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Abstract: The inherent growth of the non-linear effects, wind-speed swings, and parameters
uncertainty are challenges in the modern power system based on wind turbines, including
a doubly fed induction generator (DFIG-WT). In addition to being subject to voltage drop
conditions, it is necessary to design reliable control units to meet the system’s nominal power.
According to these considerations, a new rotor-aspect current control that revolves on active-
and reactive-power (Ps-Qs) control is suggested using a sliding mode technique via discrete
particle swarm optimization control (RPSMC-PSO) based on the recurrent construction of
neural network (RNN) for the non-linear DFIG-WT. Based on features of the low-degree Taylor
approximation principle, the RNN is re-constructed to simplify the optimization problem of the
PSO to generate the optimal sliding switch signals. The main idea of this routine is to force
the quasi-chatter behavior of SMC for the non-linear system to be close to the optimal sliding
trajectory in a few steps and less calculation burden of the algorithm. Thus, the control law
guarantees the general stability of the system and attenuates the unimportant chatter impacts.
Also, the suggested control approach is compared against the standard control as SMC and
Proportional-Integral regulator (PI). Moreover, a 1.5 MW DFIG is inspected to validate the
dynamic results of the open-source FAST turbine model. Dynamic results show preference of
RPSMC-PSO in terms of dynamic changes of the DFIG-WT under numerous experimental
achievements comparing with the standard control approaches.

Keywords: DFIG, sliding mode control, harmonic distortion, power system control, wind
power generation.

1. INTRODUCTION

Given the speed increase in the greenhouse gas emissions
resulting from the expansion of industrial activities that
use fossil fuels, many countries have turned to alternative
energy for reducing the degradation of the Earth’s envi-
ronmental cover. In this context, wind generation systems
represent a promising and cheaper alternative and can
provide enough energy that contributes to solving global
energy challenges (Valenciaga and Puleston, 2008; Qiao
et al., 2009). The power grids system current design based
on the wind turbine (WT) uses a doubly-fed induction
generator (DFIG) due to having many advantages com-
pared with the synchronous generators. These advantages
are summarized in that: it has four-quadrant power regions
with a low transformation rate of energy, a wide array of
altered speeds, and the ability to enhance the regulation
techniques that reduce equipment cost and dynamic losses
(Ganti et al., 2011; Pande et al., 2013; Nazari et al.,
2011). Moreover, the dips and disturbances effects, non-
linear behavior, and the complexity of the DFIG-WTs
need to design effective and robust regulators to increase

the total efficiency. For that, the standard regulator, such
as the Proportional-Integral regulator (PI), fails to find
a precise solution for stability problems. Consequently,
various intelligent regulation approaches have been indi-
cated in many studies for improving system performance.
Experimentally, robust control in the stationary αβ refer-
ence frame has guaranteed stable regulation of DFIG-WTs
under (normal/dips) of grid voltage, and disturbances
condition with emerged chattering can deteriorate the dy-
namic variables, especially in the case of the first detection
of the fault (Costa et al., 2010). In (Jabr et al., 2011),
the stator-aspect power control-based Neuro-Fuzzy (NFC)
needs collective experiments data to include all different
dynamic test conditions associated with the standard PI
controller. The adapted PI coefficients based on NFC are
extracted at dq-reference level related to the rotor-aspect
voltage from the scheduled vector applied on DFIG-WT.
Further analysis at dq-level for the stator- and grid-aspect
control components connection based on PI controller with
separation units and a rotor-aspect current controller plus
the resonant units have been offered in (Zhou et al., 2009;
Xu et al., 2012). These reference-level analyses of DFIG-
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WT have enhanced the design of the proposed regulator
in the current topic.

Sliding-Mode regulation formula (SMC) has been success-
fully used to manipulate some control issues in practical
applications due to its unmentioned sensitivity to external
disturbances and unwanted dynamic changes for DFIG
and WTs in (Beltran et al., 2008; Young et al., 1999;
Hu et al., 2010a; Martinez et al., 2013). However, the
impact of sliding chatter (SCE) is a frequent challenge
in SMC, besides meeting the regulation aims for many
applications aspects due to the classical design of sliding
switches term based on saturation restrictions that may
emerge excessive chattering in the system. The classical
design of sliding switching was introduced in many as-
pects of DFIG-WT, such as the direct SMC regulation
of DFIG through extended active power under normal
and dips voltage conditions in αβ-level (Sun et al., 2017),
the back-stepping-based adaptive-SMC control has offered
accurate regulation aims for the stator-aspect power of
multi-generator energy networks based on DFIG in (Pat-
naik and Dash, 2016). Separately in (Martinez et al.,
2012; Chen et al., 2009), Integral-SMC based on classi-
cal sliding chatter saturation law has been offered based
on direct stator-aspect reactive power, and As well, the
torque regulation at dq- reference level during dips and
harmonic effects on the grid voltage. Regulation of the
direct stator-aspect power that involves Integral-SMC plus
2-times actual frequency compensator has been achieved
for the DFIG system during the imbalanced condition
(Shang and Hu, 2012). SMC based on classical sliding
switching law in the αβ-level for the stator-aspect power
control toward the rotor-aspect plus compensation unit
during unbalanced DFIG was designed in (Sun and Wang,
2017). Generally, the common sliding chattering control
term based on sliding variables, boundaries, and signs was
used in earlier SMC studies, which causes an unsteady
slide for system sequences states on the effective surface to
meet the dynamic characteristics. Avoiding the arithmetic
burden, consumed time, search for the optimization re-
gions, and meeting the regulation objectives are inevitable
challenges when using predictive and heuristic algorithms
for many application fields. Many solutions in Model Pre-
dictive Controller (MPC) have been introduced related to
the DFIG-WT, such as a high sampling-time and avoid
inspecting whole executable voltage arrays in (Cheng and
Nian, 2017; Zhang and Hou, 2017), respectively. As well as,
in(Liu and Kong, 2013), the first-step prediction sequence
feature-based non-linear MPC was presented for control-
ling the DFIG-WTs under abnormal conditions. These
features with the standard augmented formula are used
in this proposed study to build a first-order sliding vector
based on rotor-aspect current.

