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Abstract: Presently, distributed network systems are extensively used in a wide range of applications such 

as war field supervision, target tracing and positioning, error recognition, etc. However, a mechanism such 

as Kalman is needed to resolve issues such as configuration of topologies at the physical layer of sensor 

networks and delay in measurement time and data transmission in order to guarantee correctness and 

accuracy of parameter measured by the sensors. On the other hand, fractional calculus which is a 

generalization of integer order operators allows for highly precise modelling of physical systems. Thus, a 

new fractional-order distributed Kalman filter algorithm is presented for state estimation in measurement 

time-delay sensor networks in this paper. Therefore, at first fractional distributed Kalman filter algorithms 

and then their performance metrics such as means squared deviation and average will be evaluated to 

investigate feasibility of the algorithm. Finally, simulations show that performance of the proposed 

algorithm in terms of accuracy and efficiency has considerably improved as compared with previously 

proposed approaches such as conventional fractional-order Kalman filter. 
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1. INTRODUCTION 

During the past decade, wireless sensor networks have 

appeared as a powerful low cost platform for connecting large 

sensor networks. These networks which serve as a new 

technology are built of a large number of small sensors which 

are spread in the physical environment. Each sensor is able to 

perform a limited amount of calculations, establish radio 

communications and perform measurements. 

Wireless sensor networks have been applied to a wide range of 

applications in recent years including environment supervision 

(Mainwaring  et al., 2002), hygiene (Noel et al., 2017), military 

(Azzabi et al., 2017), war field supervision, target tracing and 

positioning, error recognition, etc. (Li et al., 2015; Song et al., 

2014; Jiang et al., 2016; Liu et al., 2017). Considering the 

variety of different functions of sensor networks, each node 

can be made up of different components based on its defined 

duties. However, in general each node is built of a series of 

main components which are as follows: central processor unit, 

radio sender-receiver, power source and one or a few sensors 

which gather needed data from the environment. In distributed 

algorithms, a set of nodes can exactly estimate target state by 

cooperation. These nodes can be computers, cell phones or 

sensors (Abadi and Shafiee, 2018). 

Distributed estimate algorithms are used in different fields 

such as sensor and wireless networks which are simple to 

expand, robust and low in energy consumption as some of their 

desirable characteristics (Al-Sayed et al., 2018; Fernandez-Bes 

et al., 2017). 

Different approaches have been proposed for state estimation 

including Bayesian estimation approaches (Lainiotis, 1971; 

Särkkä, 2010) and Kalman filters (Kalman, 1960). Kalman 

filter algorithms are among the most favourite approaches for 

state estimation of dynamic systems by measurement. A small 

amount of memory and calculations is needed to implement a 

Kalman filter as a recursive algorithm. This provides for using 

this algorithm in real time systems. 

Fractional calculus has attracted attention of many researchers 

as an expanded model of integer order differentials and 

derivatives due to their practical applications (Petras, 2011; 

Podlubny, 1998). Moreover, some systems such as Lithium-

Ion batteries (Nasser-Eddine, 2018) cannot be modeled with 

integer order derivatives. Rather, they can only be modelled by 

means of fractional derivatives.   

Thus, fractional-order Kalman filter algorithm was proposed 

for state estimation of fractional-order linear systems due to 

the importance of fractional-order systems and the severe 

weak performance of integer order Kalman filters in state 

estimation of such systems (Sierociuk and Dzieliński, 2006). 

In recent years, more attention has been paid to fractional-

order Kalman filters and the research done on this issue has 

been mainly focused on systems without time-delay (Sierociuk 

et al., 2011; Sadeghian and Salarieh, 2011; Sun and Yan, 

2011).  
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Time-delays are usually encountered in industrial applications 

such as heat exchange, mining processes, steel production and 

so on. Time-delay processes exist in biological systems and 

mechanical systems including economic or electric fields. 

However, they are not limited to industrial applications. 

Physical phenomena which need information transmission, 

energy or different masses produce time delays. 

For example, when sensors measurement and receive signals 

or when microcontrollers (or other machines) generate control 

signals to actuate upon processes and become active in the 

process a time delay is created (Birs et al., 2019). Yet, time 

delays cannot be ignored for a large class of practical 

applications. For example, sensor networks are built of a group 

of intelligible sensors which communicate with each other. 

Each intelligent sensor communicates with its neighboring 

intelligent sensor by means of time-delayed wireless networks 

(Yang H. et al., 2019). If time delays are not considered in 

sensor networks, there will be serious degradation of state 

estimation (Yang H. et al., 2020). 

Many research studies on delay in fractional-order systems 

have been reported in recent years given the above mentioned 

importance of fractional-order systems and solving state 

estimation problems in time-delayed systems (Azami  et al., 

2017; Torabi et al., 2016; Yan and Kou, 2012; Ding and Ye, 

2009). 

Time-delay fractional-order systems may also be found in 

practice. For example, motion control systems with actuator 

limitations may be modeled with time-delay fractional systems 

(Tang et al., 2017; Marzban and Razzaghi, 2005). Thus, 

development of state estimation approaches for time-delay 

fractional-order systems is important. In this paper an 

improved fractional-order distributed Kalman filter is 

presented for use in time-delay sensor networks. Here the 

fractional-order model used for tracing position of a projectile 

is presented in order to evaluate performance of the proposed 

algorithm. 

Simulation results verify considerable improvement in 

performance of mean-squared deviation of the proposed 

improved time-delayed fractional-order distributed Kalman 

filter algorithm in comparison with unimproved fractional-

order distributed Kalman filters in sensor networks. 

The paper is organized as follows. The problem study is 

presented in section 2. The fractional-order distributed Kalman 

filter algorithm is discussed in section 3. The fractional-order 

distributed Kalman filter algorithm for estimating sensor 

networks with time delay is proposed in section 4. In section 

5, numerical simulation for analyzing the algorithm is 

presented and in section 6, the conclusion is discussed. 

