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Abstract: In this paper, a combination of sliding mode control and adaptive backstepping control with a 

decoupling algorithm is considered for controlling 2 degrees of freedom underactuated mechanical 

systems subject to parametric uncertainties and external disturbances. The stability of the system is 

assured by the design steps of the proposed decoupled adaptive backstepping sliding mode control which 

are based on the Lyapunov theorem. The effectiveness of the proposed decoupled adaptive backstepping 

sliding mode control method is compared against a decoupled sliding mode controller by testing on a 

real-life inverted pendulum on a cart system which is a classical testbed for underactuated mechanical 

systems. The experimental outcomes justify the proposed decoupled adaptive backstepping sliding mode 

controller provides a more satisfying performance compared to the conventional decoupled sliding mode 

controller. Besides the proposed method is able to handle parametric uncertainties contrarily to the 

decoupled sliding mode control. 
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1. INTRODUCTION 

The control of underactuated mechanical systems (UMSs) 

has been attracting great interest during the last decades 

(Fantoni and Lozano, 2002; Huang et al., 2019; Liu and Yu, 

2013; Reyhanoglu et al., 1999; Spong, 1998). UMSs refer to 

the systems that have fewer actuators than the number of 

degrees of freedom (DOF). A system can become 

underactuated by the natural dynamics of the system, by 

design to reduce the cost, by artificially induced for a 

research purpose, or by actuator failure (Hussein and Bloch, 

2008; Spong, 1987; Walsh et al., 1994). Separated from the 

cause of becoming underactuated, UMSs present some 

advantages including reduction of cost, energy, and 

complexity compared to fully actuated mechanical systems 

due to lower numbers of actuators. Therefore, UMSs are 

widely used in real-life applications like underwater vehicles, 

aerospace, and robotics (Olfati-Saber, 2001; Oryschuk et al., 

2009; Woods et al., 2012).  However, unlike the fully 

actuated mechanical systems, controlling UMSs presents a 

more challenging task because of their nonholonomic 

constraints (Isidori, 1995). 

The inverted pendulum on a cart (IPC) system is a classical 

instance of UMSs. The IPC system consists of 2 DOF, both 

the cart position and the pendulum angle are controlled by a 

single actuator. Also, given its unstable and nonlinear nature, 

the IPC system has been a benchmark tool for testing various 

kinds of control techniques. Moreover, the dynamics of the 

IPC system are fundamental to the maintaining balance 

problem and resembles many real systems such as two-

wheeled robots, bipedal walking, humanoid robots, and 

rocket thrusters (Anderson, 1988; Jeong and Takahashi, 

2007; Kuo, 2007). Therefore, numerous control approaches 

such as energy-based control (Åström and Furuta, 2000; 

Siuka and Schöberl, 2009), PID control (Chang et al., 2002; 

Subudhi et al., 2012) linear quadratic regulator (Coban and 

Ata, 2017; Saco, 2019), backstepping (Deng and Gao, 2011) 

and sliding mode control (SMC) (Adhikary and Mahanta, 

2013; Coban and Ata, 2017; Lo and Kuo, 1998; Mahjoub et 

al., 2015) have been suggested for controlling the IPC 

system. 

As a robust control method, the SMC has been extensively 

used to control nonlinear systems (Slotine and Li, 1991; 

Utkin, 1977). The main advantages of the SMC contain fast 

response and robustness to external disturbances and model 

uncertainties (Utkin, 1992). The key idea of the SMC method 

is constructing a suitable sliding manifold that drives the 

trajectories to zero within it. The main drawback of the 

conventional SMC method is the high-frequency oscillation 

on the sliding surface known as the chattering phenomenon 

(Lee and Utkin, 2007). Also, the system has to be 

transformed into the canonical form to apply the conventional 

SMC method to UMSs. To handle this drawback, decoupled 

sliding mode control (DSMC) can be employed to control the 

UMSs (Coban and Ata, 2017; Lo and Kuo, 1998). 

Furthermore, the SMC technique can be combined with other 

control techniques such as backstepping and adaptive 

backstepping methods to handle parametric uncertainties (Ata 

and Coban, 2019; Coban, 2019; Lin et al., 2002). 

The backstepping method is a robust control scheme based on 

the Lyapunov stability approach (Freeman and Kokotović, 

1996; Kanellakopoulos et al., 1991). The backstepping 

approach provides a recursive procedure to dividing the 

control problem into a series of control problems for lower 

order subsystems and it is natural to combine the 
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backstepping method with the SMC (Ma et al., 2006). 

Because of its robustness to disturbances and uncertainties, 

the backstepping sliding mode control (BSMC) is an active 

research area in recent years (Ata and Coban, 2019; Coban, 

2019; Liu et al., 2020). However, determining the upper 

bound of external disturbances is a challenging task for 

designing the BSMC. To address this problem the adaptive 

backstepping sliding mode control (ABSMC) approach can 

be employed in controller design (Lin et al., 2002; Wu and 

Lu, 2019). 

