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Abstract: With the development of industry, in the production process, there are increasingly higher 

requirements for product accuracy and performance. However, there are serious coupling and strong 

uncertainty in complex engineering, especially in multivariable systems, the design is more complicated. 

Multivariable systems can choose a variety of algorithms to optimize parameters of complex models, 

including particle swarm optimization algorithm, genetic algorithm, and ant colony algorithm. This 

article introduces the RBF neural network based on the improved weed optimization algorithm into the 

coupled control system. It introduces the RBF neural network optimized by the improved weed algorithm 

into the coupled control system. On the basis of the state space dynamic model, using the two advantages 

of the weed algorithm's strong population competitiveness and wide spatial distribution range, the 

accuracy of the perceptron of the RBF neural network is accurately optimized, and finally the actual 

engineering is better controlled. It overcomes the problems of the basic weed algorithm (IWO) that are 

easy to fall into the local optimum, low convergence accuracy, and slow convergence speed. Finally, 

comparison are made with other optimization algorithms. The simulation results show the effectiveness 

of this method. The control scheme has high robustness to meet certain external disturbance coupling, 

and at the same time minimizes the relationship between the coupling variables, and the control effect has 

been significantly improved. 

Keywords: Weed optimization algorithm; RBF neural network; complex system modeling; multivariable 

system decoupling 

1. INTRODUCTION 

In modern hot rolling mills, the control of the looper system 

is a very critical link, and its performance directly affects the 

width accuracy, thickness accuracy and shape accuracy of the 

finished strip. Looper can well guarantee the stability of 

rolling, so the establishment of looper model is very critical 

to its control effect. The purpose of looper system is to 

realize two adjacent rolling mills on the basis of low-tension 

rolling, and keep the metal seconds to flow rate of adjacent 

standers equal approximately.  

When the strip enters the finishing rolling system, the 

forward slip generated is a function related to the incoming 

material inlet thickness, outlet thickness, and front and back 

tensile stress. When adjusting the roll gap, the loop height 

will be formed through the influence of forward and 

backward slipping.The control system detects the change of 

the swing angle of the looper. On the one hand, the roller 

speed is controlled to keep the loop height unchanged. On the 

other hand, the hydraulic looper is controlled to keep the 

rolling under small tension.During the swinging process of 

the hydraulic looper arm, there is an angular acceleration to 

form a dynamic moment. The dynamic torque is proportional 

to the moment of inertia of the looper system.It makes the 

tension torque change, and then affects the tension. The 

change of tension affects the loop height through the change 

of  backward slip.Therefore, it is extremely important to 

realize the decoupling control of the looper system. 

The response time and control accuracy of traditional looper 

control systems are characterized by nonlinearity and 

uncertainty. The accuracy can be further improved, but the 

coupling is strong, and it is difficult to obtain an accurate 

mathematical model. Due to the simplicity of PID control 

theory, the PID control scheme has been widely used in 

looper control systems. The traditional PID looper control 

system is a double closed loop control, using PID and PI to 

control the strip tension and looper angle respectively. 

However, the PID-based looper control system cannot solve 

the coupling problem between looper dynamics and tension 

dynamics. In the cases of interference and inaccurate 

modeling dynamic changes, it will lead to a long time to 

reach stability, and the tension and looper angle are both 

larger than expected. The traditional PID looper control 

system cannot effectively overcome model mismatch and 

unknown disturbances and parameter changes. 

 A robust controller is designed to improve the control 

accuracy (see Li and Wang J J et al., 2020). (Li and Zhang S 

L et al., 2020) using RBF-PID control strategy to improve 

thickness control accuracy. (Li et al., 2016) using two filters 

to smooth control signal and to suppress output noise. The 

identification accuracy and convergence speed of complex 

systems cannot be considered at the same time in the above 

three articles. Based on the establishment of the looper 

model. This paper uses the characteristics of the neural 

network that can approximate any nonlinear function, and 
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introduces the RBF neural network into the looper coupling 

control system. In order to give the weight of the better 

neural network, here we improve the basic weed optimization 

algorithm to improve its convergence, and by overcoming the 

shortcomings of easy falling into local optimum, to improve 

the control accuracy and speed. Finally, it is compared with 

ordinary differential evolution algorithm, particle swarm 

algorithm, genetic algorithm, and basic weed optimization 

algorithm. According to the simulation results, the improved 

weed optimization algorithm can increase the convergence 

speed and achieve better performance. 

2. LOOPER SYSTEM MODELING 

2.1 Production of strip tension 

In the process of hot rolling strip, the reason why the tension 

of the rolled piece occurs is that the speed of the front and 

back standers are not equal, which lead to the imbalance of 

the metal flow mass. Resulting in the relative displacement of 

the metal in different parts of the rolled piece. 