2. PROBLEM FORMULATION 

At first fractional-order random linear discrete time state space 

equations are defined in this section. Then, the concept of time 

delay is defined and dynamic equations of random discrete 

time linear fractional-order random system plus measurement 

equations for delayed sensors in state space are discussed. For 

this purpose, lets first consider a linear discrete time fractional-

order system with M groups of variables from a position state 

vector based on the fractional-order Litinikuf-Granold  𝑥𝑘 =
[𝑥𝑘
1, … , 𝑥𝑘

𝑀]𝑇 (Stanisławski et al., 2015). 
 

Definition 1: State space equations for discrete time 

fractional-order random linear systems are generally defined 

by equations (1) and (2) (Cattivelli et al., 2010; Sierociuk and 

Dzieliński, 2006): 
 

{

Δψxk+1 = Fkxk + Gkwk +wk   uk  ∼  (0, Qk)               

xk+1 = Δ
ψxk+1 −∑ (−1)jψjxk+1−j

k+1

j=1
      

      (1) 

         

yk = Hkxk + vk     vk  ∼  (0, Rk)                                                 (2) 
 

where xk ∈ R
M is a state vector, uk ∈ R

d is a system input, 

yk ∈ R
q is a system output, Fk ∈ R

M×M, Gk ∈ R
M×dand 

Hk ∈ R
q×M are the state system input and system output 

matrices, respectively, and wk, vk denote the state space noise 

with zero mean and covariance 𝑄𝑘 and system measurement 

noise with zero mean and 

covariance 𝑅𝑘, respectively. ∆𝜓𝑥𝑘 Of fractional-order 

differential with respect to 𝜓 is for the system state vector of 

𝑥𝑘 and k is sampling time. 

with 
 

{
 
 

 
 ψk = diag [(

n1
k
) . . . (

nM
k
)]

Δψxk+1 = [

Δn1x1,k+1
         ⋮

ΔnMxM,k+1

]
                                                               (3) 

Where n1, n2, . . . , nM are the system equations orders and M 

denotes the number of these equations. 

Assuming that noise signals uk  and vk are white and 

independent,  their covariance matrices are shown in Eq. (4), 

(Cattivelli et al., 2010): 

E [
uk
vk
] [
ul
vl
]
∗

= [
Qk 0
0 Rk

] δkl                                                              (4) 

where * shows transposed complex conjugate and 𝛿𝑘𝑙 is the 

Kronecher delta function. Initial state vector 𝑥0 is 

measurement noise and uncorrelated  state with zero mean and 

covariance matrix  Π0 > 0. Moreover, 𝑄𝑘  𝑎𝑛𝑑 𝑅𝑘 are diagonal 

matrices with dimensions M and q. 

Assume a set of N nodes (or sensors) distributed over an area. 

If two nodes directly communicate with each other, then they 

are two connected nodes. Thus, each node is always connected  

to itself. A collection of nodes connected to node i is called 

neighbor of the ith node and is shown by  𝒩𝑖  (𝑖 ∈ 𝒩𝑖). Thus, 

adjacency matrix A is defined with elements Α𝑖,𝑙 as Eq. (5): 

Α = {Α𝑖,𝑙} = {
 1,    𝑙 ∈ 𝒩𝑖            
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                     (5) 

Assume that system output 1 (Eq. 2) is seen by N sensors such 

that each sensor just observes a limited number of considered 

characteristics as shown in Fig. 1. 

If Bi shows the number of characteristics observed by the ith 

sensor and M is the number of system equations, then we can 
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express observations made by sensor i at time k  by the linear 

model in  Eq. (6) (Ghanbari Firouzabadi et al., 2020): 

𝑦𝑖,𝑘 = 𝐻𝑖,𝑘𝑥𝑘 + 𝑣𝑖,𝑘 ,       𝐵𝑖 << 𝑀,   𝑖 = 1, . . . , 𝑘                                    (6) 

Where 𝑦𝑖,𝑘 ∈ 𝑅
𝑞 shows measurements by the ith sensor at time 

k, 𝐻𝑖,𝑘 ∈ 𝑅
𝐵𝑖×𝑀 is local observations matrix and 𝑣𝑖,𝑘 ∈ 𝑅

𝐵𝑖  is 

local observations noise for reflecting measurement 

inaccuracy considering sensor accuracy and other unavoidable 

limitations. 

 

Fig. 1. Showing the measurement of system output 𝑦𝑖,𝑘 by 

node i at moment k. 

Widespread observations model is obtained by gathering the 

observations as Eq. (7): 

𝑦𝑘 = [

𝑦1,𝑘
    ⋮
𝑦𝑁,𝑘

] ,  𝐻𝑘 = [

𝐻1,𝑘
    ⋮
𝐻𝑁,𝑘

] , 𝑣𝑘 = [

𝑣1,𝑘
    ⋮
𝑣𝑁,𝑘

]                                       (7) 

The global observations matrix 𝑦𝑘 ∈ 𝑅
∑  𝐵𝑖
𝑁
𝑖=1  is assumed to be 

as shown in Eq. (8): 

yk = Hkxk + vk                                                                    (8) 

Assume that measurement noise 𝑣𝑖,𝑘 is unconnected, Then  we 

can write: 

𝐸[𝑣𝑖,𝑘𝑣𝑗,𝑙
∗ ] = 𝑅𝑖,𝑘𝛿𝑗,𝑖𝛿𝑙,𝑘                                                            (9) 

Where 𝑅𝑖,𝑘 > 0 for all 𝑖, 𝑘. 

Fig. 2 shows the effect of time-delay sensor network in time 

sequence. 

N different buffers exist for storing related local estimation 

signals and they store the latest data in time (Liu et al., 2017). 