An adaptive backstepping sliding mode control approach for 

nonlinear uncertain systems is suggested in (Coban, 2019) to 

obtain a chattering-free control and overcome parametric and 

unstructured uncertainties. However, this method is designed 

for a second-order, single input–single output nonlinear 

electromechanical system and it cannot be directly applied 
to fourth-order underactuated nonlinear systems with single 

input and 2 DOF.  A decoupled backstepping sliding mode 

control design method is proposed in (Ata and Coban, 2019) 

to control underactuated systems under uncertainties. Yet, 

this method needs prior knowledge of the upper bounds of 

uncertainties and disturbances. This paper presents a 

decoupled adaptive backstepping sliding mode control 

(DABSMC) approach to control 2 DOF UMSs subject to 

parametric uncertainties. The proposed method can be 

applied to UMSs directly due to its decoupling nature. Also, 

the proposed method removes the need for prior knowledge 

of the upper bounds of uncertainties on the decoupled 

backstepping sliding mode control design by employing an 

adaptive scheme. The proposed approach has been tested on a 

real IPC system to validate the effectiveness and performance 

of the DABSMC method for a class of UMSs. This class of 

UMSs is featured as a fourth-order underactuated nonlinear 

system with single input and 2 DOF. The proposed method 

will fail when it is applied to the systems higher than fourth-

order as a consequence of the two-level control system model 

of the DSMC approach (Lo and Kuo, 1998).  

The rest of the paper is structured as follows. Section 2 

introduces the dynamics of the IPC system considered in the 

paper. In section 3, the ABSMC method is presented and the 

design procedure of the DABSMC approach is introduced. 

The proposed DABSMC and the conventional DSMC 

methods are compared and the experimental results are 

presented in section 4. Conclusions of the study are reported 

in section 5. 

2. DYNAMICS OF THE IPC SYSTEM 

The IPC system is a classical benchmark problem for UMSs. 

It consists of a cart and a pendulum that is attached to the cart 

as shown in Fig. 1. Therefore, the IPC system has 2 DOF; 

one for the horizontal movement of the cart and one for the 

angular movement of the pendulum. Only the horizontal 

motion of the cart is actuated in the IPC system. The 

rotational motion of the pendulum is indirectly controlled by 

the movement of the cart. 

Consider the cart displacement from the initial position as x  

and the angular displacement of the pendulum from the 

vertical position as  . Using the Euler-Lagrange method 

while including the effects of cart friction and pendulum 

damping, the equation of motions for horizontal motion and 

rotational motion can be derived as (Ata and Coban, 2017). 

 

Fig. 1. Parametric representation of the IPC system. 
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where M  is the mass of the cart; b  is the cart friction 

coefficient; l  and m  are the length and the mass of the 

pendulum, respectively; d  is the pendulum damping 

coefficient; I  is the moment of inertia; F  represents the 

force applied to the cart as control action and g  is the 

acceleration due to gravity. 

Since the cart is actuated by a DC motor in real-life 

applications, adding the motor characteristics to the IPC 

system model will provide a more realistic system design 

(Kennedy et al., 2019). The input of the IPC system is equal 

to the DC motor voltage of the cart. The input voltage ( )v t  is 

converted to driving force ( )F t  according to the equation 

(Ata and Coban, 2017): 

1 2 1

2
( ) ( ) ( )b t t

m m m m

K K n n K n
F t x t v t

R r R r
= − +  (3) 

where 
b

K  is the back-electromotive force constant; 
t

K  is the 

motor torque constant; 
1

n  and 
2

n  are gear ratios; 
m

R  is the 

motor armature resistance and 
m

r  is the radius of the pulley. 

Substituting the voltage-force conversion in (3) into 

equations of motions in (1) and (2) by defining the system 

states 
1 2 3 4

[ ]Tx x x x  as [ ]Tx x    and considering  

( ) ( )u t v t= , one can get the state equations of the IPC system 

as follows (Ata & Coban, 2019): 
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1
( )tò  and 

2
( )tò  stand for the overall external disturbances and 

1
  and 

2
  are constants refer to the parametric uncertainties. 

1
( )tò  and 

2
( )tò  are considered to be bounded as 

1 1max
( )t ò ò  

and 
2 2 max
( )t ò ò . 

3. DESIGN METHODS 

In this section, the ABSMC method is presented and the 

design procedure of the DABSMC method for UMSs is 

introduced. The stability analysis of both methods is based on 

Lyapunov theory and sliding modes features. 

3.1 Adaptive Backstepping Sliding Mode Control 

The dynamic model of a second-order, single-input single-

output nonlinear system considered further is: 

1 2

2

1

( ) ( )

( ) ( , ) ( , ) ( ) ( )

( ) ( )

x t x t

x t x t x t u t t

y t x t

 

=

= + +

=

ò  (5) 

where 
1 2

[ , ]Tx x x=  is the state vector, ( )y t  is the output, 

( , )x t  and ( , )x t  are nonlinear functions, ( )u t  is the 

control input, and, ( )tò  is the total amounts of unmatched 

uncertainties and external disturbances.  