The accurate design of advanced regulation approaches
depends on accurate actual paradigms in continuous- and
discrete-domain cases. Therefore, several common model-
ing techniques are designed from collected processing data-
set, such as mining approach, forward-neural networks
(FFNNs) and recurrent neural networks (RNNs) (Repta
et al., 2018; Pan and Wang, 2011; Akpan and Hassapis,
2011), respectively. This study builds the RNNs paradigm
in the light of previous studies with some necessary mod-
ifications to find the linear paradigm as mentioned in the

next paragraph and subsection 2.2. From the standpoint
of modeling, RNNs are highly competitive with non-linear
dynamic behavior and, FFNNs are more convenient in
static function (Zamarreño and Vega, 1998). The MPC
based on RNN is essentially depending on the accurately
training procedures and their system-based data. Thus,
the predictive neural paradigm will offer unstable behavior
when it exceeds the range of training information for the
non-linear system (Guo et al., 2014; Qin and Badgwell,
2003). According to these reasons, the Taylor series for-
mula has been accurately offered based on enhanced RNNs
for designing a linear predictive control (Xiang et al.,
2016).

More optimization approaches based on heuristic ways
have been presented to obtain an approximate (never-
theless, not inevitably the best) solution. These methods
accelerate searching for optimal points and enable the
combination of various random adjustment methods. The
standard solutions of these methods contain evolutionary
and swarm algorithms, such as Genetic, Particle Swarm
(PSO), BAT, Bird Swarm algorithm, etc. Optimization
approaches based on the traditional adaptation such as the
computation formula, offline-PSO, and offline-BAT algo-
rithm have an essential shortage involving ideal modeling
of the system with off-line iteration without computed the
unknown dynamic changes (Ruiz-Cruz et al., 2012; Yılmaz
and Küçüksille, 2015). Thus, the system may lead to a
decrease the overall efficiency. Nature-inspired algorithms
have been introduced in many aspects of distorted DFIG-
WT. (Alzain et al., 2019) displayed a rotor-aspect current
control based on the online tuned PI-resonant regulator
using BAT Algorithm (PIR-BAT) for the linear paradigm
of 2 MW-DFIG-based WT. PIR-BAT handled the dy-
namic signal at a primary frequency and 5th and 7th-
order of harmonic without additional calculation in the
sequences of harmonic spectrum items on the rotor-aspect
current. PIR-BAT mechanism presented lower search bur-
dens with 6e−4 MSE over 10 iterations and satisfactory
dynamic reactions compared to ordinary regulators. Be-
sides, (Alzain et al., 2021) presented a rotor-aspect current
control based on the online tuned SMC-Resonant regulator
using Bird Swarm Algorithm (SMCR-ABSA) based on the
linear model of 2 MW-DFIG. SMCR-ABSA suppressed
the emerged ripples of 5th- and 7th-order harmonic and
regulated the main dynamic signal without extra calcu-
lation in the sequences of harmonic items on the rotor-
aspect current. SMCR-ABSA mechanism offered a lower
convergence burden over 60 iterations and better dynamic
reactions compared to common regulators. A dq-rotor-
aspect current control based on predicted SMC using BAT
Algorithm (BATS-SMC) for the linear paradigm of the
1.5 MW DFIG-WT has been presented in (Omar et al.,
2021). BATS-SMC mechanism dealt with a fixed rotor-
speed scenario to introduce a lower search burden with
5.8e−4 MSE along 10 iterations and satisfactory dynamic
reactions compared to common regulators.

Furthermore, Slime Mould (SMA) algorithm is one of the
metaheuristic methods that provided a higher achievement
and fewer computations time for finding the ideal adapted
coefficients of PI-Fuzzy regulator associated with the servo
applications. SMA optimization target is specified as the
multiplication of sum of time and squared system error
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(Precup et al., 2021). This proposed topic introduced
the PSO algorithm, a random directive algorithm (Zed-
dini et al., 2016). PSO produces random particles in the
searching range and looks for the best choice among the
population of swarm solutions. Then, an individual parti-
cle, location, and speed are defined at a sample interval
to determine the best convergence (Rekioua, 2014). In
addition, the merged PSO with standard algorithms and
controllers in various researches has accomplished substan-
tial positive dynamic reactions within the improvement of
the regulation fields. The hybrid algorithm, especially in
the swarm system, is necessary to reduce detected deficien-
cies while using standard algorithms. These hybrid swarm
algorithms could have a higher ability to reduce detected
optimization problems while using standard algorithms.
Also, PSO’s trade-off between observation and manipula-
tion features has been applied in 3D construction to im-
prove the convergence and iterations of the self-assembly
computation approach (SAPSO) based on the Euclidean
optimization target, which is specified as the distance term
between the agents-elements and construction elements
(Zapata et al., 2020).

This proposed topic considers that dealing with the chat-
tering behavior of the sliding plane is essential to guarantee
system stability. Therefore, SMC investigations have been
implemented while reducing the chattering effects during
several operation cases of the DFIG-WTs by merging the
features of SMC, RNN, and PSO algorithms. The RNN
based on non-linear DFIG has been simplified by rebuild-
ing it as the low order of the Taylor approximation equa-
tion for system-based control representation (Balduzzi
et al., 2017). Taylor-based RNN is used for applying the
sequences of state-space on the PSO optimization strat-
egy. Thus, the optimal correction of the sliding chattering
sequences is performed at each sample time to minimize
the optimization function of the sliding sequences as the
main contribution of design. The optimization function is
defined as the sum of squared error of sliding states based
on rotor-aspect current and the predicted control signal se-
quences based on the PSO algorithm. In addition, the PSO
algorithm generates the predicted control law solutions of
SMC and the identical control law to ensure the accuracy
of the state path of the sliding switches during the future
sampling time without chattering behavior. According to
the structure of RPSMC-PSO control, the controller is
divided into conventional SMC model control plus pre-
dicted sliding terms to correct the sequences of non-linear
behavior as perturbations (Xu and Li, 2011). These fea-
tures perfectly regulated the non-linear behavior in DFIG,
abrupt modification in current, torque, and related quan-
tities. In general, this topic presents a rotor-aspect current
control mechanism based on active and reactive power
using an optimal sliding mode control approach RPSMC-
PSO. The suggested mechanism and traditional control
are applied to the rotor- and grid-aspect bi-way IGBT
converters. The low-order Taylor approximation formula
of the RNN frame is applied to the grid-connected DFIG-
WT. RPSMC-PSO unit included a PSO algorithm based
on the RNN, which uses the MIMO variables of the system
to detect optimum sliding chattering trajectories. Thus,
RPSMC-PSO delivered the dq-axis rotor voltage as control
signals to the rotor-aspect converter.
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Fig. 1. The public diagram of DFIG-WTS.
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Fig. 2. DFIG ideal-circuit at dq-reference mode.