 

Fig. 2. Structure of a distributed system. 

Definition 2: Discrete time linear fractional-order random 

system dynamic equation and the measurement equations of 

delayed sensors in state space based upon Granold-Litinikuf 

fractional derivative are presented as the collection of Eq. (10): 

𝛥𝜓𝑥𝑘+1 = 𝐹𝑘𝑥𝑘 + 𝐺𝑘𝑤𝑘 +𝑤𝑘 ,                  𝑢𝑘~(0,𝑄𝑘)

𝑥𝑘+1 = 𝛥𝜓𝑥𝑘+1 −∑ (−1)𝑗𝜓𝑗𝑥𝑘+1−𝑗
𝑘+1

𝑗=1

𝑦𝑖,𝑘 = 𝐻𝑖,𝑘𝑥𝑖,𝑘−𝑑𝑖 + 𝑣𝑖,𝑘 ,                          𝑣𝑖,𝑘~(0,𝑅𝑖,𝑘)

                                           (10) 

3. DISTRIBUTED FRACTIONAL-ORDER KALMAN 

FILTER ALGORITHM 

State estimation is very important in such systems due to the 

fact that describing systems with fractional-order models is 

closer to real systems. Authors of (Sierociuk and Dzieliński, 

2006) in 2006 proposed a generalization of Kalman filters for 

discrete linear fractional order systems which makes it 

possible to use fractional order Kalman filter algorithm for 

parameter estimation and fractional order systems. 

The aim of implementing distributed fractional-order Kalman 

filter, 𝑥𝑘  is uncertain state estimation in system 1 (Eq. 2) along 

with measurement Eq. (6) for each node i of the network.  It 

should be mentioned that in the network shown in Fig. 1 the 

nodes are only able to share their data with their neighboring 

nodes {𝑙 ∈ 𝒩𝑖}. 

The main challenge is to assure an exact estimation of system’s 

state such that even if each node has access to all 

measurements in the whole network, accuracy of state 

estimation does not increase. The distributed fractional-order 

Kalman filter used to overcome this challenge is shown in 

Table 1, (Ghanbari Firouzabadi et al., 2020). 

Table 1. Fractional-order distributed Kalman filter 

algorithm. 

Consider the fractional-order state space model (1): 

For each node 𝑖 we have: 𝑥𝑖,0|−1 = 𝐸(𝑥0),𝑃𝑖,0|−1 = 𝛱0 

In each sampling period 𝑘, repeat the following two phases: 

phases 1: Incremental update 

 

𝑃𝑖,𝑘|𝑘
−1 = 𝑃𝑖,𝑘|𝑘−1

−1 +∑ 𝐻𝑙,𝑘
∗ 𝑅𝑙,𝑘

−1𝐻𝑙,𝑘𝑙∈𝒩𝑖
                                    (12) 

𝜙𝑖,𝑘|𝑘 = 𝑥𝑖,𝑘|𝑘−1 + 𝑃𝑖,𝑘|𝑘 ∑𝐻𝑙,𝑘
∗ 𝑅𝑙,𝑘

−1(𝑦𝑙,𝑘 −𝐻𝑙,𝑘𝑥𝑖,𝑘|𝑘−1)

𝑙∈𝒩𝑖

(13) 

 

phases 2: Update time 

{
  
 

  
 
𝑥̂𝑖,𝑘|𝑘 = 𝜙𝑖,𝑘|𝑘                                                         

𝛥ϒ𝑥̂𝑖,𝑘+1|𝑘 = 𝐹𝑘𝑥̂𝑖,𝑘|𝑘                                             
                                        

𝑥̂𝑖,𝑘+1|𝑘 = 𝛥𝛾𝑥̂𝑖,𝑘+1|𝑘 −∑ (−1)𝑗ϒ𝑗
𝑘+1

𝑗=1
𝑥̂𝑖,𝑘+1−𝑗                              (14)

𝑃𝑖,𝑘+1|𝑘 = (𝐹𝑘 + ϒ1)𝑃𝑖,𝑘|𝑘(𝐹𝑘 + ϒ1)
∗ + 𝐺𝑘𝑄𝑘𝐺𝑘

∗ +∑ ϒ𝑗𝑃𝑖,𝑘−𝑗ϒ𝑗
𝑇

𝑘

𝑗=2

 

 

Instead of updating measurements sequential updating is used 

in the above algorithm since in this phase local optimized 

estimation at node i is done by gradual sequential addition of 

measurements at neighboring nodes  {𝑦𝑙,𝑘 , 𝑙 ∈ 𝒩𝑖}. 

4. IMPROVED DISTRIBUTED FRACTIONAL-ORDER 

KALMAN FILTER ALGORITHM FOR ESTIMATION IN 

TIME-DELAY SENSOR NETWORKS 

Each subsystem shares its local information with that of its 

neighboring sensors to obtain additional information about 

system dynamics with introduction of delayed distributed 

complex structure in Eq. (10). Now assume that there is some 

time delay at the time of sending data from each sensor to the 

processor. 

Thus, each data processor can coordinate its behavior by 

receiving data from other sensors in a special area. Each sensor 

communicates with its neighbors to exchange data at the 

estimation coordination center. Thus, distribution coordination 

strategy has flexibility as advantages. 
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                (11) 

m 

                (12) 

(20) 

(21) 

Theorem 1. If we have discrete time fractional-order random 

systems with equations as stated in definition 1 which have 

time delay in sensor networks, then the simplified Kalman 

filter (which is named improved fractional-order distributed 

Kalman filter) is obtained in two phases as stated below. 