The control objective is to design an ABSMC law to track the 

desired output ( )
d

y t . Assume that not only the desired 

output ( )
d

y t  but also its first two derivatives with respect to 

the time ( )
d

y t , ( )
d

y t , are available and all bounded functions 

of time. To achieve the control objective, the tracking error 

can be considered as 

1

1

( ) ( ) ( )

( ) ( ).

d

d

z t y t y t

x t y t

= −

= −
  (6) 

The time derivative of the tracking error 
1
( )z t  results in 

1 2
( ) ( ) ( ).

d
z t x t y t= −   (7) 

Since the main idea of the backstepping is to use some of the 

state variables as virtual controls, 
2
( )x t  can be considered as 

a virtual control signal. The desired value of the virtual 

controller is called the stabilizing function in the 

backstepping design (Kristic et al., 1995). Defining a 

stabilizing function as  

1 1 1
( ) ( )t c z t =   (8) 

where 
1

c  is a positive constant and considering 

2 2 1
( ) ( ) ( ) ( )

d
x t z t y t t= + −  as a virtual controller yield 

2 2 1
( ) ( ) ( ) ( )

d
z t x t y t t= − +  as illustrated in Fig. 2. 

Accordingly, the second-order nonlinear system in Fig. 2 can 

be written as  

 

1 2

2

1

( ) ( , ) ( , ) ( ) ( )

( ) ( )

( ) ( ).

x t x t x t z t t

x t u t

y t x t

 = + +

=

=

ò

 

Also note that an intermediate variable can be defined as 

1 1
)( ) ( ()

d
t tt y = −  and this variable can step back through 

the integrator as shown in Fig. 3 (Kristic et al., 1995). This is 

why this control design technique is known as 

“backstepping”. 

The first term of the Lyapunov function candidate can be 

selected as 

2

1 1

1
( ) ( )

2
V t z t=   (9) 

and the time derivative of 
1
( )V t  can be derived as  

( )

( )

1 1 1

1 2

1 2 1

2

1 2 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ).

d

V t z t z t

z t x t y t

z t z t t

z t z t c z t



=

= −

= −

= −

  (10) 

In the next step, considering a switching function as 

1 1 2
( ) ( ) ( )t k z t z t = +   (11) 



CONTROL ENGINEERING AND APPLIED INFORMATICS            48      

where 
1

k  is a positive constant, the Lyapunov function 

candidate can be expanded as 

2

2 1

1
( ) ( ) ( ).

2
V z V z t= +   (12) 

 

Fig. 2. Introducing the stabilizing function 
1
( )t  and the 

error variable 
2
( )z t . 

 

Fig. 3. Backstepping 
1
( )t  through the integrator. 
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Using (10) and (13), the time derivative of 
2
( )V z  can be 

derived as 
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The BSMC law can be defined to assure that 
2
( )V z  is 

negative definite as follows (Lin et al., 2002):  
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where h  and   are positive constants, the uncertainty ( )tò  

is assumed to be bounded | ( ) | ( )t tò ò , and, the signum 

function ( ( ))sgn t  is 

1, ( ) 0

( ( )) 0, ( ) 0
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t
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Using the control law proposed in (15), the derivative of the 

2
( )V z  can be rewritten as 

( )

2 2
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The derivative of the 
2
( )V z  in (17) may be rearranged as 

2
( ) | ( ) | 0TV z z Qz h t = − −    (18) 

where  1 2

Tz z z=  and Q  is a symmetric matrix as  

2

1 1 1

1

1/ 2
.

1/ 2

c hk hk
Q

hk h

 + −
=  

− 
  (19) 

The symmetric matrix Q  has to be positive definite to ensure 

that 
2
( )V z  is negative (Coban, 2019). Sylvester's Theorem 

states that a sufficient and necessary criterion to guarantee a 

symmetric matrix Q  to be positive definite is that all the 

principal minors of it have positive determinants (Ge et al., 

2002). Selecting proper values for the constants h , 
1

c , and, 

1
k  guarantees that Q  is positive definite: 

2 2

1 1 1

1 1

| | ( ) ( 1/ 2

1   

)

/ 4 0. 

Q h c hk hk

hc hk

= + − −

= + − 
 (20) 

According to Barbalat's lemma, defining 
2

( ) ( )W t V z= −  can 

show  ( )W t  leans to 0 as t →   (Koshkouei and Zinober, 

2000; Slotine and Li, 1991). Hence, 
1

z  and 
2

z  converge to 0 

as t →  . It indicates that lim ( )
d

t
y t y

→
=  and lim ( )

d
t

x t y
→

=  

(Lin et al., 2002). Therefore, the asymptotic stability of the 

BSMC system is ensured. 