 

Fig. 1. Causes of stress. 

As shown in Fig. 1, the object in equilibrium under the action 

of force F is divided into two parts. F is a section on the 
F . The ratio of F  to the force P  acting on F  is:  

F
S

P


 =


                                          (1) 

According to Hooke's law, the relationship between stress 

and elastic strain is expressed as: 

 =                                                    (2) 

In the formula,   is the metal stress,   is the Young's 

modulus, and   is the elastic deformation. Strip tension 

formula can be expressed as: 

mT A=                                                (3)  

Where, m is the tension of average unit. It can be seen from 

the above that the fundamental reason why the rolled piece 

produces tension is the elastic deformation of the rolled 

piece. As shown in Fig. 2, the elastic deformation formula 

can be expressed as:    

0

l

l



=                                                (4) 

Where, l  represents the relative displacement between 

points a and b  due to the speed difference, and 0l  represents 

the distance between points a  and b . 

Substituting (2) and (4) into (3) to get the tension formula of 

rolled piece:  

( )0 0 a b

0

T

AE
T A v v dt

l
=  = −                                   (5) 

 

Fig. 2. Causes of tension in rolled piece. 

In addition to the speed difference between point a  and point 

b , point a  and point b  also have their own speed difference 

,the tension T  of rolled piece is: 

( ) ( )0 a b a b

0 0

AE AE
T T T v v dt v v dt

l l
= + = − +  −            (6) 

Where, av  and bv  are the velocity changes of the two 

points themselves. It can be seen from the analysis of Eq. 6, 

either the average tension in the rolled piece or the tension in 

the rolled piece both are caused by the difference in velocity 

between points a  and b  ,and the change in their own 

velocity. It has nothing to do with the velocity of points a  

and b . Therefore, it can be concluded that the influence 

factor of rolling tension is the sum of different speeds of 

different points in the rolled piece. 

2.2 Looper Tension System Modeling  

When the rolled piece enters the finishing mill and forms a 

stable hot continuous rolling, the tension of the rolled piece 

will have a relative change. There are two main factors, one 

is the change of the strip speed; the other is the change of the 

looper quantity. The variation of strip tension can be 

expressed as: 

( ), 1 ,

0 0

( )

t

i i in i out i

E
L v v dt

l
  +

 
 =  +  −  

 
                             (7) 

Where, ( )iL  is the variation of loop height. 
, 1 ,,in i out iv v+ 

are the rolling speed at the entrance of 1i th+  stander and the 

rolling speed at the exit of ith  stand. The loop height between 

the ith  and 1i th+ th stands can be expressed as:              

2 2

1 3

2 2

1 3

( cos ) ( sin )

( cos ) ( sin )

iL L R R L r

L L R R L R L

 

 

= + + − + +

− − + − + −
                      (8) 

 

Fig. 3. Schematic diagram of looper between standers. 
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2.2.1 Tension changes caused by speed changes 

The backward slip of 1i th+  stander is: 

1 , 1

1

1

i in i

i

i

v v
b

v

+ +

+

+

+
=                                           (9) 

Where, 1ib +  is the height of backward slip; 1iv +  is strip speed. 

According to (9), the speed variation of 1i th+  stander can be 

expressed as: 

( ), 1 1 1 1 11in i i i i iv b v b v+ + + + + = − −                       (10) 

In the same way, the change in forward slip speed can be 

expressed as: 

( ), 1out i i i i iv f v f v = − −                             (11) 

Incorporating (10) and (11) into (7) for differential 

arrangement, we can get: 

( ) 1
11i i i

i i i i i

i i

d b fE E E
f v v v

dt L L L




 
+

+

   
= − +  − +  

  

   (12)

1
1

i i
v i i

i i

b fE
K v v

L


 
+

+

 
= +
 

                            (13) 

Substituting (13) into (12) to get the change of tension as: 

( )1i i i v i

E
f v K

sL
  = − +  +   

                     (14) 

The variation of strip tension caused by the change of loop 

height can be expressed as: 

( ) ( )i i

E
S L

L
  = 

 

( )i
i

d L
L s

d





 = 

 

( ) ( )s i
i

d LE
s

L d
 




 = 

 

In summary: 

( ) ( )1i
i i i v i

dLE E
s f v K

sL d sL
  



•

 =  − +  +     

2.2.2 Change of tension caused by change of loop height 

The force load on the looper roller can be decomposed into 

the radial force FR  and the tangential force FT . The radial 

force FR  load on looper rotation has no effect on the loop 

angular velocity. The tangential force FT can be divided into 

the following parts: the interstand tension load on the looper 

roller tTF , the strip bending force and strip gravity bfgTF , the 

strip centrifugal force ,s cftTF ,the strip inertia force ,s iftTF  and 

the looper roll inertia force ,l ifTF , and the tangential force FT 

can be expressed as:                                      

, , ,T tT bfgT s cftT s iftT l ifTF F F F F F= + + + +                     (15) 

1) With rigid intermediate tension 

According to the geometrical relationship shown in Fig. 3, 

the interstand tension in the tangential direction tTF  can be 

expressed as: 

( ) ( )2 1sin sintTF wh    = + − +  
               (16) 

Where, H  is the gauge of strip steel, W  is the width of strip. 