A: Sequential updating 

𝑥̂𝑖,𝑘|𝑘−1

= (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖

−∑ ((Π𝑙=1
𝑚 𝐹𝑘−𝑙)∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
)

𝑑𝑖−1

𝑚=1

−∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑗|𝑘−𝑗
𝑘

𝑗=1
 

 𝑃𝑖,𝑘|𝑘
−1 = 𝑃𝑖,𝑘|𝑘−1

−1 +∑ 𝐻𝑙,𝑘
∗ 𝑅𝑙,𝑘

−1𝐻𝑙,𝑘 𝑙∈𝒩𝑖
 

𝜙𝑖,𝑘|𝑘 = 𝑥𝑖,𝑘|𝑘−1 + 𝑃𝑖,𝑘|𝑘 ∑𝐻𝑙,𝑘
∗ 𝑅𝑙,𝑘

−1(𝑦𝑙,𝑘 −𝐻𝑙,𝑘𝑥𝑖,𝑘|𝑘−1)

𝑙∈𝒩𝑖

 

B: Time updating 

𝑥̂𝑖,𝑘|𝑘 = 𝜙𝑖,𝑘|𝑘 

𝛥𝜓𝑥̂𝑖,𝑘+1|𝑘 = 𝐹𝑘𝑥̂𝑖,𝑘|𝑘 

𝑥̂𝑖,𝑘+1|𝑘 = 𝛥
𝜓𝑥̂𝑖,𝑘+1|𝑘 −∑(−1)𝑗𝜓𝑗

𝑘+1

𝑗=1

𝑥̂𝑖,𝑘+1−𝑗 

𝑃𝑖,𝑘+1|𝑘 = (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙) 𝑃𝑘|𝑘(Π𝑙=1

𝑑𝑖 𝐹𝑘−𝑙)
𝑇
+ 𝑄𝑘−𝑑𝑖 

+∑ ((Π𝑙=1
𝑚 𝐹𝑘−𝑙)∑ 𝜓𝑗𝑃𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
𝜓𝑗

𝑇(Π𝑙=1
𝑚 𝐹𝑘−𝑙)

𝑇)
𝑑𝑖−1

𝑚=1

+∑ 𝜓𝑗
𝑘

𝑗=1
𝑃𝑘−𝑗|𝑘−𝑗𝜓𝑗

𝑇 

With initial conditions 𝑥̂𝑖,0|−1 = 𝐸(𝑥0), 𝑃𝑖,0|−1 = 𝛱0 

End of Theorem 1.                                            □ 

Proof. Measurement output 𝑦𝑖,𝑘  in Eq. (10)  is expressed by 

the ith sensor by means of state 𝑥𝑖,𝑘−𝑑𝑖   at time k and the local 

state estimation  of the fractional order Kalman filter is shown 

as  𝑥̂𝑖,𝑘. 

In equations (13) and (15), local state estimations of fractional-

order Kalman filter at times k and k-1, respectively are shown: 

𝑥̂𝑖,𝑘 = 𝐹𝑘−1𝑥̂𝑖,𝑘−1 −∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘+1−𝑗
𝑘
𝑗=1                                  (13) 

Where Eq. (13) can be written as follows: 

𝑥̂𝑖,𝑘 = 𝐹𝑘−2(𝐹𝑘−1𝑥̂𝑖,𝑘−1

−∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−2−𝑗)
𝑘−2

𝑗=1

−∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−1−𝑗
𝑘−1

𝑗=1
 

        (14) 

𝑥̂𝑖,𝑘−1 = 𝐹𝑘−2𝑥̂𝑖,𝑘−2 −∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑗
𝑘−1

𝑗=1
 

        (15) 

Using reorganizing approach changes the systems to 

measurement without delay equivalent systems by measuring 

the delay time. 

Remark 1. Especially when time delays are long, using the 

above mentioned approach for solving different kinds of 

Kalman filters of the same dimensions is proposed for the main 

system for calculations load. 

In Eq. (10), time-delay measurement is investigated from 

repeated measurement output { 𝑦𝑖,𝑘 , 𝑦𝑖,𝑘−1, … , 𝑦𝑖,𝑘−𝑑𝑖}  and 

measurement noise { 𝜐𝑖,𝑘 , 𝜐𝑖,𝑘−1, … , 𝜐𝑖,𝑘−𝑑𝑖}. 

Note that measurement noise sequence is also white noise with 

zero mean and covariance 𝑅𝑖,𝑘 . 

Estimating the minimum mean squared 
error,𝑥̂𝑖,𝑘 is defined by Eq. (16): 

𝑥̂𝑖,𝑘 = 𝑃𝑟𝑜𝑗{𝑥𝑘|𝑦𝑖,𝑘 , … , 𝑦𝑖,𝑘−𝑑 , … , 𝑦𝑖,0} 

= (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)𝑥̂𝑖,𝑘−𝑑𝑖

−∑ ((Π𝑙=1
𝑚 𝐹𝑘−𝑙)∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
)

𝑑𝑖−1

𝑚=1

−∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑗
𝑘

𝑗=1
 

  (16) 

That is equal to compensating the filtered amount 𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖 

(for example (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖). 

Now by placing in Eq. (17), (estimating the previous state) we 

have: 

𝑥̂𝑖,𝑘|𝑘−1 = 𝑃𝑟𝑜𝑗{𝑥𝑘|𝑦𝑖,𝑘 , … , 𝑦𝑖,𝑘−𝑑 , … , 𝑦𝑖,0}                  (17) 

= (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖

−∑ ((Π𝑙=1
𝑚 𝐹𝑘−𝑙)∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
)

𝑑𝑖−1

𝑚=1

−∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑗|𝑘−𝑗
𝑘

𝑗=1
 

Since the measurement sequence includes d-step time delays 

for estimating local state 𝑥̂𝑖,𝑘 , the repeated measurement order 

is proposed for designing a predictor 𝑥̂𝑖,𝑘−𝑑𝑖 . 