2. SYSTEM DESCRIPTION

2.1 Description of the DFIG model

WT system converts the energy of wind movement into
useful electric energy through the non-linear relationships
between the components of the mechanical and electrical
units. In the modern WTs that general connections are
represented in Fig. 1, DFIG is generally an essential and
common element in the building of the WTs due to
its dynamic outperforms compared with the synchronous
generators. As well as one of its striking features, it has
design flexibility that allows the development of control
system units to obtain a continuous and stable energy
supply. In general, the vector control method uses the
reference frames approach to simplify the DFIGs variables
according to the rotation at angular speed. In this study,
the mathematical relationships of the DFIG can be derived
assuming that: all parameters and variables are scaled
using Per/Unit criteria; the model is analyzed in an
arbitrary reference frame (dq) in which the rotational
speed is close to the angular speed of the generator ωe
and the simple circuit of the DFIG has a symmetrical air-
gap (Liu and Kong, 2013; Hu et al., 2010b). Referring to
the simple equivalent circuit Fig. 2, the voltage compact
form based on dq-frame can be expressed as:

vsdq = Rsisdq +
dψsdq
dt

+ jωeψsdq

vsdq = Rrirdq +
dψrdq
dt

+ j (ωe − ωr)ψrdq
(1)

and
ψsdq = Lsisdq + Lmirdq
ψrdq = Lmisdq + Lrirdq
Ls = Lσs + Lm
Lr = Lσr + Lm

(2)
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Fig. 3. The scheme of oriented phasor for the stator flux.

where vsdq, vsdq, isdq, irdq, ψsdq and ψrdq are the dq-axis
vectors of voltages, currents and fluxes of the stator-aspect
and rotor-aspect, respectively. Rs, Rr, Ls, Lr, Lσs, Lσr
and Lm are the resistances, winding interior self-
inductance and leakage inductance of stator-aspect and
rotor-aspect, respectively. The linear model of DFIG can
be specified relating to us and ψs as constant amounts,
and the stationary resistive voltage drop is removed.
Therefore, vsd = 0 and vsq = Us, and by including (2),
the equation (1) is written as:

vsdq = Rsisdq + jωeψsdq

vsdq = Rrirdq + (Lsm −
LrLs
Lm

)
disdq
dt

+ j (ωe − ωr)ψrdq
(3)

In (Shi et al., 2019), the non-linear model of a DFIG under
varying circumstances of the grid can be specified with
merging and rewriting (1), (2) and (3), and the fluxes
stator-aspect are taken in computations. With indicating
to the stator-aspect flux orientation (SFO) phase diagram
Fig. 3, the direct axis of reference scheme arrayed with the
stator-aspect flux. Hence, ψsd = ψs and ψsq = 0. The
non-linear DFIG formula can be expressed as a function
of isdq and irdq
disd/dt = H1isd + H2isq + H3ird + H4irq + N1vsd + N2vrd
disq/dt = H5isd + H6isq + H7ird + H8irq + N1vsq + N2vrq
dird/dt = G1isd + G2isq + G3ird + G4irq + M1vsd + M2vrd
dirq/dt = G5isd + G6isq + G7ird + G8irq + M1vsq + M2vrq
dωs/dt = PLm/J (isqird − isdirq)− Tm/J

(4)
where

H1,6 = −Rs/Lsσ,

H3,8 =
RrLm − LrLm
LsLr − L2

m

,

G1,6 = −RsLm/LsLrσ,

G3,8 = −RrLs − L
2
m

LsLr − L2
m

,

N1 = 1/Lsσ,

M1 = −Lm/LsLrσ,
σ = 1− L2

m/LsLr.

H2,5 = ±σ−1ωe − ωsL
2
m

LsLr

H4,7 = ∓ωsLm
Lsσ

G2,5 = ∓(ωe − ωs)Lm/Lrσ
G4,7 = ±ωs/σ

N2 = Lm/LsLr − L2
m

M2 = −L2
m/LsL

2
rσ

The first-degree differential of stationary angular speed
depends on the shaft rotor-aspect angular speed, which
can be formed by involving the electromagnetic torque Te,
the wind turbine torque Tm and the moment of inertia J :

Te = 3pLm. Im{Ir.Is}

J
dω

dt
= Tm − Te

(5)
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Fig. 4. RPSMC-PSO approach model of rotor-aspect cur-
rent control.
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Fig. 5. Two paradigms of learning approaches are defined
as non-linear parallel-/series–parallel type.

where Tm = 0.5ρπR3Cρ (λ, β) v2 with a radius and power
coefficient of the rotor, wind speed, tip-speed rate and
blade changes as R,Cρ, v, λ and β respectively. The stator-
aspect power Ps and Qs can be represented as(

P
Q

)
=

(
Re{V s.Is}
Im{V s.Is}

)
(6)

2.2 Suggested Control Modelling

The overall structure of rotor-aspect control using RPSMC-
PSO based on RNN structure is shown in Fig. 4. Also, the
general types of FNN-NARX (non-linear Auto-regression
eXogenous architecture) based RNN structure are shown
in Fig. 5. According to the position of neural units within
the system construction, two common training approaches
are generated to evaluate the weight gains of the neural
model. In this investigation, the first approach called the
non-linear parallel model is used, with the previously eval-
uated output signals are defined as feedback into the neu-
ral system through the tapped delay line (TDL). The non-
linear series-parallel model can be designed as a second
approach, with the real paradigm output is linked with the
neural system through TDL (Wang et al., 2015; Zemouri
et al., 2010). (