2)Strip bending force and strip gravity 

The bending force and gravity in the tangential direction can 

be calculated as: 

3

3 1

1
16 ( sin ) ( ) cos

2
bfgT s R

h
F E w L L r W g W g

l
 

 
=  − +  +  +  
 

(17) 

Where g is the acceleration due to gravity, sW  is the mass of 

the strip, and RW  is the mass of the looper roll. 

3)Strip centrifugal force 

As shown in Fig. 3, there is a partial contact area between the 

strip and the looper roll, and the tangential centrifugal force 

in the contact area can be calculated as 

2

, 1 2( ) coss cftT LF w h    = − +                         (18) 

4) Strip inertia force 

The contact area between the strip steel and the looper rolls 

are divided into two parts, and the strip tangential inertia 

force of strip can be expressed as: 

   
2 2

, 3 1 3 20.25 cos( ) 0.25 cos( )s iftT S SF L L       
 

= − + + (19)  

5) Looper roller inertia force 

The direction of the inertial force of the looper roller is 

perpendicular to the direction of the looper swing arm, the 

inertial force of the looper roller does not exist in the radial 

direction, and the function of the inertial force is that the 

tangential force of the looper roller can be calculated as       

, 3l ifT RF W L 


=                                       (20) 

The looper angle dynamics behavior can be described by 

Newton law of motion, and the following equation can be 

expressed as: 

( ) ( ) ( ) ( )L fJ t M t M c t  
 

= − −                       (21) 

Where, J  is the total inertia of the looper, ( )M t  is the 

actuator torques on the looper, fc is the friction, and ( )LM   

is the load torque on the looper: 

( ) ( ) 3L TM F L =                                       (22)           

Above all, substituting (16) - (20) into (21), dynamic model 

of the looper angle can be expressed as: 

 

  ( )

( )

  ( )

( )

3 2 1

22 2 2

3 1 2 3

3

3 3 1

22 2 2

3 1 2 3

2

1 2 3

2

3

sin( ) sin( )

0.25 cos( ) cos( )

1
cos 16 sin

2

0.25 cos( ) cos( )

cos

0.25 cos(

S R

S R

S R

f L

S

M L wh

L W J W L

h
L E w L L r W g W g

L

L W J W L

w h L c

L W

    


   

 

   

     

 − + − −
=

− + + + +

  
 − +  +  +   

   −
− + + + +

+       +
−

  ( )
22 2

1 2 3) cos( ) RJ W L   − + + + +

  (23) 
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2.3 Dynamic model of actuator 

Always choose hydraulic pressure to adjust the looper, 

hydraulic system automatic torque regulator. Due to the fast 

speed of the auto-regulator, it can be modeled as a first-order 

system 

( )
( )

( )
cr cr

1M t
M t M t

T T

•

= − +                             (24) 

Where, crT  is the time constant of the first-order automatic 

torque regulator, and ( )rM t  is the reference value of the 

looper actuator torque. The work roll is directly driven by a 

high-speed motor and is equipped with an automatic speed 

regulator. It is also regarded as a first-order lag signal as: 

( )
( )

( )
1

md md

t
t M t

T T



•

= − +                             (25) 

Where, mdT  is the time constant of the first-order automatic 

speed governor and ( )r t  is the roll angular velocity 

reference. 

2.4 State space model 

Looper system has five state variables: looper angle  , inter-

belt tension  , looper roll angular speed L , work roll 

angular speed  , and execute looper M .  the equation of 

multivariable looper system can be expressed as: 

( )

1 1

, 1

md,i md,i

cr

cr

1

1 1

L

L L i i i i

L

i i r i

r

G G G G

M K K
J

T T

M
M T M

T

   

 

 

    

  

  

•

•

+ +

•

•

+

•

 =

 =  +  +  + 

 =  +  + 

 = −  + 


 = − + 

   （26） 

1 1i i i iEv f Ev f
G

L L


 
+ + 

= − −
 

 is the influence coefficient of the 

strip tension on the strip speed; 

L

idLE
G

L d



=   is the influence coefficient of the looper angle 

on the looper speed 

( )1 1
; ;

i

i i

M

ER f
G K

L J


+
= − =

M
K




= −


 is the influence 

coefficient of the looper angle on looper torque.  