Remark 2. Predictor error and estimation error have been 

shown in equations (18) and (19): 

𝑥̃𝑖,𝑘|𝑘−𝑑𝑖 = 𝑥𝑘 − 𝑥̂𝑖,𝑘|𝑘−𝑑𝑖            (18) 

𝑥̃𝑖,𝑘 = 𝑥𝑘 − 𝑥̂𝑖,𝑘             (19) 

Estimation error covariance matrix is obtained from Eq. (20): 

𝑃𝑖,𝑘+1|𝑘 = 𝐸 [(𝑥𝑖,𝑘+1−𝑑𝑖|𝑘−𝑑𝑖 − 𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖)(𝑥𝑖,𝑘+1−𝑑𝑖|𝑘−𝑑𝑖 −

𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖)
𝑇
] 

In Eq. (20), the term 𝑥𝑖,𝑘+1−𝑑𝑖|𝑘−𝑑𝑖 − 𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖 is obtained 

from Eq. (21): 

𝑥̃𝑖,𝑘−𝑑𝑖 = 𝑥𝑖,𝑘+1−𝑑𝑖|𝑘−𝑑𝑖 − 𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖 

= (𝛱𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)(𝑥𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖 − 𝑥𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖) 

−∑ ((𝛱𝑙=1
𝑚 𝐹𝑘−𝑙)∑ (−1)𝑗𝜓𝑗(𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗 − 𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗)

𝑘−𝑚

𝑗=1
)

𝑑𝑖−1

𝑚=1
 

−∑ (−1)𝑗𝜓𝑗(𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗 − 𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗) +
𝑘

𝑗=1
uk−di 

By placing relation Eq. (21), in Eq. (20), we have: 
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(22) 

(23) 

(24) 

(25) 

𝑃𝑖,𝑘+1|𝑘 = 

(Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)𝐸 [(𝑥𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖

− 𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖)(𝑥𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖

− 𝑥̂𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖)
𝑇
] (Π𝑙=1

𝑑𝑖 𝐹𝑘−𝑙)
𝑇
 

+𝐸[𝑢𝑘−𝑑𝑖𝑢𝑘−𝑑𝑖
𝑇] +∑ ((Π𝑙=1

𝑚 𝐹𝑘−𝑙)∑ (−1)𝑗𝜓𝑗𝐸[(𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗
𝑘−𝑚

𝑗=1

𝑑𝑖−1

𝑚=1

− 𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗)(𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

− 𝑥𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗)
𝑇
𝜓𝑗

𝑇(𝛱𝑙=1
𝑚 𝐹𝑘−𝑙)

𝑇) 

+∑ 𝜓𝑗𝐸 [(𝑥𝑖,𝑘−𝑗|𝑘−𝑗 − 𝑥𝑖,𝑘−𝑗|𝑘−𝑗)(𝑥𝑖,𝑘−𝑗|𝑘−𝑗 − 𝑥𝑖,𝑘−𝑗|𝑘−𝑗)
𝑇
]𝜓𝑗

𝑇
𝑘

𝑗=1
 

Eq. (22) can be written briefly as: 

𝑃𝑖,𝑘+1|𝑘 = (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙) 𝑃𝑘|𝑘(Π𝑙=1

𝑑𝑖 𝐹𝑘−𝑙)
𝑇
+𝑄𝑘−𝑑𝑖 

+∑ ((Π𝑙=1
𝑚 𝐹𝑘−𝑙)∑ 𝜓𝑗𝑃𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
𝜓𝑗

𝑇(Π𝑙=1
𝑚 𝐹𝑘−𝑙)

𝑇)
𝑑𝑖−1

𝑚=1

+∑ 𝜓𝑗
𝑘

𝑗=1
𝑃𝑘−𝑗|𝑘−𝑗𝜓𝑗

𝑇
 

Assume that node i has access to its neighbors’ measurements 

𝒩𝑖 . Local estimation at node i can be calculated by performing 

some measurement updating (each updating is done for every 

neighbor i). We have the following using matrix inversion 

lemma (Tylavsky and Sohie, 1986): 

𝑃𝑖,𝑘|𝑘
−1 = 𝑃𝑖,𝑘|𝑘−1

−1 + ∑𝐻𝑙,𝑘
∗

𝑙∈𝑁𝑖

𝑅𝑙,𝑘
−1𝐻𝑙,𝑘

𝑇  

Thus, measurement updating for  𝑥̂𝑖,𝑘|𝑘 is obtained by Eq. (25): 

𝑥𝑖,𝑘|𝑘 = 𝑥𝑖,𝑘|𝑘−1 + 𝑃𝑖,𝑘|𝑘∑𝐻𝑙,𝑘
∗

𝑙∈𝑁𝑖

𝑅𝑙,𝑘
−1(𝑦𝑙,𝑘 − 𝐻𝑙,𝑘𝑥𝑖,𝑘|𝑘−1) 

Local estimations in the sequential updating phase of 

distributed fractional-order Kalman filter is done by 

considering Eq. (25). 

That proves Theorem.                                           □ 

In Table 2, the improved distributed fractional-order Kalman 

filter algorithm for estimation in time delay sensor networks is 

briefly shown in Table 2. 

Table 2. Improved distributed fractional-order Kalman 

filter algorithm for estimation in time-delay sensor 

networks. 