P
Q

)
def
= − 3/2

(
usisq
usisd

)
(7)

In (Balduzzi et al., 2017), the sequences of input/output
behavior for the model dynamics (4) can be built as
the NRAX for the RNN. This kind of RNN utilizes
retrogression elements ϕ to find the estimated future
output based on a non-affine form fa as:

ȳk+1 = fa(ϕk, ε) (8)

Referring to the formula (4) and (7), the vector of retro-
gression variables is defined as, ϕk = [xk+r−1, ..., xk+r−my ,
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uk, ..., uk−mu+1]. where my and mu are +fixed scalar index
to determine the retrogression vector extension as (my,
mu) corresponding to the past delayed values of output x
and input signals u. The label ε in (8) is a pure additive
white un-rated noise that accompanies a series of input and
output estimates. An accurate equivalent model is compli-
cated to be built for a real MIMO system. Therefore, this
paper identifies the MIMO real system as two MISO sub-
system neural network models to be an alternative to a sin-
gle MIMO form of the entire process as in (Yu and Gomm,
2003), as well, the MISO sub-system neural network is
collected from a compound of two feed-forward neural net-
works. Then, the MIMO equivalent structure can be built
using correctly coupling MISO models. Thus, the new ret-
rogression vector of NARX model can be defined by an in-
terior regression vector and input signals as ϕk = [ϕ′k, uk].
where ϕ′k = [xk+r−1, ..., xk+r−my , uk−1, ..., uk−mu+1] is
the inner RNN retrogression vector to result the affine
discrete-time of input/output prediction form as

ϕ′k+1 = f(ϕ′k) + g(ϕ′k).uk + ω̄

yk = h(ϕ′k)
(9)

where f and g are identified as the feed-forward neural
networks with two manipulated inputs, each one has single
output and multi-inputs. By the Taylor series formula
applied to recurrent neural network architecture in (Yan
and Wang, 2012), the dynamic variables of the model are
defined to be quantifiable. The RNN is re-formed using a
low degree of Taylor structure around the operating values
([ϕ′0(k)]) that are determined as previous successions of
input/output. Thus, the non-linear part is decomposed
into a new affine structure for the entire time interval.

ϕ′(k + 1) = ffg(ϕ
′
0(k)) +

(
∂ffg(ϕ

′)

∂x

∣∣∣∣
ϕ′

0(k)

)
(x− x0)

+

(
∂g(ϕ′)

∂u

∣∣∣∣
ϕ′

0(k)

)
(u− u0) + ω̄

= ∆xk+1 = A(x− x0) +B(u− u0) + δ̄k

y(k) = h(ϕ′0(k)) +

(
∂h(ϕ′)

∂x

∣∣∣∣
ϕ′

0(k)

)
(x− x0)

= ∆yk = C(x− x0)

(10)
The associated state variables are approximated pursuant
to: the constant terms of (10) are equal to the state and
output initial point. The constant matrices of the state

variables, input and output are identified as A =
∂ffg

∂x

∣∣∣
ϕ′

0

,

B = ∂g
∂u

∣∣∣
ϕ′

0

and C = ∂h
∂x

∣∣
ϕ′

0
respectively. Generally, the

model in (4) is shaped as a linear relationship (10) in-
cluding low-order Taylor chains through the particular
operation points for the sigmoid-elements of each desti-
nation node. The stable state model of the system can be
expressed in the general formula as:

∆xk+1 = A∆xk + B∆uk + δ̄k
∆yk = C∆xk

(11)

A three-stage delay model for the RNN related to the
DFIG model having named gains was assumed in the
simulation results section. This design is achieved using
I/O data are obtained from the FAST open design WT

model in Matlab software to verify the RNN during tuning
weight gains condition. FAST-platform is offered by Amer-
ican National Renewable Energy Laboratory (NREL) as in
Fig. 6. The series of input data without noise was created
randomly to generate output responses along 200 samples
as represented in Fig. 7. Each RNN is assembled from
two feed-forward neural networks f and g and has two
inputs and one output. Each net has eight input sequences
and three output feedback sequences through TDL units.
The number of f,g-networks hidden sigmoid nodes are set
as [5 and 3], and the linear output nodes are set as [1
and 1], respectively. The training algorithm uses gradient
back-propagation for achieving the learning. The training
performance scheme in Fig. 8 (a) shows the relationship of
the Mean Squared Error (MSE) for the train, validation,
and test procedures along with the iterations, with the
validation best points, are 4.114e − 5 and 1.5e − 4 at 15
epochs for trained Irdq model. The regression function
between the output elements and related targets has been
handled with 995 data samples for providing a higher
precision about R=0.99961 and R=0.99408 for the two
trained RNNs related to dq rotor-aspect current model
respectively in Fig. 8 (b).

2.3 Discrete-Time Sliding Model Control Formula

Several studies have developed the discrete time-SMC
control, including the model, for selecting the appropriate
sliding path based on proportional or integral law (Du
et al., 2016; Su et al., 2016; Yu and Long, 2015), which
was found by using quantities of the dynamic system or
by predetermining the sliding path:

∆ek = ∆xk −∆xrefk (12)

The current paper assumes that the PI relationship as
a sliding switch law to find optimal response under the
unbalanced system voltage, where the dynamic state de-
viation is set as follows:

∆sk+1 = kP∆ek+1 + kI .∆ξk+1 (13)

where the array of the sliding chatters is described as
s = {sk|sk = 0, k = 0, 1, ....}, and the shifted integration
error is specified as

∆ξk = ∆ek + ∆ξk−1 (14)

From equations (11) and (12)

∆ek+1 = ∆xk+1 −∆xrefk+1

= A∆ek +B∆uk + δ̄k −∆xrefk+1 +A∆xrefk

= A∆ek +B∆uk + dk, dk = δ̄k −∆xrefk+1 +A∆xrefk

(15)
The related control signal Uc is considered to be the
solution series of ∆ s = s k+1 − s k = 0, s-element can
be estimated as (Xu and Li, 2011).