One of the important advantages of the BSMC method is 

insensitivity to the matched uncertainties. However, 

unmatched uncertainties generally exist in experimental 

environments. The uncertainty ( )tò  is an unknown parameter 

and determining the upper bound of uncertainty ( )tò  is a 

challenging part of the BSMC design. To address this 

problem an adaptive mechanism can be combined with the 

BSMC method (Wu and Lu, 2019). In this approach, 

uncertainty has to be estimated and satisfied by an adaptive 

law to reach a robust tracking performance (Dong and Tang, 

2014). Hence, an adaptive law can be used to adjust the 

uncertainty ( )tò (Lin et al., 2002): 
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Considering the adaptation law ˆ( )tò  as 

ˆ( ) ( ),t t=ò   (25) 

an ABSMC law can be designed as follows (Lin et al., 2002) 

( )
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1
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Substituting (26) in (24) yields 

2 2

3 1 2 1 1
( ) ( ) ( ) ( ) | ( ) | .V z z t z t c z h t h t  = − − −  (27) 

The derivative of the 
3
( )V z  may be rearranged as 

3
( ) | ( ) | 0T

A
V z z Q z h t = − −   (28) 

where  1 2

Tz z z=  and 
A

Q  is a symmetric matrix as  

2

1 1 1

1

1/ 2
.

1/ 2
A

c hk hk
Q

hk h

 + −
=  

− 
  (29) 

Similar to (19), choosing proper values for the constants h , 

1
c , and, 

1
k  guarantees that all the determinants of principal 

minors of 
A

Q  be positive. Hence, the symmetric matrix 
A

Q  

will be positive definite according to Sylvester's theorem. It 

indicates that the closed-loop system will be asymptotically 

stable by using the ABSMC according to Barbalat's lemma. 

The design steps of the ABSMC approach are summarized in 

Fig. 4. 

 

Fig. 4. Algorithm of the ABSMC method. 

3.2 Decoupled Adaptive Backstepping Sliding Mode Control 

The ABSMC design is able to be utilized on systems that 

may be described in the canonical form and it cannot be 

applied to UMSs directly. Consider a fourth-order 

underactuated nonlinear system with single input and 2 DOF 

as follows: 

1 2

2 1 1 1

3 4

4 2 2 2

1 1

2 3

( ) ( )

( ) ( , ) ( , ) ( ) ( )

( ) ( )

( ) ( , ) ( , ) ( ) ( )

( )

( )

x t x t

x t x t x t u t t

x t x t

x t x t x t u t t

y t x

y t x

 

 

=

= + +

=

= + +

=

=

ò

ò
 (30) 

where 
1 2 3 4

[ , , , ]Tx x x x x=  is the state vector;  
1 2

[ , ]Ty y y=  is 

the output; 
1
( , )x t , 

1
( , )x t , 

2
( , )x t ,and ( , )x t  are 

nonlinear functions; ( )u t  is the control input, and, 
1
( )tò  and 

2
( )tò  are the sum of the unmatched uncertainties and external 

disturbances.  

To design an SMC law for an underactuated system such as 

described in (30), the DSMC approach can be used (Ata and 

Coban, 2019; Lo and Kuo, 1998). The key concept of the 

DSMC is decoupling the UMSs into two different subsystems 

and controlling both sub-systems simultaneously using only 

one control input. A DABSMC law for UMSs can be 

designed using the presented ABSMC method. 
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The control objective is to design a DABSMC system for the 

outputs 
1
( )y t  and 

2
( )y t  of the system to track the desired 

outputs 
1
( )

d
y t  and 

2
( )

d
y t . Note that the signals

1
( )

d
y t , 

2
( )

d
y t , and their first two derivatives are available and they 

are considered as bounded functions of time.  

To achieve the control objective, two different tracking errors 

can be defined. Considering the first tracking error as 

1 1 1

1 1

( ) ( ) ( )

( ) ( )

d

d

z t y t y t

x t y t

= −

= −
  (31) 

and time-derivating it yields  

1 2 1
( ) ( ) ( ).

d
z t x t y t= −   (32) 

Defining a stabilising function as 

1 1 1
( ) ( )

D D
t c z t =   (33) 

where 
1D

c  is a positive constant and letting 

2 2 1 1
( )( ) ( ) ( )

d D
x y tt z t t = + −  as a virtual controller result in 

2 2 1 1
( ) ( ) ( ) ( ).

d D
z t x t y t t= − +   (34) 

Similarly, the second tracking error can be defined as 

3 3 2
( ) ( ) ( ).

d
z t x t y t= −   (35) 

The time derivative of the tracking error 
3
( )z t  results in 

3 4 2
( ) ( ) ( ).

d
z t x t y t= −   (36) 

Defining a stabilising function as 

2 2 3
( ) ( )

