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Abstract: This paper presents a stability analysis approach for a class of nonlinear processes 
controlled by Mamdani type fuzzy logic controllers (FLCs). The stability analysis is performed in 
the sense of Lyapunov dedicated resulting in the derivation of an original stability analysis 
approach that can be used as design method for FLCs with guaranteed stability. Quadratic 
positive definite Lyapunov functions candidate are employed in this context. The approach is 
expressed in terms of sufficient stability conditions for fuzzy logic control systems with Mamdani 
type FLCs. An illustrative example validates the stability analysis approach by designing an FLC 
to control a nonlinear process. 
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1. INTRODUCTION 
 
Fuzzy logic control is a convenient and easily 
understandable initial nonlinear approach to 
controlling complex, uncertain or even ill-
defined processes. Stability is one of the 
structural properties of fuzzy logic control 
systems of particular importance to their 
applications. 
 
A fuzzy logic controller (FLC) can be viewed as 
a real-time expert system that involves fuzzy 

logic to ensure the desired / imposed control 
system performance indices – with respect to 
several inputs including the reference one and 
the load type disturbance ones, and to 
parametric variations and even uncertainties as 
well – usually measured in the output. Indeed, 
they provide a means of converting a linguistic 
control strategy derived from expert knowledge 
into automatic control strategies and offer a 
means of interrogating the control system 
evolution and performance. In these conditions 
the necessity for systematic design methods of 
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fuzzy logic control systems becomes more and 
more important [10]. The stability analysis 
methods enable the design providing conditions 
that enable the parameter setting for FLCs. 
 
In principle, for the stability analysis of fuzzy 
logic control systems controlling nonlinear 
processes any method can be utilized which is 
suitable for the analysis of nonlinear dynamical 
systems [6]. Which method is the best one to use 
depends only on the prerequisites. There, the 
structure of the system, the type of information 
describing the process and the type of sufficient 
conditions for the stability are usually the key 
points. Current trends in the stability analysis in 
case of fuzzy logic control systems with 
Mamdani type FLCs include the Lyapunov’s 
[11] and Krasovskii’s [12] approaches, the 
describing function method [6], the algebraic 
approaches [1] or the use of Mamdani fuzzy 
dynamic models [13]. The new stability analysis 
approach proposed in the sequel is different to 
the application of Lyapunov’s theorem [6, 15] in 
several important aspects and allows more 
applications. In particular, it is well-suited to 
controlling processes where the derivative of the 
Lyapunov function candidate is not negative 
definite, therefore applying LaSalle’s invariance 
principle to nonlinear processes controlled by 
Mamadani type FLCs can be applied to a wide 
area of nonlinear dynamic systems. Another 
important difference is that the stability of the 
closed-loop system is guaranteed by the stability 
of each fuzzy subsystem. 
 
This paper addresses the following topics. In 
section 2, a short review of fuzzy logic control 
systems with Mamdani type FLCs is given with 
some definitions and properties. In section 3 the 
new stability analysis approach is suggested and 
proved. Next, section 4 gives an illustrative 
example and section 5 validates the approach 
presenting simulation results that correspond to 
an example. The final part of the paper, section 
6, contains some concluding remarks. 
 
 

2. FUZZY LOGIC CONTROL SYSTEM 
STRUCTURE 

 
A fuzzy logic control system consists of a 
process and a fuzzy logic controller (FLC) as 
shown in Fig. 1. Let nRX ⊂  be a universe of 
discourse. It is accepted the following class of 
single input nonlinear dynamical systems 
modelled by the state-space equations in (1): 

u)()( xbxfx +=& ,          (1) 
 
where: X∈x ,  is the 

state vector, 

T
nxxx ]...[ 21=x

n IN∗∈ ,  
is the derivative of  with respect to the time 

variable t,  

and  are 

functions describing the dynamics of the 
process, u is the control signal fed to the 
process, obtained by the Centre of Gravity 
(COG) defuzzification method for Mamdani 
type FLCs. 
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The i-th IF–THEN rule in the fuzzy rule base of 
the FLC, referred to as Mamdani fuzzy rule, is 
expressed in terms of the following form: 
Rule i: IF xi is 

1,

~
i

X  AND … AND xn is 
ni

X
,

~  

THEN u is
i

Y~ , ri ,1= , 2, ≥∈ rINr ,        (2) 

 

 
 

Fig.1. Fuzzy logic control system structure. 
 
where 

niii
XXX

,21

~,...,, ~~
 are fuzzy sets 

describing the linguistics terms (LTs) of input 
variables, 

i
Y~  describes the LTs of output 

variables, and r is the total number of rules. 
Note that Y  represents the output domain or 
control signal domain and ri

iY ,1 ,0 =≠µ . 
 