∆sk = kP ek+1 + kI (ek+1 + ξk)

= (kP + kI) ∆ek+1 + kI∆ξk

= Ga∆ek+1 + kI∆ξk

(16)

Replacing (16) into (15) for estimating the sliding element

∆sk = Ga (A∆ek +B∆uk + dk) + kI∆ξk (17)

The applied control signal involves step-shift delay distur-
bance, can be specified as:

Uck = −(GaB)
−1

(−∆sk +GaA∆ek +Gadk−1 + kI∆ξk) (18)
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Fig. 6. FAST-based WT system
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Fig. 8. Training and regression performance of the RNN for
(a) d-axis of rotor-aspect current (b) q-axis of rotor-aspect
current.

Define the difference of sliding mode as s k+1 = s k = 0.
Thus,

Uck = −(GaB)
−1

(GaA∆ek +Gadk−1 + kI∆ξk) (19)

One of the techniques that is regularly used is to extend
the active control range with a separate swing term within
the control signal Uswk = Kmsign ( s ) + η s , to compel
the model state to realize sliding properties, and therefore,
the overall control formula is defined as

Uk = Uck + Uswk (20)

Border layers are specified to reduce the chattering states
as follows 

1,
ks,
−1

s > ∆
∼

|s| ≤ ∆
∼
,

s < −∆
∼

k = 1/∆
∼

(21)

Uk = −(GaB)
−1

[−∆sk +GaA∆ek +Gadk−1
+kI∆ξk +Ga (kmsign (∆s) + η∆s)]

(22)

From equations (22), (20) and (16), the subsequent series
of the sliding segment can be created as

∆sk+1 = Ga∆ek+1 + kI∆ξk
= Ga (A∆ek +BUck + dk) + kI∆ξk

= ∆sk +Gaε
∼k
−Ga (kmsign (∆s) + η∆s)

(23)
ε
∼k

= dk − dk−1 is a vector of error assessed for the

disturbance, and it is assumed to be limited as∣∣∣∣ε∼k
∣∣∣∣ = dk − dk−1 ≤ ∆d (24)

Assume the switching regulation coefficient vector Ksσ is
set to meet the following case

|Ksσ| > ∆d + σ (25)

where σ is a (+) fixed arbitrary scalar. And in the
condition of ∆sk > 0,

∆sk+1 = ∆sk −GaKsσ +Gaεk
< ∆sk −Ga[∆d + σ − εk]

< ∆sk

(26)

Furthermore, when ∆sk 6 0, the following can be deduced

∆sk+1 = ∆sk −GaKsσ +Gaεk
> ∆sk +Ga[∆d + σ + εk]

> ∆sk

(27)
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substitute (26)into (27)

|∆sk+1| < ∆sk for k > k0 (28)

Thus, the |∆sk+1| shows that the step-ahead sliding se-
quences are decreased routinely, and the discrete-time slid-
ing variable is moving on the desired sliding plane after a
limited number of stages k0. It has been indicated in (Sarp-
turk et al., 1987) that the relationship (28) introduces
an essential condition for the existence of discrete-time
sliding mode. Theorem-1: gives an essential condition for
the existence of the discrete-sequences sliding mode. Due
to the disconnected signum term, sgn(s), chattering may
appear in the regulator input. As mentioned, to reduce the
chattering state, the suppress layer method is selected by
substituting the signum term in (22) with the saturation
term.

sat(∆(sk)) = =


sgn(sk),

ksk,

If|s| > ∆
∼

If |s| ≤ ∆
∼
,k = 1/∆

∼

(29)

where the positive scalar factor ∆
∼

denotes the suppress

layer range, which keeps that sk is consistently limited
by ±∆

∼
. The factor selection is carried out by exchanges

between the chattering and searching deviation. Equa-
tion (25) presents that the control coefficient selection Ksσ

depends on the upper limit of the evaluated disturbance
deviation ∆d. In standard SMC, the upper limit of the
disturbance is a substitute in this term. Generally, the
evaluated disturbance deviation is much low compared to
the disturbance signal. Hence, the coefficient vector with
lower switching can be designed compared to the standard
SMC. This feature enhances the PSMC during the one-
step shift of the evaluated disturbance over the standard
SMC.

2.4 RPSMC-PSO Controller Design

The RPSMC-PSO module is created to regulate the par-
ticular dynamic states that appear on the system. In
particular, the PSO based on neural network produces
optimal sequences of the sliding surface to determine the
ideal control law solutions Upsok , and the identical control
Uck is employed to accurate the state path of the sliding
switches along with the future sampling time without
chattering conduct. Hence, the total control law is

Uek = Uck + Upsok (30)

From equations (30) and (16), yields

∆sk+1 = Ga∆ek+1 + kI∆ξk
= Ga (A∆ek +BUek + dk) + kI∆ξk

= Ga (A∆ek +B (Uck + Upsok ) + dk) + kI∆ξk

= ∆sk +GaBUpsok +Gaε
∼k

(31)
According to (31), the sliding path is defined in compact
form as

∆sk+1 = Ω∆sk + Φ∆uk + Γε
∼k

ȳk = H∆sk
(32)

In (32), the parameter matrices are specified as Ω = [I],
Φ = [GaB] and Γ = [Ga]. A standard augmented for-
mula (33) can be assembled based on the sliding function

state space in (32). The dimensions of matrices are defined

as m = 2, n = 2 and q = 2. xh(k) = [∆s(k) ȳ(k)]
T

is a
vector that is defined by a new structure of variables (Liu
and Kong, 2013).

xh(k+1)︷ ︸︸ ︷[
∆s(k + 1)
ȳ(k + 1)

]
=

Ah︷ ︸︸ ︷[
Ωm×m 0m×q
HΩq×m Iq×q

] xh(k)︷ ︸︸ ︷[
∆s(k)
ȳ(k)

]
+

Bh︷ ︸︸ ︷[
Φm×n
HΦq×n

]
∆u(k)

+

Eh︷ ︸︸ ︷[
Γm×n
ΦΓq×n

]
ε
∼
(k)

ȳ(k) =

Ch︷ ︸︸ ︷
[0q×m Iq×q]

[
∆s(k)
ȳ(k)

]
(33)

The augmented formula identifies the SMC’s dynamic fea-
tures, besides determining a single-stage of best prediction
sliding switch path. Thus, the best-predicted solution of
the sliding population elements (pe) can be generated
using the PSO algorithm based on (33) at each iteration
(it):

y(k+{pe,it}|k) = Ēx(k+{pe,it}|k) + N̄∆u(k+{pe,it}|k)+

Λ̄ε
∼(k+{pe,it}|k)

(34)

where Ē = [ChAh]pe, N̄ = [ChBh]pe and Λ̄ = [ChEh]pe.

