
1 2B { , }=f b b , n= B 2=f

. Construct 

automata 
11G and 

12G as that in Fig.13(a) and Fig.13 (b), 

respectively. 

 

(a) 
11G  

 

(b) 
12G  

Fig. 13. 
1i (i=1,2)G  of Example 3. 

Because 2=n , so
1 2=( , )   , 

1 2( ( ), ( )) = r b r b , where 
i 0 = , 

( ) = ir b  and 1,2=i . 

Continue to construct automaton 
2G as that in Fig.14. 

 

Fig. 14. 
2G  of Example 3. 

Then, construct automata 1

31G  and 2

31G  as that in Fig.15(a) and 

Fig.15 (b), respectively; construct automata 1

32G and 2

32G as 

that in Fig.16 (a) and Fig.16 (b), respectively. 

 

(a) 1

31V  

 

(b) 2

31V  

Fig. 15. 
31(i=1,2)iV  of Example 3. 

 

(a) 1

32V
 

 

(b) 2

32V  

Fig. 16. 
32 (i=1,2)iV  of Example 3. 

As Fig.15 shows, state (5,1) in the 
2

31V  satisfies condition (5). 

But in the 1

31V , there is no state satisfies condition (5). 

Therefore, 
1b  is copredictable w.r.t.  f

 and 
{1 2}{ } ，i iP , i.e. 

1=1 . Let =s a , then 
1( )s L b  and  f fs L . As seen from 

1

31V , a is the shortest predictive prefix of the trace  fs  since 

 

there is no indistinguishable string with the string a  ,  i.e. ,
 

1( ) =ft s a . Therefore, 1 1( ) (min( ) ( ) 1) 0  = − − =f f fr s s t s  , 

i.e., 
1( ) 0=r b .  
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Note the state (4,4) in the 1

32V  or 2

32V  of Fig.16, in which the 

first state 4 is the state 4 in 
2G , while the second state 4 refers 

to the failure state 4 in the 
2b . So the state (4,4) satisfies 

condition (5). Therefor, 
2b is not copredictable w.r.t.  f

and 

{1 2}{ } ，i iP , i.e. 
2 0 = .  

Through the algorithm, it is known that (1 0)， = , =(0, )   

and 
1 2min{ ( ), ( )}=0=r r b r b . 

The result indicates that one of two failure branches of G  is 

copredictable. So L generated by the plant G is relatively 

copredictable prior to 0 steps at most w.r.t.  f
and 

{1 2}{ } ，i iP . 

Example 4: Consider the plant G (Liu, 2019) shown in 

Fig.17, where { , , , , , }  = f ua b e g with a failure event set 

{ } =f f
 and 

0q is the initial state. Assume that there are two 

local projections 
* *

,:  → i o iP , where 1,2=i , 
1 { , , } =o g a b , 

and 
2 { , , }. =o e a b Liu has shown that L generated by G is 

copredictable w.r.t.  f
and 

{1 2}{ } ，i iP . Now the conclusion is 

verified by Algorithm 1. 

 

Fig. 17. Plant G  in Example 4. 

As Fig.17 shows, 
3q is the failure state. And 

NG is constructed 

as that in Fig.18. 

 

Fig. 18. 
NG  of Example 4. 

There are two failure branch in 
NG : 

1 (0, ,3)=b a , 
2 (0, ,3)=b b . 

So 
1 2{ , }=fB b b . Fig.19 (a) and Fig.19 (b) are the automata 

corresponding to them. Since 2= =fn B , 
1 2( , ) (0,0)  = =  

and 
1 2=( ( ), ( )) ( , ) =  r b r b . 

 

(a)
11G  

 

 

(b)
12G  

Fig. 19. Failure branches of G  in Example 4. 

Automaton 
2G  is constructed as that in Fig.20. 

 

Fig. 20. 
2G  of Example 4. 

Automata 1

31V and 2

31V  are constructed as that in Fig.21(a) and 

Fig.21 (b), respectively; automata 1

32V and 2

32V are constructed 

as that in Fig.22 (a) and Fig.22 (b), respectively. 

 

(a) 1

31V  

 

(b) 2

31V
 

Fig. 21. 31( 1,2)=iV i  of Example 4. 

 

(a) 1

32V  

 

(b) 2

32V  

Fig. 22. 32 ( 1,2)=iV i  of Example 4. 

As Fig.21(b) and Fig.22(a) show, there is no state satisfies 

condition (5) in the 2

31V and 1

32V . Therefore, 
1b and 

2b are 

copredictable w.r.t.  f
 and 

{1 2}{ } ，i iP , i.e. 
1=1 and 

2 =1 . Let 

=s a , then
1( )s L b  and  f fs L  . As seen from 2

31V , a  is the 

shortest predictive prefix of the trace  fs since there is no 

indistinguishable string with the string a , i.e., 2 ( ) =ft s a . 

Therefore, 1 2( ) (min( ) ( ) 1) 0  = − − =f f fr s s t s ,i.e., 
1( ) 0=r b . 

Let =s b , then 
2( )s L b  and  f fs L . As seen from 1

32V , b  

is the shortest predictive prefix of the trace  fs  since there is 

no indistinguishable string with the string b , i.e., 1( ) =ft s b . 

Therefore， 2 1( ) (min( ) ( ) 1) 0，  = − − =f f fr s s t s
 
i.e., 

2( ) =r b   

0.
 

 

Based on the above analysis, it is easy to know that 

1 2( , )=(1,1)  = , 
1 2=(r(b ),r(b ))=(0,0) and 

1 2=min{r(b ),r(b )}=0r . 

The result indicates that two failure branches of the plant G  

are both copredictable prior to 0 steps at most w.r.t.  f
 and 

{1 2}{ } ，i iP . So L generated by the plant G  is copredictable 
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prior to 0 step at most w.r.t.  f
 and 

{1 2}{ } ，i iP . The example 

shows that Algorithm 1 is also applicable for the verification 

of copredictability introduced by Liu. 

7. CONCLUSIONS 

In this paper, the relative copredictability of decentralized 

DESs is investigated. The notion of relative copredictability 

was formalized, which is weaker than copredictability and 

relative predictability. In order to verify whether a system is 

relatively copredictable, a necessary and sufficient condition 

of relative copredictability was presented. Moreover, an 

algorithm of polynomial complexity for calculating the 

predictive vector and the boundary number of steps prior to 

occurrences of failures was proposed. This reported work 

generalized the main results of (Liu, 2019). Further issue 

worthy of consideration is the problem of relative 

predictability of fuzzy DESs. We would like to consider it in 

subsequent work. 
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