The activation degree of the i-th Mamdani fuzzy 
rule is: 
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It is assumed that for any  belonging to the 
input universe of discourse, 

x
X , there exists at 

least one iα  among all rules that is not equal to 
zero. 
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The conclusion (control signal) of each rule is 
calculated using the COG defuzzification 
method applied for: 

))(),( ~min(),( yc
iYii y µα= xx , that is: 
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The aggregation of all rules is done in terms of 
applying (5): 
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Consequently, the control signal fed to the 
process will be: 
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This FLC with the structure described before is 
referred to as AND-SUM-COG fuzzy logic 
controller [4]. 
 
Property 1: For any AND-SUM-COG fuzzy 
logic controller the following relationships hold: 
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Concluding,  for any )()()( maxmin xxx uuu ≤≤

X∈x . 
 
 

3. STABILITY ANALYSIS APPROACH 
 
To derive the stability theorem it is considered 
the fuzzy subsystem consisting of one Mamdani 
fuzzy rule and the process described in (1). In 
the following theorem, that expresses the 
stability analysis approach proposed here, it will 
be proved that if each subsystem is stable in the 
sense of Lyapunov, under a common Lyapunov 
function, the overall system will be also stable in 
the sense of Lyapunov. 
 
Theorem 1: If  is a positive definite matrix 
and: 

P

1.  as ∞→= xPxx  )( TV ∞→x , ( ) 0=0V , 

2.  for all fuzzy subsystems, XV ∈∀≤ xx ,0)(&

3. the set  contains no 
trajectory of the system except the trivial 
trajectory 

}0)(|{ =∈ xx VX &

0x =)(t  for , 0≥t
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then the fuzzy logic control system with the 
AND-SUM-COG fuzzy logic controller defined 
in section 2 and the process described in (1), is 
globally asymptotically stable in at the origin. 
 
Proof. The Lyapunov function candidate 

 is set. xPxx  )( TV =
 

From  and (1), the result 
is: 
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with: 
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If . What remains to be 

proved is that V  is negative definite with 
respect to . 
Then, using condition 2 in theorem 1 the result 
will be (13): 
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for any Mamdani fuzzy rule ri ,1= . 
 
Now it is considered 0x ≠ . Three possible 
cases should be analyzed as follows. 
 
Case 1:  is strictly positive. From property 
1 it is obtained that: 
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Case 2:  is strictly negative. From property 
1 the result is (15): 
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hence once more . 0)( <xV&

Case 3: . From (13) it results 
straightforward that . 

0)( =xB
0)()( <= xx FV&

 
From the above three cases it may be concluded 
that whatever the value of  is, the expected 
results will be obtained, . 

)(xB

0≤V&
 
Condition 3 ensures the fulfilment of LaSalle’s 
invariance principle from LaSalle’s theorem 
referred in [5]. In these conditions, it is 
guaranteed that the equilibrium point at the 
origin is globally asymptotically stable. 
 
 

4. ILLUSTRATIVE EXAMPLE 
 
This section presents an example consisting of a 
mass-spring-damper system to be controlled by 
a Mamdani FLC. A scheme of principle of the 
controlled process is illustrated in Fig. 2. 
 

 
 

Fig. 2. Nonlinear mass-damper-spring system. 
 

One mathematical model of this single input 
nonlinear process is written in terms of the 
differential equation (16): 

ukxxxbxm =++ &&&& ,        (16) 
where: x – displacement of the body away from 
the rest (equilibrium) position, m – mass linked 
to the spring, xxb &&  – nonlinear dissipation or 

damping, ,  – spring term, , u – 
control signal representing an externally applied 
force (F

0>b kx 0>k

in) pushing on the mass. 
 
A set of state variables sufficient to describe this 
system includes the position, x, and the velocity 
of the mass, . Therefore, we will define a set 
of state variables as , with: 
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In order to express (16) using the state variables, 
the defined state variables are substituted and it 
is obtained that: 

u)()( zbzfz +=& ,        (18) 
so the controlled process has been transformed 
to the form (1) where: 
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The design of the Mamdani type AND-SUM-
COG fuzzy logic controller will be presented as 
follows. It starts with setting the fuzzification 
module and Fig. 3 shows the membership 
functions that describe the LTs of the linguistic 
variables z1 and z2. The LTs representing 
Positive, Negative and Zero values are denoted 
by P, N and Z, respectively. Fig. 4 presents the 
membership functions that describe the LTs of 
the control signal. 
 
The inference engine employs the fuzzy logic 
operators AND and OR implemented by the min 
and max functions, respectively. The inference 
engine is assisted by the complete set of fuzzy 
control rules illustrated in Table 1, and the COG 
defuzzification method is utilized. 
 

 
 

Fig. 3. Membership functions of z1 and z2. 
 

 
Fig. 4. Membership functions of u. 

 

Table 1: Fuzzy control rule base. 
 