D D
t c z t =   (37) 

where 
2D

c  is a positive constant and considering 

4 4 2 2
( )( ) ( ) ( )

d D
x y tt z t t = + −  as a virtual control, one has 

4 4 2 2
( ) ( ) ( ) ( )

d D
z t x t y t t= − +   (38) 

as shown in Fig. 5. Accordingly, the fourth-order nonlinear 

system in Fig. 5 can be written as  

 

1 2

2 1 1 4 1

3 2 2 4 2

4

1 1

2 3

( ) ( )

( ) ( , ) ( , ) ( ) ( )

( ) ( , ) ( , ) ( ) ( )

( ) ( )

( )

( )

x t x t

x t x t x t z t t

x t x t x t z t t

x t u t

y t x

y t x

 

 

=

= + +

= + +

=

=

=

ò

ò
 

Also note that an intermediate variable can be defined as 

2 22
)( ) ( ()

D dD
t t y t = −  and this variable can step back 

through the integrator as illustrated in Fig. 5 (Kristic et al., 

1995).  

 

Fig. 5. Introducing the stabilizing function 
2
( )

D
t  and the 

error variable 
4
( )z t . 

 

Fig. 6. Backstepping 
2
( )

D
t  through the integrator. 

To design a DABSMC law, the first term of the Lyapunov 

function candidate can be chosen as 

2
1 3

1
( ) ( ).

2
DV t z t=   (39) 

The time derivative of the function 1( )DV t  can be written as 

( )

( )

1 3 3

3 4 2

3 4 2

2
3 4 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ).

D

d

D

D

V t z t z t

z t x t y t

z t z t t

z t z t c z t



=

= −

= −

= −

 (40) 

In the next step, two different switching functions can be 

chosen 

1 1 1 2( ) ( ) ( )D Dt k z t z t = +   (41) 

and 

2 2 3 4( ) ( ) ( )D Dt k z t z t = +   (42) 

where 1Dk  and 2Dk  are positive constants and the Lyapunov 

function candidate can be extended as 

2
2 1 2

1
( ) ( ) ( ).

2
D D DV z V z t= +   (43) 

With the help of (30), the time derivative of 4 ( )z t  can be 

expressed as 
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4 4 2 2

2 2 2 2 2

( ) ( ) ( ) ( )

( , ) ( , ) ( ) ( ) ( ) ( ).

d D

d D

z t x t y t t

x t x t u t t y t t



  

= − +

= + + − +ò
 (44) 

Using (40) and (44), the time derivative of 2 ( )DV z  can be 

derived as 

 

2 1 2 2

2
3 4 2 3 2 2

2
3 4 2 3 2 2 3 4

2
3 4 2 3 2 2 4

2 2 3 2 2 2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( )

( ) ( ) ( , ) ( , ) ( ) ( )

(

D D D D

D D D

D D D

D D D

D D

D

V z V z t t

z t z t c z t t t

z t z t c z t t k z t z t

z t z t c z t t k z t

t c z t x t x t u t t

 

 





  



= +

= − +

= − + +  

= − +

+ − + + +  

+

ò

2 2) ( ) ( ) .d Dt y t t− +  

(45) 

The BSMC law can be chosen to guarantee 2 ( )DV z  is 

negative definite as follows:  

( )( )

2 4 2 3 2

2 2 2 2

2 2

1
( ) ( ( ) ( ) ( )

( )

1
( ) ( ( )) ( ) ( )

( )

1
( ) ( )

( )

DBS D D

D d D

D D D D

u t k z t c z t t
t

t sgn t y t t
t

h t sgn t
t




 


  


= − − −  

+ − + −  

 + − +
 

ò  (46) 

where Dh  and D  are positive constants and uncertainty 

2 ( )tò  is assumed to be bounded as 2 2| ( ) | ( )t tò ò . 

Substituting (46) in (45) results in 

( )

2 2
2 3 4 2 3 2 2

2 2 2 2

2 2
3 4 2 3 2 2

2 2 2

2
3 4 2 3

( ) ( ) ( ) ( ) ( ) | ( ) |

          ( ) ( ) ( ) | ( ) |

        ( ) ( ) ( ) ( ) | ( ) |

          | ( ) | | ( ) | ( )

        ( ) ( ) ( )

D D D D D D D

D D

D D D D D D

D

D

V z z t z t c z t h t h t

t t t t

z t z t c z t h t h t

t t t

z t z t c z t

  

 

  



= − − −

+ −

 − − −

+ −

 −

ò ò

ò ò

2
2 2( ) | ( ) |D D D D Dh t h t  − −

(47) 

The derivative of the 2 ( )DV z  in (47) may be rearranged as 

2 2( ) | ( ) | 0.T
D D D D DV z z Q z h t = − −   (48) 

where 3 4
Tz z z=     and DQ  is a symmetric matrix as  

2
2 2 2

2

1/ 2
.