M
K




= −


 is the influence coefficient of the strip tension in 

the looper's torque. 

Convert the above state space Eq. to matrix form as follows: 

L

,

..

0 0 1 0 0 0 0

0 0 0 0

0 00 0

+ 11
00 0 0 0

11
00 0 0 0

i

M
r i

L L

r

md iimd i
i

crcr

G G G

k k k

M
TT

M

M TT

  

 








 




•

•

•

•

•

     
                   

       
  =        −               
       −         

   (27) 

The output matrix of the multivariable looper system can be 

expressed as: 

1 0 0 0 0

0 1 0 0 0
L

i

M











 
 
    
 =         
 
  

                        (28) 

For the convenience of notation, the above matrix is rewritten 

as: 

( ) ( ) ( )x t Ax t Bu t
•

= +  

( ) ( )y t Cx t=                                          (29) 

  , , 1( ) , ( )=
TT

L i r i r ix t M u t      +=         

 ( )
T

y t  =                                      (30) 

The matrix satisfies the following formula that can be 

expressed as: 

L

..

0 0 1 0 0 0 0

0 0 0 10 0

1 00 00 0

, , 0 011
00 0 0 0

0 0

1 0 01
00 0 0 0

i

M

md imd i

crcr

G G G

k k k

A B C

TT

TT

  

 

   
   

    
    
    
 = = =   −     
    
     −

     

 (31) 

Based on the linear looper model, the block diagram of 

multivariable looper system is given, as shown in Fig.4. The 

purpose of looper control system is to allow the system to 

track the output accurately and quickly by adjusting the input 

increment, and the output increment can be controlled near 

zero even in the case of large interference. 

 

Fig. 4. Multivariable Looper System. 
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Table 1. Parameters of looper system of 1700mm hot rolling mill. 

( )
1

0 0 1

1

=0.012i i
i i

i i

f f
V V

 
+

+

+

 
+

 
 

= 170.8
M




− −


; =-0.1066
L




−


; = 642
M




− −


 

3. RBF NEURAL NETWORK 

The RBF-Radial Basis Function (RBF) neural network is a 

neural network proposed by J. Moody and C. Darken in the 

late 1980s. It is a three-layer feed forward network with a 

single hidden layer. Since it simulates a neural network that is 

locally adjusted in the human brain and covers the receiving 

field (or receptive field), the graph of the radial basis function 

is shown in Fig. 5. It can be seen that the input signal n  of 

the function is close to the function in the central range, 

hidden layer nodes produce larger output, so RBF network 

has local approximation ability (see Chen M X et al., 2021). 

 

Fig. 5. Graph of radial basis function. 

3.1 Network structure 

The RBF network is a three-layer forward network. The 

mapping from input to output is nonlinear, while the mapping 

from hidden layer space to output space is linear. The output 

of the network is the linear weighted sum of the hidden layer 

node outputs, so the weight of the network can be solved by 

various linear optimization algorithms, which greatly 

accelerates the learning speed and avoids local minima 

problems. 

The RBF network structure is shown in Fig. 6. 

 

Fig. 6. RBF neural network structure. 

3.2 RBF network PID tuning principle 

RBF neural network has the ability of representing arbitrary 

non-linear and can realize PID control with the best 

combination by learning the system performance. Using PID 

control based on RBF neural network identification can 

realize decoupling control of multivariable systems. The 

controller consists of two parts: the classic PID controller and 

the BRF neural network identifier. The structure of the 

control system is shown in Fig. 7. 

 

Fig. 7. Block diagram of the multi-variable PID decoupling control 

system. 

1)Classic PID controller (see Long Z Q et al., 2004): Direct 

closed-loop control of the controlled object process, and the 

three parameters of , ,p i dK K K  are set online. In order to 

achieve good control results for PID control, it is necessary to 

adjust the proportional, integral, and derivative controls to 

form a relationship that cooperates with each other and 

restricts each other in the control quantity. This relationship 

is not a necessarily simple linear combination, and the best 

relationship can be found from the infinitely variable 

nonlinear combination. 

2)BRF Neural Network Identifier (see Dong W H et al., 

2007): according to the operating state of the system, the 

nonlinear time-varying model of the system is identified 

online, and the PID controller parameters of each subsystem 

are automatically adjusted to achieve the optimization of a 

certain performance index. Finally, the intelligent decoupling 

control of the system is realized. Even if the output state of 

the output layer neuron corresponds to the three adjustable 

parameters of the PID controller, its stable state corresponds 

to the PID controller parameters under an optimal control law 

through the learning and weighting system adjustment of the 

neural network itself. 