Rule Antecedent Consequent 

 z1 z2 u 

1 P P N 

2 N N P 

3 P N P 

4 N P N 

5 P Z Z 

6 N Z Z 

7 Z P N 

8 Z N P 

9 Z Z Z 

 
To prove that the system is stable by the 
proposed stability analysis, theorem 1 will be 
applied as follows to the suggested example. 
The Lyapunov function candidate in (20) is 
accepted: 
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From the fuzzy control rule base (Table 1) it 
may be observed that, if z2 is Z, then u is Z too, 
otherwise z2 and u are of opposite sign. So, 
taking (22) into account the derivative of V 
becomes  for any fuzzy rule. Hence, 

 is negative semi-definite. 
0)( ≤zV&

V&
 
Next it will be proved that the condition 3 in 
theorem 1 holds. Assuming that there is a 
trajectory with: 

0)(2 =tz , 0)(1 ≠tz ,        (23) 
it results that: 
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which means that  cannot stay constant. 
So  is the only possible trajectory for 

which . Hence the set 

 contains no trajectory of 
the system except the trivial trajectory 

)(2 tz
0z =)(t

0)( =zV&

}0)(|{ =∈ zz VX &

0z =)(t  
for . 0t ≥
 
Thus, according to theorem 1, the fuzzy logic 
control system with the AND-SUM-COG fuzzy 
logic controller defined in section 2 and the 
process described in (1) is globally 
asymptotically stable at the origin. 
 
 

5. SIMULATION RESULTS 
 
The designed FLC is applied to the process 
described by equation (16), for b=0.1, m=6, k=6. 
Three simulation scenarios are accepted for the 
unforced system characterized by different 
initial states: 
- the simulation scenario 1, with the initial 

state variables  and , 1)0(1 =z 1)0(2 −=z
- the simulation scenario 2, with the initial 

state variables  and , 1)0(2 =z
- the simulation scenario 3, with the initial 

state variables  and . 1)0(1 =z 1)0(2 =z
 
In case of the simulation scenario 1 the 
responses of  and  versus time (t) for the 
fuzzy logic control system are presented in Fig. 
5. Next, accepting just the process described by 
(16), without FLC, keeping the parameters given 
above the response of  versus time is shown 
in Fig. 6. 

1z 2z

1z

 
In case of the simulation scenario 2 the 
responses of  and  versus time for the fuzzy 
logic control system are illustrated in Fig. 7, and 
the response of  versus time for the process is 
presented in Fig. 8. 

1z 2z

1z

 
Finally, in case of the simulation scenario 3 the 
behaviour of fuzzy logic control system is 
presented in Fig. 9. Fig. 10 illustrates the 
process behaviour observed in . )(1 tz
 

 
 

Fig. 5. Fuzzy logic control system behaviour in 
simulation scenario 1 for r = 0. 

 

 
 
Fig. 6. Process behaviour in simulation scenario 1 for 

u = 0. 
 

 
Fig. 7. Fuzzy logic control system behaviour in 

simulation scenario 2 for r = 0. 
 

 
Fig. 8. Process behaviour in simulation scenario 2 for 

u = 0. 
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Fig. 9. Fuzzy logic control system behaviour in 

simulation scenario 3 for r = 0. 
 

 
Fig. 10. Process behaviour in simulation scenario 1 

for u = 0. 
 
It can be observed that all dynamic behaviours 
of the unforced fuzzy logic control systems have 
been improved compared to the behaviours of 
controlled process. This improvement concerns 
alleviating the oscillations, reducing the 
overshoot and settling time. Summing up, the 
advantages of fuzzy logic control using the 
derived stability analysis approach to design the 
FLC can be emphasized clearly after examining 
Figs. 5-10. 
 
 

6. CONCLUSIONS 
 
An original approach to the globally 
asymptotically stability analysis of fuzzy logic 
control systems employing Mamdani type FLCs 
has been introduced. Using the proposed 
stability analysis approach, close to the approach 
in [14] dedicated to Takagi-Sugeno FLCs, 
makes the inserting of new fuzzy rules, the 
deleting of rules or the rule base pruning 
become very convenient due to the only need to 
fulfil the condition 2 in theorem 1. 
 
This paper has shown, by an example, how the 
stability analysis suggested here by theorem 1, 
obtained by a reformulation of one result 

reported in [15] enabled by LaSalle’s invariance 
principle, can be applied to a relatively general 
class of nonlinear processes constrained to (1). 
The stability analysis approach can be applied 
also in situations when the system has an 
equilibrium point different to the origin and / or 
the reference input is nonzero by an 
appropriately defined state-space transform [7]. 
 
Further research will be concentrated on the 
computer-aided design of the Mamdani type 
FLCs employing the stability analysis approach 
suggested in this paper. The state transforms 
necessary in dealing with non-autonomous 
systems will be part of the software that will be 
developed in this framework in order to increase 
its generality. 
 
This stability analysis approach can be applied 
to other FLC structures that must just fulfil the 
property 1. Authors’ intention is to cope with 
servo systems in manufacturing [8, 9], power 
electronics and digital audio signal processing 
[2, 3]. 
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