1/ 2

D D D D D
D

D D D

c h k h k
Q

h k h

 + −
=  

−  

  (49) 

Noting that  

2 2
2 2 2

2 2

| | ( ) ( 1/ 2)

    1/ 4 0.

D D D D D D D

D D D D

Q h c h k h k

h c h k

= + − −

= + − 
 (50) 

and choosing proper values for the constants Dh , 2Dc , and, 

2Dk  yields all the determinants of principal minors of DQ  

being strictly positive. Therefore, according to Sylvester's 

theorem, it is guaranteed that the symmetric matrix DQ  is 

positive definite. As a result, 2 ( ) 0DV z   is guaranteed. 

According to Barbalat's lemma, since 3z  and 4z  converge to 

0 as t tends to infinity, the asymptotic stability of the BSMC 

system is assured. 

In the BSMC law proposed in (46), the uncertainty 2 ( )tò  is 

assumed to be bounded as 2 2| ( ) | ( )t tò ò . Since it is difficult 

to determine the upper bound of the uncertainty 2 ( )tò  , an 

adaptation law can be proposed as 

2 2 2̂( ) ( ) ( )t t t= −ò ò ò   (51) 

where 2 ( )tò  is estimation error and 2̂ ( )tò  is estimation. To 

design an ABSMC law, a new candidate Lyapunov function 

may be selected as  

2
3 2 2

1
( ) ( ) ( )

2
D D

D

V z V z t


= + ò   (52) 

where D  is a positive constant. Using the adaptive law 

proposed in (51) and noting  2 2 2 2ˆ ˆ( ) ( ) ( ) ( )t t t t= − = −ò ò ò ò , the 

time derivative of 3( )DV z  can be derived as 

3 2 2 2

2
3 4 2 3

2 2 3 2 3

2 2 2 2 2 2

2 2

2
3 4 2 3

2 2 4 2 3

1
ˆ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )

1
ˆ( ) ( )

( ) ( ) ( )

( ) ( ( ) ( ))

D D
D

D

D D D

D d D

D

D

D D D

V z V z t t

z t z t c z t

t k z t c z t

t x x u t t y t

t t

z t z t c z t

t k z t c z t





   







= +

= −

+ −  

+ + + − +  

−

= − +

+ −  

+

ò ò

ò

ò ò

( )

2 2 2 2 2 2

2 2 2

ˆ( ) ( ) ( ) ( ) ( ) ( )

1
ˆ( ) ( ) ( ) .

D d D

D D
D

t x x u t t y t

t t t

  

 


+ + − +  

− −

ò

ò ò

 (53) 

Defining the adaptation law 2̂ ( )tò  as 

2 2ˆ ( ) ( ),D Dt t =ò   (54) 

an ABSMC law can be proposed as 

( )

( )( )

2 4 2 3
2

2 2 2 2
2

2 2
2

1
( ) ( ) ( )

( )

1
ˆ( ) ( )

( )

1
( ) ( ) .

( )

DABS D D

d D

D D D D

u t k z t c z t
t

t t y
t

h t sgn t
t



 


  


 = − − 

+ − − + −  

 + − +
 

ò  (55) 

Substituting (55) in (53) yields 
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2 2
3 1 2 1 1 2 2( ) ( ) ( ) ( ) | ( ) | .D D D D D D DV z z t z t c z h t h t  = − − − (56) 

The derivative of the 3( )DV z  in (56) may be rearranged as 

3 2( ) | ( ) | 0T
D DA D D DV z z Q z h t = − −   (57) 

where 3 4
Tz z z=     and DAQ  is a symmetric matrix as  

2
2 2 2

2

1/ 2
.

1/ 2

D D D D
DA

D D D

c h k hk
Q

h k h

 + −
=  

−  

 (58) 

Similar to (50), choosing proper values for the constants Dh , 

2Dc , and, 2Dk  guarantees the symmetric matrix DAQ  is 

positive definite. It indicates that the asymptotic stability of 

the system is ensured by using the ABSMC according to 

Barbalat's lemma. 

To design a DASMC law, the switching function 2 ( )D t  in 

(42) can be reconstructed as a decoupled function as  

2 3 4( ) ( ( ) ( ))DS D Dt k z t z t z = − +   (59) 

where ( )Dz t  is a value transferred from 1( )D t  in (41). The 

intermediate variable ( )Dz t  can be defined as 

1( )
( ) D

D U
D

t
z t sat z

 
=  

 
  (60) 

where Uz  is the upper bound of ( )Dz t  as a constant bounded  

0 1Uz  , D  is the boundary level as a constant, and the 

saturation function ( )sat   is 

( ), | | 1
( )

, | | 1.

sgn
sat

 


 


= 


  (61) 

Uz  ensures ( )DS t  will be limited, and when the switching 

function 1( )D t  converges 0, ( )DS t  will be driven to zero 

too, thanks to Dz . 