The PSO algorithm based on (34) makes the cost function
formula to be minimized as follows (Shi et al., 2019). The
PSO algorithm focuses on identifying the ideal control
law solutions of SMC besides the identical control law
to ensure the accuracy of the state path of the sliding
switches along with the future sampling time without high
chattering in the non-linear DFIG-WT variables in respect
of optimization problem, which aims for reducing the cost-
function defined as the sum of squared error of sliding
states based on rotor-aspect current and the predicted
control signal sequences based on PSO algorithm.

J(∆uk) =
∣∣∣yrefk+1 − yk+1

∣∣∣2
φy

+ |uk − uk−1|2λu

s.t ∆umin≤∆u(k)≤∆umax, ymin≤y(k)≤ymax

(35)

where yref is the desired signal, φy and λu are the
matrices including positive elements. Therefore, the final
minimization step of (35) involving the formula (34) is
obtained as

uk = uk−1 +
ρkN̄

Tφy
N̄TφyN̄ + λu

(y∗k+1 − yk) (36)

ρk is the output sequence step distance.

3. PSO-ALGORITHM BASED RPSMC CONTROLLER

3.1 General Concept of PSO Optimization

PSO Algorithm is a randomized directive algorithm has
been designed by Eberhart and Russel (2015). This algo-
rithm searches for the best choice among the population of
swarm solutions. Thus, randomly N particles are produced
in the searching range (Zapata et al., 2020). In discrete-
time model, an individual particle i and its position and
velocity are defined as xki and vki at each sampling interval
k respectively. The two variables Upso are defined as the
algorithm’s problem, and the particle position xki and ve-
locity vki are set to be the solution and its limited variance
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Initialization of the parameters,
search space, position, velocity and

particles population (37)

Calculating the local fitness Floc (35) for population
and store the local best solution Pbest

Set global best fitness Fglo = min (local best fitness Floc )

Get local best solution, update xi & vi and
calculating the new fitness value of new solution

Rank the particle and get the global
best solution

Select a solution from group of the
best solution and create a local

solution after set Floc = Fep

Set Fglo = Fep and accept the
solution

Fitness
condition (35)

is satisfied

Display the Global optimal solution

Yes

Yes

No

No

No

Yes

Move the population in the range in (38)

Evaluate the fitness (35) for each particle Fep

Fep < Floc

Fep < Fglo

Fig. 9. Flow-chart of PSO Algorithm code.

by vmin and vmax value through solution space respec-
tively. The solution or optimal position of each particle is
preserved in Pbest at each sample time Gbest is defined as
the position that contains the registered best performance
of individuals along with the population at each sample
time k. This idea offers a weighted incompatible acceler-
ation during the movement at the iterations range. Then,
the initial position is evaluated along with the specified
population.

xij = xmin + rand(xmax − xmin) (37)

where i = 1, 2, . . . , N, j = 1, . . . , d and xmax/xmin are
the limited values for population, and rand ∈ (0, 1).
Adaptation of the particle’s position is influenced by the
rates of fitness law (35). In general, a new position xk+1

i is
evaluated within the searching space.

vki = ωvk−1i + c1rand[0, 1](Pbest − xk−1i )

+c2rand[0, 1](Gbest − xk−1i )

xki = xk−1i + vki

(38)

where ω is the decreased unity element at each iteration,
c1 = c2 = 3 are the positive number. rand ∈ (0, 1) is
a random amount. Figs. 9 and 10 display the flow-chart
of standard PSO-Algorithm and the convergence of MSE
during effective iterations for the PSO-algorithm included
in the RPSMC approach. According to the 30 swarm
searching range, the first active iterations time of the PSO
during the fixed rotor aspect speed case is 24.508 sec.

3.2 RPSMC based on PSO Optimization

PSO-Algorithm based RPSMC approach procedures are
defined as following steps

• Step-1:. Initialize:
· A- According to the model in Fig. 4, Two vari-

ables items Upso of RPSMC-PSO needs to be
optimized. Thus, the variable dimension is set as
d = 2.
· B- The system parameters are defined related to

the DFIG-WTs nominal values as in Table 1, the
algorithm parameters are ω = 0.6, c1 = c1 = 2 ,
searching (population) range is defined as (N =
30), restriction values are [2,-1], Max-iteration
space is Itrmax = 30, and the tolerance is 10e−5.
(All these parameters are chosen by User).
· C- population are randomly selected to define the

particles position xi and velocity vi;
· D- Inspect whether each particle values are fea-

sible status, i.e. meet the mechanism restrictions;
• Step-2:. Compute the evaluated fitness value based

on the sum of squared error of sliding states based on
rotor-aspect current and the predicted control signal
sequences for each particle items Pai by using the cost
function (35): The optimal solution guarantees the
best tracking path between the system output and
input by generating best control action u(k).

• Step-3: Initialize each (Pbest) to match the present
position of the separated particles Pai.

• Step-4:. While (Nl < Itermax);
• Step-5:. Compare each fitness amount of Pai with

basic Pbest, and put the global amount as Gbest as
the best amount for all Pbest.

• Step-6:. Produce new velocity amount of Pai step
using (38).

• Step-7:. Ensure the velocity amount not exceed the
restriction values.

• Step-8:. Generate a new position of each Pai us-
ing (37) and (35) in Step-2:.

• Step-9:. Inspect whether each new Pai is a feasible
status. And adjust the Pbest as the current xk+1

i , when
its evaluated fitness amount of the advanced particle
xk+1
i is better than past Pbest (k-1). Thus, Gbest is

replaced by Pbest, when the Pbest amount is better
than Gbest.