Variable  Value Unit Variable Value Unit 

E 150 Gpa  1W  260 kg  

L 5.5 m  
RW  370  

if  1.03 % 
SW  189.94  

mdT  0.2 s  
r  21.14 /Rad s  

crT  0.03 s  
if  4.8 2/N mm  

l  6000 mm  
ib  3.0  

al  2200 mm  
1if +  5.5 2/N mm  

iv  3.246 /m s  
+1iv  4.786 /m s  
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The dual-input, dual-output multi-variable self-tuning PID 

controller is shown in Fig. 8, where NN1 and NN2 are neural 

networks, because the PID parameters of controllers 1U  and 

2U  are , ,p i dK K K . 1rin  and 2rin  are the designated inputs 

of the system, and 1yout  and 2yout  are the output values of  

the system. 

 

Fig. 8. PID controller with dual input and dual output tuning. 

Using incremental PID controller, the control error is 

1 1 1( ) ( ) ( )error k rin k yout k= −  

The three PID inputs are 

1 1 1

1 1

1 1 1 1

(1) ( ) ( 1)

(2) ( )

(3) ( ) 2 ( 1) ( 2)

xc error k error k

xc error k

xc error k error k error k

= − −

=

= − − + −

              (32) 

The control algorithm is 

1 1 1 1 1 1 1

1 1 1 1

( ) ( 1) ( ( ) ( 1)) ( )

( ( ) 2 ( 1) ( 2))

p i

d

u k u k k error k error k k error k

k error k error k error k

= − + − − +

+ − − + −
 (33) 

The neural network tuning index is 

2

1 1

1
( ) ( )

2
E k error k=                                     (34) 

The adjustment of , ,p i dK K K  adopts the gradient descent 

method 

1 1 1 1 1
1 1 1

1 1 1 1 1

( ) (1)p p p p

p p

E E y u y
k error k xc

k y u k u
  

    
 = − = − =

    
  (35) 

1 1 1 1 1
1 1 1

1 1 1 1 1

( ) (2)i i i i

i i

E E y u y
k error k xc

k y u k u
  
    

 = − = − =
    

   (36) 

1 1 1 1 1
1 1 1

1 1 1 1 1

( ) (3)d d d d

d d

E E y u y
k error k xc

k y u k u
  

    
 = − = − =

    
  (37) 

In the formula, , ,p i d    are the PID parameter learning rate, 

and /y u   is the Jacobian information of the controlled 

object, which can be obtained through the identification of 

the neural network. 

3.3 Identification algorithm of accused object Jacobian 

information 

In the RBF network structure,  1 2, ......
T

nX x x x=  is the input 

variable of the network. Suppose that the radial basis vector 

of RBF network is 
1 2, ... ...

T

j mH h h h h =    , where jh  is the 

Gaussian function 

2

2
exp( )       1,2,...

2

j

j

j

X C
h j m

b

−
= − =                    (38) 

The center vector of the j-th node of the network is 

1 2, ... ...
T

j j j jt jnC c c c c =    

Suppose the basis width vector of the network is 

 1 2, ......
T

mB b b b=  

jb  is the base width parameter of node j, and is a number 

greater than zero. The weight vector of the network is 

1 2, ... ...
T

j mW w w w w =                                    (39) 

The output of the identification network is 

1 1 2 2( ) ...m m my k w h w h w h= + + +                           (40) 

The performance index function of the identifier is 

( )
2

1 1

1
( ) ( )

2
m mJ yout k y k= −

 

In the formula, 1my  is the output of the identifier. 

According to the gradient descent method, an iterative 

algorithm for the parameters of output weight, node center 

and node base width is proposed 

1 1( ) ( 1) ( ( ) ( ))

( ( 1) ( 2))

j j m j

j j

w k w k yout k y k h

w k w k





= − + −

+ − − −
              (41) 

2

1 1 3
( ( ) ( ))

j

j m j j

j

x c
b yout k y k w h

b

−
 = −                        (42) 

( ) ( 1) ( ( 1) ( 2))j j j j jb k b k b b k b k = − +  + − − −                (43) 

1 1 2
( ( ) ( ))

j ji

ji m j

j

x c
C yout k y k w

b

−
 = −                        (44)

( ) ( 1) ( ( 1) ( 2))ji ji ji ji jiC k C k C C k C k = − +  + − − −       (45) 

In the formula,   is the learning rate and   is the 

momentum factor. 