Consequently, replacing the decoupled function DS  in (59) 

into (55) gives a DABSMC law for UMSs as 

( )

( )( )

2 4 2 3
2

2 2 2 2
2

2

1
( ) ( ) ( )

( )

1
ˆ( ) ( )

( )

1
( ) ( ) ]

( )

DABSMC D D

d D

D DS D DS

u t k z t c z t
t

t t y
t

h t sgn t
t



 


  


 = − − 

+ − − + −  

+ − +


ò  (62) 

with the adaptation law 

2̂ ( ) ( ).D DSt t =ò   (63) 

The design steps of the proposed DABSMC method are 

summarized in Fig. 7. 

 

Fig. 7. Algorithm of the DABSMC method. 

 4. EXPERIMENTAL RESULTS 

The proposed DABSMC scheme is applied to a real IPC 

system in order to validate performance and robustness of it. 

Using the control law proposed in (62) a DABSMC law for 

the IPC system introduced in (4) can be designed. Since the 

control object is defined as stabilizing the pendulum in the 

vertical position while bringing the cart to the desired 

position; tracking errors 1( )z t  and 3( )z t  may be defined as 

1 1( ) ( )dz t x y t= −  and 3 2( ) ( )dz t y t= − , respectively. Also, 

a saturation function can be employed in (62) instead of the 

signum function to avoid chattering. Eventually, a DABSMC 

law for the IPC system introduced in (4) is given by 

( )

( )( )

2 4 2 3
2

2 2 2
2

2
2

1
( ) ( ) ( )

( )

1
ˆ( ) ( )

( )

1
( ) ( ) ]

( )

D D

d

D D D D

DABSMC

S D S

u t k z t c z t
t

t t y
t

h t sat t
t






   


 = − − 

+ − − +  

+ − − +


ò (64) 

with the adaptation law 

2̂ ( ) ( )D DSt t =ò   (65) 

where 
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( )2 5 2 3 6 3 7 4
2 2

1 2 3

2
2 8 3 3 4

2
1 2 3

cos( ) sin( )
( )

cos ( )

cos( )sin( )

cos ( )

n n n

m m

n

m m

a x x a x a x
t

a a x

a x x x

a a x






+ +
=

−

+
−

 

and 

9 3
2 2

1 2 3

cos( )
( ) .

cos ( )

n

m m

a x
t

a a x
 =

−
 

The proposed control method is experimentally compared 

with the DSMC method (Coban and Ata, 2017). To design a 

DSMC law for the IPC system, the first switching function 

1( )S t can be defined as  

1 1 1 1 1 1( ) ( ( ) ) ( ( ) )S d dt m x t y x t y = − + −  (66) 

where 1m  is a positive constant. Based on 1( )S t , the 

intermediate variable ( )Sz t  can be defined as  

1( ) ( ( ) / )S S S USz t sat t z=    (67) 

where S  is the boundary level and USz  is the upper bound 

of Sz  as constants. The decoupled switching function 

2 ( )S t can be constructed using  ( )Sz t  as 

2 2 3 2 3 2( ) ( ( ) ) ( ) ( ( ) )S d S dt m x t y z t x t y = − − + −    (68) 

where 2m  is a positive constant. Consequently, the DSMC 

law for the IPC system can be designed as follows (Coban 

and Ata, 2017): 

2 3 2 2
2

1
( ) ( ) ( , ) ( )

( , )
S Su t m z t x t Ksat

x t
 


= − − −    (69) 

where K  is a positive constant.  

The experimental tests are carried out on Feedback 

Instrument's digital pendulum system (Feedback Instruments, 

2006a). The experimental setup and the block diagram of the 

proposed control system are presented in Fig. 8. and Fig. 9, 

respectively. A PCI 1711 Advantech card installed PC serves 

as the main control unit on the experimental setup. The 

control signal is transferred to the Digital Pendulum 

Controller (DPC) using a Digital Analog Converter (DAC). 

The pendulum angle and the cart position signals are 

transferred to the DPC and then to the PC by an Encoder. The 

sample times of the DAC and Encoder are set as 0.001s by 

default (Feedback Instruments, 2006b). 

The selected control task consists in maintaining the stability 

of the pendulum in the upward position while moving the cart 

to the desired position. During the experiments, total 

parametric uncertainties of the system are considered as 2  

and no external perturbation is added into the system. For all 

experiments, the initial conditions are selected as 

0 0 0 0[ ] [0 0 0.1 0]T Tx x   = . The expected outputs of the cart 

position and the pendulum angle are selected as  

1 0.3dy m= and 2 0dy rad= , respectively. Since the values of 

the desired outputs, 1dy  and 2dy  are constants their first and 

second derivatives with respect to the time are available and 

considered as 0. 

 

Fig. 8. The IPC system. 

 

Fig. 9. Block diagram of the proposed controller. 