• Step-10:. If condition: (Nl = Itermax, then select
last Gbest) (a new Gbest amount is found); and go to
Step-11; Else, go to Step-2. End.

• Step-11:. The particle Pai that generated the latest
Gbest indicates the scheduled optimal control factors
at each effective sample time.

• Finally, the optimal amounts of u are applied to
produce the overall RPSMC signals.

4. ANALYSIS OF THE RESULTS

Figs. 11- 12, demonstrate the general connections of the
DFIG-WT and the schematic of the RPSMC, which in-
cluding the PSO strategy, which simulated using Matlab-
toolbox. As observed, the DFIG stator-aspect is directly
attached to the power source network, while the DFIG
rotor-aspect under-regulated is linked to the IGBT bi-way
converter. A high-frequency filter is tied with the stator-
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element to constrict the harmonics stirred by converters
(Zhi and Xu, 2007). The DFIG coefficients and the eval-
uated dynamic quantities are shown in Table 1. Dynamic
comparisons of the conventional SMC and PI controllers
have been utilized to affirm the dynamic contrast in the
performance of the proposed RPSMC-PSO strategy. The
parameters of the conventional SMC and PI controllers are
adapted using off-line adaptation by using PSO algorithm.
where (KPp = 0.0056, KPi = 0.4938) and (KQp = 5.7e−
3, KQi = 4.938), and (Cd = 3.5, Ci = 3.5, KM = 360 and
miu = 0.8) are the parameters values of the conventional
PI and SMC regulator. Furthermore, the comparison study
incorporates four cases, the DFIG under the fixed, sub-
, and super-synchronous situation contingent upon the
different swings of the rotor speed, a perturbation in the
rotor flux, and grid unbalanced situation.

At first, the dynamic conduct of the DFIG-WT in light
of the proposed RPSMC-PSO strategy is investigated for
different reference steps of stator-aspect power Ps and Qs.

Table 1. Rated coefficients of the DFIG-WT

Nominal Parameters

Power 1.5 MW Stator Voltage 563V
Rs/Rr 2.6/2.9 mW Vdc 1150 V
Ls/Lr/Lm 2.6/2.6/2.5 mH Freq. 50Hz
No. pole 4 M. inertia J 26Km2
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As appeared in Figs. 13(f and e), the desired Ps is set from
0.35 to 0.75 pu at 0.5 sec, and after 0.25 sec is passed, the
desired Ps is set to 1 pu meanwhile, the desired Qs power
is fixed at 0 pu. The first investigation has been fulfilled
with a fixed rotor velocity at 1630 rev/min (1.086 pu).
Generally, the estimated RPSMC-PSO controller of the
DFIG is composed of SMC part based on linear features of
a low degree Taylor approximation series for RNN to build
the optimal sliding switches. As shown in Fig. 13(f), the
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Fig. 13. The DFIG-WT responses based on RPSMC-PSO
(black), SMC (green) and PI (red) during normal opera-
tion status (a) AC stator-aspect current based on proposed
control. (b) AC rotor-aspect current based on proposed
control. (c) d-axis of the rotor-aspect current. (d) q-axis of
the rotor-aspect current. (e) Qs step response. (f) Ps step
response. (g) electromagnetic torque response. (h) DC-link
voltage response.
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RPSMC-PSO carried out superior dynamic action than PI
and traditional SMC strategy due to the low overshoot
and fast reaction over the power reference stages. The
overshoot percentage amount attributed to Ps is (6.32%,
13.4%, 39%) at 0.25 sec, (3.91%, 5.5%, 16.9%) at 0.5
sec and (4.90%, 4.2%, 10.9%) at 0.75 sec for the offered
controller, SMC and PI, respectively. And its rise time is
(5.91, 8.2, 24.7 msec) at 0.25 sec, (9.32, 52, 12.1 msec)
at 0.5 sec and (14.81, 54.1, 11.6 msec) at 0.75 sec for
the RPSMC-PSO, SMC and PI, respectively. The settling
time attributed to Ps is (12.22, 45, 36.6 msec) at 0.25
sec, (25.31, 80, 64.1 msec) at 0.5 sec and (46.32, 70,
58.1 msec) at 0.75 sec for the RPSMC-PSO, SMC and
PI, respectively. As viewed in Fig. 13(d), the RPSMC-
PSO accomplished good follow of the performance at dq-
reference frame for the rotor-aspect current with smaller
overshot, current vibration ripple, and fast reaction for
corresponding steps of Ps than PI and SMC controller.
where the irq overshoot percentage amount is (5.1%,
12.6%, 38%) at 0.25 sec, (1.32%, 1.9%, 20%) at 0.5 sec and
(1.6%, 2.8%, 12.8%) at 0.75 sec for the offered controller,
SMC and PI, respectively. And its rise time is (6.11, 8.3, 25
msec) at 0.25 sec, (10.21, 17.7, 13.2 msec) at 0.5 sec and
(7.33, 26.3, 9.8 msec) at 0.75 sec for the RPSMC-PSO,
SMC and PI, respectively. And the settling time is (10.1,
46, 36 msec) at 0.25 sec, (18.81, 36.5, 46.1 msec) at 0.5 sec
and (13.92, 45.7, 38.3 msec) at 0.75 sec for the RPSMC-
PSO, SMC and PI, respectively. Fig. 13(a) and (b), can
appear that the RPSMC-PSO strategy set the frequency of
the stator-/rotor-aspect current is stable sequences during
the power steps protruded.

In Fig. 13 (g and h), the torque and DC voltage signal
under RPSMC-PSO, traditional SMC and PI give a vast
overshoot close to (6.42%, 4%, 1.6%), (12.91%, 4.6%,
2.1%) and (39.73%, 22.9%, 12.4%) at 0.25, 0.5 and 0.75
sec, and (19.3%), (26.5%) and (33.6%), respectively. And
rise time of RPSMC-PSO, SMC and PI are (6.33, 9.8, 7
msec), (25.71, 17.4, 26.5 msec) and (8.72, 13.7, 10 msec) at
0.25, 0.5 and 0.75 sec, and (8.05 msec) for all controllers,
respectively. And settling time of RPSMC-PSO, SMC and
PI are (14.14, 17, 12.9 msec), (46.61, 36.2, 46.3 msec) and
(36.23, 45, 38.2 msec) at 0.25, 0.5 and 0.75 sec, and 0.113,
0.140 and 0.152 sec, respectively.