Jacobian matrix (that is, the sensitivity information of the 

output of the object to the control input) algorithm is 

11

2
11 1

( )( )

( ) ( )

m
jim

j j

j j

c xy ky k
w h

u k u k b−

−
= =

 
                       (46) 

Where, 1 1( )x u k=  

4. WEED OPTIMIZATION ALGORITHM 

4.1 Basic weed optimization algorithm 

Invasive Weed Optimization (see Mehrabian A R et al.,2006) 

(IWO) is proposed by A R Mehrabian et al. in 2006 to 

simulate the basic process of spatial diffusion, growth,
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reproduction and competitive extinction of weed seeds with 

tenacious vitality in nature. This kind of bionic swarm 

intelligence algorithm is a meta-heuristic algorithm inspired 

by ecology. The algorithm has the characteristics of simple 

structure, fast convergence speed, parallel operation 

robustness and strong adaptability. Since it was put forward, 

it has attracted the attention of many scholars. At present, it 

has been applied in many aspects such as artificial neural 

network model optimization (see Giri R et al., 2010; Peng B 

et al., 2013; Dun X H et al., 2018). The IWO algorithm is an 

efficient random intelligent optimization algorithm. It uses 

excellent individuals in the group to guide the evolution of 

the population. And uses normal distribution to dynamically 

change the standard deviation to superimpose the offspring 

individuals produced by the excellent individuals around the 

parent individuals. The offspring individuals are produced 

and superimposed by the excellent individuals around the 

parent individuals by using normal distribution to 

dynamically change the standard deviation. The algorithm 

takes into account the diversity of the group and the strength 

of selection. 

The main steps of the weed optimization algorithm are as 

follows: 

Step 1 Initialize the population. The upper and lower limits of 

the variables are given, the D-dimensional initial solution is 

randomly generated in a uniformly distributed manner, and 

the basic parameters of the algorithm are initialized. 

Step 2 Individual reproduction of offspring. Parents 

distributed in the entire search space produce next-generation 

seeds based on the fitness value of the parent. The number of 

offspring seeds is determined by the fitness value and has a 

linear relationship with the fitness value. Individuals with 

high fitness value produce more seeds. Individuals with low 

fitness values produce fewer seeds, as shown in Fig. 9. 

 

Fig. 9. Curve for determining the number of population seeds. 

The number of offspring individuals is: 

min
min max min

max min

[( ) ]kf f
N S ceil S S

f f

−
= + −

−
                  (47) 

Where, min max,S S  are the minimum and maximum numbers 

of offspring that the parent can produce; kf  is the individual 

fitness of the parent; min max,f f  are the minimum and 

maximum fitness of the parent individual respectively. 

Step 3 Space diffusion. The offspring individuals are 

distributed around the parent individuals according to a 

certain law, and the distribution position law satisfies the 

normal distribution. 

The standard deviation change formula is: 

k
[( ) / ] (n

initial final final
M t M   = − − +）                       (48) 

Where,
max

iter is the maximum evolutionary algebra; iter  is 

the current evolutionary algebra; n is the nonlinear harmonic 

factor, usually n=3. 

Step 4 Competitive exclusion. After several generations of 

breeding operations, when the population size reaches the 

preset maxP , the parents and offspring in the population are 

sorted, Selecting the better first maxP  according to the fitness 

value. 

Repeat the above process until the optimal solution condition 

is satisfied or the maximum number of iterations is reached. 

The flow chart of the basic weed optimization algorithm is 

shown in Fig. 10: 

start

Initialize the population and 
parameters

Calculate the fitness value of 
each individual 

Calculate the number of seeds that 
each individual can produce 

according to the fitness value  

A part of the generated seeds will 
be randomly scattered around the 
parent individuals according to 
the Gaussian distribution ,and 

grow into new individuals 

The new
 individual is added to the parent 

individual to each the upper limit of the 
maximum population

 capacity

Remove individuals with poor 
fitness values that exceed the 

population capacity

Maximum
 number of iterations 

reached

end

Y

Y

N

N

 

Fig. 10 Basic weed optimization algorithm steps 

4.2 Improved weed optimization algorithm 

The basic weed algorithm converges slowly in the later stages 

of evolution, and generates offspring around the parent in a 

Gaussian distribution. This search method has both depth and 

breadth, but most offspring produced by the Gaussian 

distribution are closer to the parent. May leads to a local 

optimum. Therefore, in each iteration, the population is 

equally divided into two parts. The first part produces 

offspring according to the Gaussian distribution, and the 
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second part produces offspring according to the Cauchy 

distribution. This spreads the space of the algorithm. Through 

this method, the space of the algorithm is diffused. Due to the 

strong local optimization ability of the weed algorithm, that is 

the weeds have the trend of tend to the local optimal weeds in 

the population. In order to slow down the simplification of 

the later weed population caused by this phenomenon and the 

algorithm searches speed decreases. This paper introduces a 

differential evolution strategy after the generation of new 

individuals, and performs mutation, crossover and selection 

operations on individuals to make them jump out of the local 

optimal situation and increase the diversity of the population. 

As shown in Fig. 11, individuals tend to fall into a search 

deadlock in a better position, but the differential evolution 

strategy can jump out of the local optimal situation, and then 

search for the global to obtain the global optimal. 