Consider fractional order state space model (10) and (11): 

For each node 𝑖 we have: 𝑥𝑖,0|−1 = 𝐸(𝑥0),𝑃𝑖,0|−1 = 𝛱0 

In each sampling period 𝑘, repeat the following two phases: 

phases 1: Sequential updating 

𝑥𝑖,𝑘|𝑘−1 = (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙)𝑥𝑖,𝑘−𝑑𝑖|𝑘−𝑑𝑖            

−∑ ((Π𝑙=1
𝑚 𝐹𝑘−𝑙)∑ (−1)𝑗𝜓𝑗𝑥̂𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
)

𝑑𝑖−1

𝑚=1
 

−∑ (−1)𝑗𝜓𝑗 𝑥̂𝑖,𝑘−𝑗|𝑘−𝑗
𝑘

𝑗=1
 

𝑃𝑖,𝑘|𝑘
−1 = 𝑃𝑖,𝑘|𝑘−1

−1 + ∑ 𝐻𝑙,𝑘
∗ 𝑅𝑙,𝑘

−1𝐻𝑙,𝑘 
𝑙∈𝒩𝑖

 

𝜙𝑖,𝑘|𝑘 = 𝑥𝑖,𝑘|𝑘−1 + 𝑃𝑖,𝑘|𝑘 ∑𝐻𝑙,𝑘
∗ 𝑅𝑙,𝑘

−1(𝑦𝑙,𝑘 −𝐻𝑙,𝑘𝑥𝑖,𝑘|𝑘−1)

𝑙∈𝒩𝑖

 

phases 2: Update time 

𝑥̂𝑖,𝑘|𝑘 = 𝜙𝑖,𝑘|𝑘

𝛥𝜓𝑥̂𝑖,𝑘+1|𝑘 = 𝐹𝑘𝑥̂𝑖,𝑘|𝑘

𝑥̂𝑖,𝑘+1|𝑘 = 𝛥
𝜓𝑥̂𝑖,𝑘+1|𝑘 −∑(−1)𝑗𝜓𝑗

𝑘+1

𝑗=1

𝑥̂𝑖,𝑘+1−𝑗

𝑃𝑖,𝑘+1|𝑘 = (Π𝑙=1
𝑑𝑖 𝐹𝑘−𝑙) 𝑃𝑘|𝑘(Π𝑙=1

𝑑𝑖 𝐹𝑘−𝑙)
𝑇
+ 𝑄𝑘−𝑑𝑖

+∑ ((𝛱𝑙=1
𝑚 𝐹𝑘−𝑙)∑ 𝜓𝑗𝑃𝑖,𝑘−𝑚−𝑗|𝑘−𝑚−𝑗

𝑘−𝑚

𝑗=1
𝜓𝑗

𝑇(𝛱𝑙=1
𝑚 𝐹𝑘−𝑙)

𝑇) +
𝑑𝑖−1

𝑚=1
∑ 𝜓𝑗

𝑘

𝑗=1
𝑃𝑘−𝑗|𝑘−𝑗𝜓𝑗

𝑇

 

6. SIMULATION 

In this section, a projectile path tracing measurement scenario 

in a wireless time-delay sensor network is implemented in 

order to numerically evaluate operation of the improved 

fractional-order distributed Kalman filter algorithm for 

estimation in time-delay sensor networks. Then, performance 

of the proposed improved fractional-order distributed Kalman 

filter algorithm is compared with that of conventional 

fractional-order distributed Kalman filter algorithm for 

projectile state estimation. The results obtained from 

simulations verify proper performance and estimation error 

convergence of the proposed fractional-order Kalman filter 

algorithm. 

Moreover, estimation precision of the proposed fractional-

order distributed Kalman filter algorithm shows considerable 

improvement compared with that of conventional fractional-

order distributed Kalman filters. Consider a set of sensors in a 

time-delay wireless sensor network which tries to estimate and 

trace path of a projectile. Assume that the projectile is near an 

adaptive network where the sensors observe projectile position 

subject to noise. This network includes 20 agents or sensors 

with topology as shown in Figure 3 where the branches show 

the communication lines between the agents. At the same time, 

each sensor node can independently obtain projectile’s 

position and communicate with its neighbors. 

 

Fig. 3. Network topology with N = 20 nodes . 

Acceleration a, speed v, and projectile’s position p  may be  

written as follows: 

a = [

ax
ay
az
] , v = [

vx
vy
vz
] , p = [

px
py
pz
]                                                            (26) 

We can write Eq. (27), for projectile’s motion (Ebaid, 2011): 

Dn1v(t) = a(t)

Dn2p(t) = v(t) 
ax = ay = 0,  az = −g

                                                                          (27) 

Where g is the acceleration of gravity on earth. 
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The system’s state vector is a six-dimensional matrix which 

consists of speed and position of the projectile as follows: 

Thus, process dynamic is as follows by considering Eq. (28): 

fk(xk, uk) = [D
nv Dnp]T × hn

Δψxk+1 = fk(xk, wk) + wk,  k ≥ 0      uk = (0,Qk)

xk+1 = Δ
ψxk+1 −∑ (−1)jψjxk+1−j,   k ≥ 0  

k+1

j=1

                       (28) 

Where n = 0.99 is the fractional-order system, xk = [vk, pk]
T 

system modes with default values. Moreover, x0 =
[0.7,0.1,0.2,0.8,0.2]T and  wk = [0] are input system. 

Assume that each node measures the position of an uncertain 

target in one of the following two states: 

Hi,k = [0, diag([1 1 0])], is for the case in which just the 

horizontal dimensions are seen andHi,k = [0 , diag([1 0 1])], 
for the case in which only a horizontal dimension and one  

vertical dimension are seen. 

Thus, the nodes do not have the capability of direct 

measurement of projectile position in three dimensions. Also, 

time delay at each node is a randomly chosen number between 

zeros to three sampling periods.  Creating an observable pair 

is randomly done by each node. 

The parameters are h = 0.1, Gk = I6, Qk = 0.001I6, Si =

0 and  Ri,k = √iPR0P
T with R0 = 0.5 × diag([1 4 7]) is a 

permutation matrix that is randomly chosen for each node . 

The √k coefficient allows consideration of various different 

noise conditions for each node. 

Initial state values are x0 = (10,2,8,0.1,0.1,0.1)
T  and  P0 = I6. 