In Fig. 14, the varied desired stator-aspect active power
input is formed as pulsing and ascending and descent stair
signals. The RPSMC-PSO introduced a higher tracking
behavior and fast response close to the dynamic reaction
of the BATS-SMC at each new stage with oscillations
compared to common SMC and PI regulators.

In the fact-time application of WT, a wind wave velocity
changes inherently. The turbine’s speed control may not
deliver a fast response to recover the sharp change in
the four operating modes, influencing the efficiency or
deteriorating the system appliances. The advanced wind
generation model based on the DFIG comprises the slip
correlation method to save the electrical variables fre-
quency suitable to the common network frequency while
the wind speed exchange. The RPSMC-PSO strategy is
achieved with an incline of the rotor angular speed from
1630 to 1300 rev/min (1.09 pu super-synchronous to 0.87
pu sub-synchronous mode) at the time-space 0.4-0.6 sec
then it climbs back to the first point from 0.8 sec, as
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Fig. 14. Ps step response related to the varied desired
input.

demonstrated in Fig. 15 (c). Whereas the Ps is altered from
−1 to −0.35 pu between 0.55 and 0.95 sec, meanwhile, the
ripples are increased in Qs as in Figs. 15(a-b).

As appeared in Figs. 15(g) and (f), the irq and ird were
altered from 1 to 0.36 pu and 0 to −0.5 between 0.55
and 0.95 sec, respectively. Also in Figs. 15(h) and (i), the
mechanical torque was altered from −1 to −0.38 pu and
the DC-link controller maintains constant voltage stability.
As appeared in Figs. 15(e), the RPSMC-PSO modified
the rotor-aspect phases to maintain its signal sequences.
In Figs. 15, the RPSMC-PSO has a preference with a
good follow the performance at dq-reference form of rotor
current, with the smallest overshoot, less vibration ripple,
and fast reaction along the period of the reference signal.
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Fig. 15. The DFIG-WT responses based on RPSMC-PSO
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(h) electromagnetic torque response. (i) DC-link voltage
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Fig. 16. The DFIG-WT responses based on RPSMC-PSO
during change in rotor speed (a) Ps step response. (b) Qs
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sponse. (h) DC-link voltage response.

The fact-time control system is vulnerable to assorted
surrounding influences on the system characteristics. In
Fig. 16, to clarify the parameters variations comparisons,
the dynamic inspection is attained assuming that the re-
sistors of the stator/rotor and the combined inductor are
reduced by −50% in Case-I. Moreover, +50% and −50%
are included in resistors and combined inductors in case-
II, respectively. Besides, the values were extended to +50%
for overall parameters in case-III along with the reference
signals. The simulation results in Fig. 16 demonstrate that
the dynamic achievement of the DFIG-WT based upon the
proposed strategy raised the robustness of the RPSMC-
PSO with the smallest overshoot, less current vibration
ripple and fast reaction for all stages during parameter
variations. There is no significant change in the response
form, with ascendant ripples in the power signal over case-
I,II, and case-III as in Fig. 16 (a). This part provides an
additional study on the suggested RPSMC-PSO strategy,
and the generation system has been investigated during
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Fig. 17. The DFIG-WT responses based on RPSMC-PSO
during unbalanced-voltage status (a) Ps step response. (b)
Qs step response. (c) d-axis of rotor-aspect current. (d)
q-axis of rotor-aspect current.

an unbalanced voltage case. In fact-time, there are various
factors to occur these kinds of disturbances such as un-
stable distribution, external faults, load, etc. In this test,
the system is running at a super-synchronous condition (
1.086 p.u, 1630r/min) which is identical to a +8.66% slip
amount, while the desired stator-aspect active power is
adjusted to maximum amounts 1 p.u (1.5 MV). The AC
fault was set at 0.5-0.6 sec, limiting the stator voltage to
0.9 pu of the named value.

Figs. 17(a-d) shows the fault affection of the supply volt-
age on the stator-aspect power and rotor-aspect current,
respectively, and the comparison implemented between
RPSMC-PSO, SMC, and PI controller. The stator-aspect
power and dq rotor-aspect current are manipulated during
the fault condition. The oscillations of stator-aspect power
and rotor-aspect current that resulted from RPSMC-PSO
have lower ripples than the PI controller.

The overall system that included the non-linear DFIG re-
strained the stator-aspect power and current and regulated
the rotor voltage within the nominated range by noting
the results given during unbalanced grid-tied conditions.
Generally, the RPSMC-PSO based DFIG-WT system gen-
erates a proper implementation for both balanced and
unbalanced grid-linked conditions.

5. CONCLUSION

This article has exhibited the rotor-aspect current control
based on stator-aspect power using an optimal sliding
mode control approach RPSMC-PSO based on a linear
Taylor approximation formula of the non-linear DFIG-WT
based on RNN. RPSMC-PSO construction included the
PSO algorithm based on a neural network controller RNN,
which uses the MIMO variables of the system to detect
optimum sliding chattering trajectories. The suggested
mechanism and traditional control applied for the rotor,
and grid-aspect bi-way IGBT converters handle the rotor-
aspect current and stator-aspect power signals to trace the
coveted inputs. Thus, RPSMC-PSO delivered the dq-axis
rotor voltage as control signals to the rotor-aspect con-
verter. The simulation events for a 1.5MW DFIG-WT have
been rendered and compared with two kinds of traditional
control, PI and SMC strategies. The dynamic execution of
the RPSMC-PSO strategy has been achieved with various
running cases (sub- and super-synchronous cases) based
on the rotor-speed alteration. Additional enhancement test
has been accomplished to compare the proposed strategy
through uncertainty parameters and unbalanced-voltage
on the power network. The simulated dynamic results
validated that the RPSMC-PSO has been performed good
tracking, less overshoot, and low oscillation of electrical
amounts than traditional control units. RPSMC-PSO reg-
ulated the WT system successfully for running during in-
terchange within two angular speed modes and abnormal-
running conditions.
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