 

Fig. 11. Multimodal function. 

4.2.1 Search space diffusion 

The Gaussian ensity function of f(x) obeys the distribution of 

N (0,1) as:                

2

2
1

( )
2

x

f x e


−

=
 

The Cauchy ensity function of f(x) obeys the distribution of 

C(0,1) as:                  
2

1
( )

(1 )
f x

x
=

+  

The two formulas of generating offspring can be described as: 

1 (0,1)popk popk kp p N+ = +                               (49) 

1 (0,1)popk popk kp p C+ = +                                (50) 

 

Fig. 12. Distribution curve of Gaussian and Cauchy 

distribution. 

It can be seen from Fig. 12 that the Cauchy distribution has a 

relatively small peak in the vertical direction. In the 

horizontal direction, it changes more slowly when it is close 

to the horizontal axis. Compared with the Gaussian 

distribution, the Cauchy distribution is more likely to 

generate random numbers far away from the origin and has a 

wide range of random numbers. This allows the IWO 

algorithm to generate more diverse individuals at the initial 

stage, and it is easy to jump out of the local optimal or flat 

area. Both have their own advantages and disadvantages. For 

this reason, this article adopts a combination of the them. 

The main steps of the improved weed optimization algorithm: 

Step 1 Initialize the population and parameters, including the 

number of iterations, population number, maximum 

population number, number of offspring, nonlinear 

modulation index, standard deviation range, etc. 

Step 2 Determine the standard deviation of offspring by (48), 

determine the number of offspring by (47), and generate 

offspring individuals according to (49) and (50). 

Step 3 Calculate whether the total number of offspring 

individuals and parent individuals generated by the two 

distributions exceeds the maximum population size. If it 

exceeds, some individuals will be eliminated. Otherwise, the 

next generation of individuals will continue to be produced. 

Step 4 Substitute the various groups into the neural network 

training model to calculate the fitness, and the parents and 

offspring compete for elimination. 

Step 5 Judge whether the current iteration number has 

reached the maximum iteration number. If it reaches the 

maximum number of iterations, output the optimal individual 

as the neural network weight and threshold; otherwise, return 

to step 2. 

4.2.2 Differential evolution strategy 

Differential evolution algorithm (see Price K et al., 2006) 

mainly includes three typical evolutionary calculations: 

mutation, crossover, and selection. It has the advantages of 

memorizing individual optimal solutions, fewer controlled 

numbers, and strong global convergence in order to solve the 

shortcomings of IWO. The mutation, crossover, and selection 

operations of DE are introduced into IWO, and the specific 

operations are as follows: 

Step 1 Seed mutation. The seed of the mutation operation 

after the spatial diffusion process is  

1 2 3( )i Z Z ZU X F X X= + −                             (51) 

Where, F  is the scaling factor, [0,2]F ; 1 2 3, ,Z Z ZX X X  are 

the 3 seeds produced by weed iX . 

Step 2 Seed crossover. The crossover operation of the 

following formula is performed on ( )iX t  and ( )iY t  of the t-

th generation, which can further improve the diversity of the 

algorithm population. 

 
,

,

( ) (0,1)

( ) (0,1)

i j

ij

i j

Y t rand CR
U

X t rand CR


= 


                       (52) 
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Where: CR is the crossover probability. 

Step 3 Seed selection 

, ,

,

( ) ( )

( ) ( )

i j i j i

i

i i j i

U f U f X
X

X f U f X


= 


                       (53) 

The algorithm flow chart is shown in Fig. 13: 

start

Initialize the population and 
parameters

Calculate the fitness value of 
each individual 

Calculate the number of seeds that 
each individual can produce 

according to the fitness value  

A part of the generated seeds will 
be randomly scattered around the 
parent individuals according to 
the Gaussian distribution ,and 

grow into new individuals 

The new
 individual is added to the parent 

individual to each the upper limit of the 
maximum population

 capacity

Remove individuals with poor 
fitness values that exceed the 

population capacity

Maximum
 number of iterations 

reached

end

Y

Y

N

N

A part of the generated seeds will 
be randomly scattered around the 
parent individuals according to 

the Cauchy distribution ,and grow 
into new individuals 

Mutation Mutation 

Crossover

Selection

Crossover

Selection

N

 

Fig. 13. Improved weed optimization algorithm steps. 