The real vertical path (straight line) and the vertical position 

noise measurements at node 5 (dashed line) at node 5 are 

shown in Fig. 4. Moreover, Fig. 5 shows performance of state 

estimation while estimating vertical position for various 

different algorithms in the whole network. The remaining two 

curves are related to conventional fractional-order distributed 

Kalman filter (Ghanbari Firouzabadi et al., 2020) and 

improved fractional-order distributed Kalman filter. 

It is seen that estimations performed by the improved 

fractional-order distributed Kalman filter are closer to the real 

path when compared with other conventional fractional-order 

distributed Kalman filters and the improved fractional-order 

distributed Kalman filter has been able to mitigate the effects 

of time delays in measurements quite well. 

 

Fig. 4. Real vertical path and vertical position measurement 

noise at node 5. 

 

Fig. 5. Mean estimate of vertical position of all nodes by 

various different algorithms. 

Remark 3. The mean squared deviation (MSD) metric is used 

for performance evaluation of fractional-order Kalman filters. 

It should be noted that the MSD metric is defined for all nodes 

by eq. (29): 

𝑀𝑆𝐷𝑖,𝑘 = 𝐸‖𝑥𝑖 − 𝑥̂𝑖,𝑘|𝑘‖
2

𝑀𝑆𝐷𝑘
𝑎𝑣𝑔

=
1

𝑁
∑ 𝑀𝑆𝐷𝑖,𝑘

𝑁

𝑖=1

                                     (29) 

Where k is the time index and node i is where MSD is 

computed. There are different estimates produced by different 

distributed algorithms. 

The MSD metric for the improved fractional-order Kalman 

filter is numerically compared with that of conventional 

fractional-order distributed Kalman filter. The value of MSD 

for the two algorithms is shown in Fig. 6. In this Figure, the x 

axis shows the number of iterations and the y axis is the value 

of MSD. 

The error related to conventional fractional-order distributed 

Kalman filter is high, since the nodes do not have access to 

three-dimensional measurements of projectile motion and the 

pair {𝐹, 𝐻𝑖
𝑙𝑜𝑐} is unrecognizable as seen in the Figure. 

We can conclude that the estimation obtained from the 

improved fractional-order distributed Kalman filter has 

considerable improvement over that of the conventional 

distributed Kalman filter by comparison and analysis of 

simulation. 

 

Fig. 6. The MSD metric for improved fractional-order 

distributed Kalman filter and conventional fractional-order 

distributed Kalman filter. 
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Table 3. MSD performance. 

Algorithm 
MSD 

performance(dB) 

Computing 

time  (s) 

fractional-order 

distributed 

Kalman filter 

5 2.2 

fractional-order 

distributed 

Kalman filter 

with delay-time 

-11 2.6 

We may conclude from Table 3 that in the implemented 

approach, we increase estimation precision, the time needed 

for calculations increases and the value of MSD decreases. 

This points to the fact that error has lessened and precision has 

improved greatly although computational time has increased. 

7. CONCLUSIONS 

In this paper, a new improved fractional-order distributed 

Kalman filter algorithm is proposed for state estimation of 

time-delayed sensor network measurement. Then, 

performance of the mentioned algorithm is compared with that 

of conventional fractional-order distributed Kalman filter 

algorithm using MSD and mean to investigate its feasibility. 

Simulations results show that the improved fractional-order 

distributed Kalman filter has been able to mitigate the effects 

of time delays in measurements quite well. the accuracy of the 

estimation obtained by the improved fractional-order 

distributed Kalman filter has considerable improvement over 

that of the conventional distributed Kalman filter by 

comparison and analysis of simulation. Also, the implemented 

approach reflects that by increasing estimation precision, the 

time needed for calculations increases and the value of MSD 

decreases. This points to the fact that error has lessened and 

precision has improved greatly although computational time 

has increased. 

REFERENCES 

   Abadi, M.S.E. and Shafiee, M.S. (2018). Distributed 

estimation over an adaptive diffusion network based on 

the family of affine projection algorithms. IEEE 

Transactions on Signal and Information Processing over 

Networks, volume (5), pp. 234-247.   

   Al-Sayed, S., Plata-Chaves, J., Muma, M., Moonen, M. and 

Zoubir, A.M. (2018). Node-specific diffusion LMS-

based distributed detection over adaptive networks. IEEE 

Transactions on Signal Processing, volume (66), pp. 

682-697.  

   Azami, A., Naghavi, S., Tehrani, R., Khooban, M.  

and Shabaninia, F. (2017). State estimation strategy for 

fractional order systems with noises and multiple time 

delayed measurements.  IET Sci. Meas. Technol., volume 

(11), pp. 9-17. 

   Azzabi, T., Farhat, H., and Sahli, N. (2017). A survey on 

wireless sensor networks security issues and military 

specificities. in Proc. IEEE Int. Conf. Adv. Syst. Electr. 

Technol. (ICASET)., pp. 66-72. 

   Birs, I., Muresan, C., Nascu, I.  and Ionescu, C. (2019). A 

survey of recent advances in fractional order control for 

time delay systems, IEEE Access, volume (7), pp. 30951-

30965.  

   Cattivelli, F.S. and Sayed, A.H. (2010). Diffusion strategies 

for distributed Kalman filtering and smoothing. IEEE 

Transactions on automatic control, volume (55), 

pp.2069-2084. 

   Ding, Y. and Ye, H. (2009). A fractional-order differential 

equation model of HIV infection of CD4+ T-cells. 

Mathematical and Computer Modelling 50, pp. 386–392. 

   Ebaid, A. (2011). Analysis of projectile motion in view of 

fractional calculus. Applied Mathematical Modelling, 

volume (35), pp. 1231-1239.  

   Fernandez-Bes, J., Arenas-García, J., Silva, M.T. and 

Azpicueta-Ruiz, L.A. (2017). Adaptive diffusion 

schemes for heterogeneous networks. IEEE Transactions 

on Signal Processing, volume (65), pp. 5661-5674. 