The DABSMC parameters are chosen as 1 0.2Dc = , 2 4Dc = , 

1 0.5Dk = , 2 40Dk = , 1D = , 10Dh = , 3D = , 0.97Uz =  

and 6D =  using the trial-and-error method with 

considering the best likely performances in terms of tracking 

error and response time. Also, the DSMC parameters are 

selected as 1 1m = , 2 40m = , 30K = , 0.97USz =  and 
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6S =  to achieve the best control performance considering 

the tracking error and response time by trial-and-error. The 

IPC system with DC motor parameters are considered as 

follows: 2.3M kg= , 0.00005 /b Ns m= , 0.2m kg= , 

0.3l m= , 0.005 /d Nms rad= , 
20.009I kgm= , 

29.81 /g m s= , 0.05bK = , 0.05tK = , 2.5R =  , 

1 18.84n = , 2 0.986n = , and, 0.0314r m=  (Ata and Coban, 

2017; Feedback Instruments, 2006a) 

In the first test, both the DSMC and the DABSMC methods 

are applied to the IPC system with 
2 1 = . Thus, no 

additional parametric uncertainty is added into the system 

and the test is carried out on the own parametric uncertainties 

of the IPC system. The cart position, pendulum angle, and 

control input for both methods are presented in Fig. 10, Fig. 

11, and Fig. 12, respectively.  

 

Fig. 10. Linear displacement with the parametric uncertainty 

2 1 = . 

In the second test, both the DSMC and the DABSMC 

methods are applied to the IPC system with the parametric

uncertainty 2 0.8 = . The cart position, pendulum angle, and 

control input for both methods are presented in Fig. 13, Fig. 

14, and Fig. 15, respectively.  

 

Fig. 11. Angular displacement with the parametric 

uncertainty 2 1 = . 

 

Fig.12. Control signal with the parametric uncertainty 

2 1 = . 

Both the DABSMC and the DSMC methods are managed to 

control the pendulum on the vertical position as shown in 

Fig. 11. However, the chattering in the control input is 

slightly higher in the DABSMC as shown in Fig. 12.  

Table 1. The DSMC/DABSMC performance ratios. 

Tracking Error IAE ISE ITAE ITSE 

Cart Position (m) 1.148 1.266 1.129 1.466 

Pendulum Angle (rad) 1.134 1.248 1.094 1.26 

Control Signal (V) 0.889 0.854 0.863 0.825 

 

Fig. 13. Linear displacement with the parametric uncertainty 

2 0.8 = . 

 

Fig. 14. Angular displacement with the parametric 

uncertainty 2 0.8 = . 
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Fig. 15. Control signal with the parametric uncertainty 

2 0.8 = . 

Fig. 14 clearly shows that the DSMC can stabilize the 

pendulum at the vertical position but it completely fails to 

manage to stabilise the cart at the desired position as 

presented in Fig. 13. Contrarily, the DABSMC overcomes 

the parametric uncertainty and manages to control the cart 

position at 6.657 s settling time with 4.457 percent overshoot 

and 11.349 percent undershoot. However, it cost lightly 

higher chattering in the control signal as shown in Fig. 15.  

The performance of the controllers can also be measured by 

the performance indices which use the tracking error with the 

evaluation time, generally. Some of the error-based 

performance indices are formulated as follows: 

• Integral Squared Error (ISE): 2

0
( )

T

e t dt  

• Integral Time Squared Error (ITSE): 2

0
( )

T

te t dt  

• Integral Absolute Error (IAE): 
0

| ( ) |
T

e t dt  

• Integral Time Absolute Error (ITAE):
0

| ( ) |
T

t e t dt  

where t  is time bounded as t T  and ( )e t  is the tracking 

error. The experimental tests are carried out for 20s . Hence, 

T is considered as 20s in performance indices analysis. The 

DSMC/DABSMC performance ratios based on performance 

indices with parametric uncertainty 2 1 =  are given in Table 

1. The magnitudes of all performance indices for cart position 

and pendulum angle are smaller in the DABSMC rather than 

the DSMC as shown in Table 1. Consequently, the DABSMC 

produced a more accurate control input than the DSMC.  

5. CONCLUSIONS 

In this paper, the design and implementation of a decoupled 

adaptive backstepping sliding mode control (DABSMC) 

approach are presented to control 2 degrees of freedom 

underactuated mechanical systems subject to parametric 

uncertainties and external disturbances. The proposed 

DABSMC method keeps the merits of the adaptive 

backstepping control and sliding mode control to design a 

robust controller against the parametric uncertainties. 

Moreover, it can be directly applied to underactuated 

mechanical systems due to its decoupling nature. The 

effectiveness and robustness of the proposed DABSMC are 

confirmed by experimental tests on a real-life inverted 

pendulum on a cart system. The experimental results justify 

the satisfying performance of the proposed method.  Also, the 

experiments show that the proposed DABSMC approach 

presents robustness against the parametric uncertainties 

compared to the conventional decoupled sliding mode 

control. 
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