5. SIMULATION AND ANALYSIS 

5.1 Comparison of improved algorithms 

Differential algorithm, particle swarms algorithm, genetic 

algorithm, basic weed algorithm and improved weed 

algorithm are applied to the optimization of RBF neural 

network. The sampling time of this system is set to the 

nearest 0.01s to the actual project. The sampling time is set as 

0.01s which is closest to the actual project. The population 

size is 30 and the number of iterations is 50. The fitness curve 

of each optimization algorithm is as follows. (Fig. 14) 

As shown in the above simulation diagram, comparing the 

convergence process of ordinary differential evolution 

algorithm, particle swarm algorithm, genetic algorithm, basic 

weed optimization algorithm and improved weed 

optimization algorithm, from the convergence trend analysis 

of its optimization performance, it can be seen that: ordinary 

differential evolution Algorithms, particle swarm 

optimization and genetic algorithms have the disadvantages 

of premature and easy to fall into local optimization, and 

cannot increase the diversity of required weights. 

 

Fig. 14. Comprehensive simulation diagram. 

There are contradictions in global optimization and local 

optimization, which cannot be considered at the same time. 

Although the basic weed optimization algorithm converged 

quickly in the early stage, it remained flat after converging to 

260 generations. The improved weed optimization algorithm 

not only maintains the rapid convergence in the early stage, 

but also the model is still being optimized at the later stage. 

Comparing several optimization algorithms, the improved 

weed optimization algorithm has higher neural network 

accuracy and better optimization effect. 

5.2 Traditional conventional PID decoupling 

In order to verify the performance of the improved 

decoupling algorithm, the looper tension system is modeled 

and simulated. The conventional PID looper tension 

decoupling control is shown in Fig. 15. The decoupling 

control is realized in about 0.6 seconds, and the system is 

stable. 

 

Fig. 15. Traditional PID looper tension decoupling control. 

5.3 RBF neural network decoupling 

From the simulation Fig. 16, it is known that the decoupling 

control is realized in about 0.2 seconds, and the system is 

stable. 

It can be seen from the above simulation diagram that the rise 

time of the traditional PID decoupling control system is 74ms, 

the peak value is 4.117, the overshoot is 37.2%, and the 

system tends to be stable at 552ms. The RBF neural network 
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shows that there is no overshoot in the system from the 

simulation results. 

 

Fig. 16. Improved weed optimization algorithm decoupling 

control. 

The system is completely decoupled at 186ms, and the 

system tends to be stable. Compared with PID adjustment, 

the time is shortened and the adjustment process is smoother. 

The oscillation amplitude is Obvious improvement has been 

made, which reduces the wear of the actuator and high-

frequency execution in the actual field, and ensures that the 

rolling quickly enters the steady state. The fluctuation of the 

system and the time to reach the steady state is all due to the 

traditional PID control system. 

5.4 System performance comparison 

In the actual production process, there are often phenomena 

such as uncertainty and disturbance in the system. For 

example, temperature fluctuations will affect the change of 

the forward and backward slip coefficients, and then change 

the change of the looper and tension. A test sine function is 

selected here, and the performance is shown in Fig.17、18. 

 

Fig. 17. Track sin sine signal. 

 

Fig. 18. Improved track sin sine signal. 

From the comparison of Fig.s 17 and 18, it can be seen that 

when the looper system is affected by factors such as strip 

temperature fluctuations and roll gaps, the PID-based 

decoupling control system will have relatively large constant 

amplitude oscillations under continuous external disturbances. 

And the decoupling control performance of the system is 

reduced. The decoupling control effect of RBF neural 

network is better than that of PID. And on the basis of the 

improved weed optimization algorithm to optimize the 

weights, the system response is controlled in a small range, 

so that the system has a high stability. 

6. CONCLUSIONS 

Based on the hot rolling theory, the state space model of 

looper system is established. Considering the coupling 

relationship between the dynamic of looper angle and the 

dynamic of strip tension, the model is established. The 

reference looper angle and position are linearized 

approximately, and the strip tension output is obtained. In 

addition, based on the establishment of the state space model, 

the RBF neural network is applied to the looper system. Then 

the improved weed algorithm is used to optimize the 

perceptron of RBF neural network. The simulation results 

show that the improved weed algorithm is better than other 

algorithms in terms of optimization range or convergence 

accuracy, so that the accuracy of the neural network can 

reach a higher accuracy at the initial moment. The PID 

decoupling system and RBF neural network decoupling 

system are simulated and analyzed. At the same time, 

comparing the anti-interference performance of PID 

decoupling system and RBF neural network decoupling 

system. The simulation results show that the proposed RBF 

neural network decoupling system can obtain better dynamic 

performance. It can better improve the coupling relationship 

between the loop tension and the height system of the hot 

tandem rolling, which reflects better robustness. However, 

there are still shortcomings in the research and analysis 

process. For example, the looper system has multiple 

variables, strong coupling, and large interactions with other 

devices, and the system model cannot be accurately 

established. At the same time, it is impossible to consider the 

uncertain factors in reality, and further improvement is 

needed in the following study. 
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