   Ghanbari Firouzabadi, M., Nekoui, M.A., Mohammadzadeh, 

E. and Mazinan, A.H. 

(2020). Fractional-Order Distributed Kalman Filter in 

Virtualized Sensor Networks by 

Diffusion Strategies, Journal of Control Engineering and 

Applied Informatics, volume (2), pp. 13-22. 

   Jiang, K., Geng, P., Meng, F. and Zhang, H. (2016). An 

extended Kalman filter for input 

estimations in diesel-engine selective catalytic reduction 

applications. Neurocomputing volume (171), pp. 569-

575. 

   Kalman, R. E. (1960). A new approach to linear filtering and 

prediction problems. Trans. ASME J. Basic Eng., volume 

(82), pp. 34–45. 

   Lainiotis, D. G. (1971). Optimal adaptive estimation: Structure 

and parameters adaptation. IEEE Transactions on 

Automatic Control, volume (16), pp. 160–170. 

   Li, D., Kar, S., Moura, J.M., Poor, H.V. and Cui, S. (2015). 

Distributed Kalman filtering over massive data sets: 

analysis through large deviations of random Riccati 

equations. IEEE Transactions on Information 

Theory, volume (61), pp.1351-1372. 

   Liu, L., Yang, A.,  Tu, X.,  Fei, M.  and Naeem, W. (2017).  

Distributed  weighted fusion estimation for uncertain 

networked systems  with transmission time-delay and 

cross-correlated noises. Neurocomputing, volume (270), 

pp. 54–65. 

  Mainwaring,  A., Polastre, J., Szewczyk, R.,  Culler, D. and 

Anderson, J. (2002). Wireless sensor networks for habitat 

monitoring. Proc. ACM Workshop on Wireless Sensor 

Networks and Applications, Atlanta, USA, September 

2002, pp. 88–97. 

   Marzban, H.R. and Razzaghi, M. (2005). Analysis of time-

delay systems via hybrid of block-pulse functions and 

Taylor series. J Vibr Contr 2005, volume (11), pp. 1455-

1468. 

   Nasser-Eddine, A., Huard, B.,  Gabano, J.-D. and Poinot, T. 

(2018). Time domain diffusion parameters identification 

of electrochemical impedance models using fractional 

order system. IFAC Proceedings Volumes18th IFAC 

Symposium on System Identification (SYSID 2018) 

Stockholm Sweden, volume (59), pp. 375-386. 

   Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, 

A. and Shehata, M. S. (2017). Structural health 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                                                                                               44      

monitoring using wireless sensor networks: A 

comprehensive survey, IEEE Commun. Surveys Tuts, 

volume (19), pp. 1403-1423.  

   Petras I. (2011). Fractional-Order Nonlinear Systems: 

Modeling, Analysis and Simulation. Springer Science & 

Business Media, Berlin. 

   Podlubny, I. (1998). Fractional differential equations: an 

introduction to fractional derivatives, fractional 

differential equations, to methods of their solution and 

some of their applications. Elsevier Science. 

   Sadeghian,    H. and Salarieh, H. (2013). On the general 

Kalman filter for discrete time stochastic fractional 

systems. Mechatronics, volume (23), pp. 764-771. 

   Särkkä,   S. (2010). Bayesian estimation of time-varying 

systems: Discrete-time systems. School of Science and 

Technology, Aalto University. 

   Sierociuk, D. and Dzieliński, A. (2006). Fractional Kalman 

filter algorithm for the states, parameters and order of 

fractional system estimation. International Journal of 

Applied Mathematics and Computer Science, volume 

(16), pp. 129-140.  

   Sierociuk, D., I. Tejado and B. M. Vinagre. (2011). Improved 

fractional Kalman filter and its application to estimation 

over lossy networks. Signal Processing, Volume (91), 

pp. 542-552.   

   Song, E., Xu, J. and Zhu, Y. (2014). Optimal distributed 

Kalman filtering fusion with singular covariances of 

filtering errors and measurement noises. IEEE Trans. 

Autom. Control,  volume (59), pp, 1271-1282. 

   Stanisławski, R., Latawiec, K.J. and Łukaniszyn, M. 2015. A 

comparative analysis of Laguerre-based approximators 

to the Grünwald-Letnikov fractional-order difference. 

Mathematical Problems in Engineering, volume (2015), 

pp. 1-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Sun, X. and G. Yan. (2011). Fractional Order Kalman filter. 

2nd International Conference on Intelligent Control and 

Information Processing, pp. 836-838.  

   Tang, Y., Li, N., Liu, M., Lu, Y. and Wang, W. (2017). 

Identification of fractional-order systems with time 

delays using block pulse functions. Mechanical Systems 

and Signal Processing, volume (91), pp. 382–394. 

   Torabi,   H., Pariz, N. and Karimpour, A. (2016). Kalman 

filters for fractional discrete‐time stochastic systems 

along with time‐delay in the observation signal. The 

European Physical Journal Special Topics, volume 

(225). pp. 107– 118. 

   Tylavsky, D.J. and Sohie, G.R. (1986). Generalization of the 

matrix inversion lemma. Proceedings of the IEEE, 

volume (74), pp. 1050-1052. 

   Yan,   Y. and Kou, C. (2012). Stability analysis for a fractional 

differential model of {HIV} infection of CD4+ T-cells 

with time delay. Mathematics and Computers in 

Simulation, volume (82), pp. 1572–1585. 

   Yang, H., Li, H., Xia, Y. and Li, L. (2019). Hierarchical fusion 

estimation for multi-sensor 

           networked systems with transmission delays and packet 

dropouts. Signal Processing, volume (156), pp. 156–165. 

    Yang, H., Li, H., Xia, Y. and Li, L. (2020). Distributed 

Kalman filtering over sensor networks with transmission 

delays. IEEE Transactions on Cybernetics, pp. 1–11. 

 


