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Abstract: The stabilization and trajectory tracking control problem of the classical benchmark Under-

actuated cart-inverted pendulum system is addressed. In the Linear Matrix Inequality (LMI) based State 

Feedback Controller (SFC), the LMI regions are selected by cumbersome trial and error methods where 

optimal results are not always guaranteed. Hence in this work, the optimization algorithms are proposed to 

tune the LMI region in the LMI based SFC. The Ant Lion Optimizer (ALO) is proposed to tune the LMI 

regions of the SFC for the control problem. The ALO algorithm finds the optimal LMI region from the 

solution of the inequality problem, which results in the optimal state feedback gain, minimising trajectory 

tracking error while stabilising the pendulum in the unstable upright position. The performance of the 

proposed ALO tuned LMI based SFC is presented and compared with the LMI based SFC without 

optimization and APSO tuned LMI based SFC scheme. The suggested controller's real-time viability is 

demonstrated by incorporating it in Quanser's IP02 benchmark Cart-inverted pendulum system and the 

results show a 41.97 percentage reduction in Integral Square Error (ISE) of trajectory tracking with 

improved transient response while stabilizing the pendulum in the unstable position when compared to the 

controllers in comparison. 

Keywords: Ant Lion Optimizer; Inverted Pendulum; Linear Matrix Inequality; Stabilization; tracking; 
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1. INTRODUCTION 

The cart inverted pendulum is a benchmark under-actuated 

control problem studied to design new controllers. This system 

is nonlinear, inherently unstable and a controller is needed to 

provide a stable operation. To evaluate the effectiveness of the 

suggested controllers, the newly built or modified control 

algorithms are evaluated in benchmark systems. Many real-

time control challenges, such as Segway, the human posture 

systems, Pendubots, the launching of a rocket and earthquake-

resistant buildings, can benefit from the intended controllers 

for such a complex process. This benchmark system poses two 

control problems (Shahab et al., 2017). The first control 

problem is to swing up the pendulum from its initial rest 

position and the second control problem is to stabilize the 

pendulum in the upright position which is highly unstable in 

nature. The stabilization problem of the cart-inverted 

pendulum has resulted in a variety of advanced control 

algorithms. The stabilization of the pendulum started with a 

simple State Feedback Controller (SFC) which then 

incorporated the PI controller via State-PI Feedback 

(Wiboonjaroen and Sujitjorn, 2011). Several controllers 

(Blondin and Pardalos, 2020; Roose et al., 2017; Irfan et al., 

2018; de Jesús Rubio, 2018; Franco et al., 2018) are designed 

to control the pendulum. The controllers are focused on 

optimizing the control effort needed for stabilizing the 

pendulum. The Linear Quadratic Regulator (LQR) based SFC 

is an optimal control method for the stabilization problem 

which achieves robust stabilization of the inverted pendulum 

even in the presence of disturbance (Vinodh Kumar and 

Jerome, 2013). In this method, the Algebraic Riccati Equation 

(ARE) is solved to get the closed-loop feedback gain of the 

system. Here, the selection of weighting matrices affects the 

solution of the ARE, which in turn affects the closed-loop 

performance of the system. Since there are no standard 

procedures to select the weighting matrices of the LQR, the 

performance of the method hinges on the random initial 

selection of weights. The solution of the ARE in LQR is then 

addressed by heuristic soft computing methods that optimize 

the control problem.  The Genetic Algorithm tuned LQR (Li et 

al., 2007), Particle Swarm Optimization (PSO) tuned LQR 

(Chang et al., 2012), (Assahubulkahfi et al., 2018) and 

Adaptive Particle Swarm Optimization (APSO) tuned LQR 

(Kumar E. and Jerome, 2014), (Vinodh Kumar et al., 2016) are 

few state feedback control schemes that use soft computing 

techniques to find the optimal state feedback gain.  

The complex convex optimization development resulted in the 

feasibility of the solution for LMIs by the computer for which 

finding the manual solution is extremely difficult and time-

consuming (Boyd et al., 1994). (Scherer et al., 1997) proposed 

an LMI optimization-based multiobjective output feedback 

control. Then, a simple state feedback controller using pole 

region constraint was proposed by (Werner et al., 2003) for 

power system stabilizers. For time-delay systems, observer-

based controller design by LMI optimization was proposed by 

(Kwon et al., 2006). Robust control design via LMI 

optimization was proposed by (Adegas and Stoustrup, 2011). 

Robust stabilization of underactuated systems by Lyapunov 
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redesign was proposed by (Ravichandran and Mahindrakar, 

2011). Grid connected converters under uncertain conditions 

are controlled by LMI based optimized control (MacCari et al., 

2014). The feedback gain of the LMI based SFC proposed by 

(Garone and Ntogramatzidis, 2015) in the globally monotonic 

control algorithm is found by solving a set of inequality 

equations which included the stability conditions and proper 

selection of LMI region. (Ntogramatzidis et al., 2016) 

proposed the globally monotonic LMI based SFC for MIMO 

systems. (Muhammad, 2018) proposed LMI based SFC with 

the constraints of closed-loop poles in the desired LMI region 

addressed by pole placement for the under-actuated gantry 

crane system. The location of poles in the LMI region 

guarantees stable operation but to find the one that gives 

minimum tracking error by arbitrary pole placement is difficult 

and time-consuming. Optimal performance is not always 

guaranteed by this method. Robust SFC based on LMIs for 

grid-connected converters is proposed by (Koch et al., 2019). 

Optimized Proportional-Derivative sliding mode control based 

on LMIs are proposed by (Ghaffari, 2020). Instead of the 

conventional change of variables method in LMI formulation, 

the state feedback gains are taken as optimization variables by 

(Felipe and Oliveira, 2021). High processing speed processors 

developed in recent years enabled the research in several 

optimization problems. Thus, from the literatures it is seen that 

the optimization is concentrated on different LMI parameters 

except the variables defining the LMI region. Also, it is 

observed that pole placement and LMI region selection is done 

by arbitrary trial and error methods. Hence, the optimization 

algorithms are proposed to be used to tune the LMI region in 

the proposed work.  

In the proposed work, a simple LMI based SFC is first 

designed using the basic Lyapunov method and the 

inequalities proposed by (Garone and Ntogramatzidis, 2015). 

The conditions are then added in the inequality problem such 

that the proper LMI region as stated by (Werner et al., 2003) 

is added to get the optimal response. This selection of LMI 

region by trial and error method is cumbersome and hence 

optimization algorithms are proposed to find the LMI region 

which gives the optimal performance of the SFC. Several 

optimization techniques inspired by nature have been created. 

Firefly algorithm (Yang and He, 2013), Ant Lion Optimizer 

(Mirjalili, 2015; Abualigah et al., 2008; Zhang et al., 2019), 

Whale Optimization (Mirjalili and Lewis, 2016), Grasshopper 

optimization algorithm (Saremi et al., 2017), Cuckoo Search 

algorithm (Yang and Deb, 2014), Grey Wolf Optimizer 

(Mirjalili et al., 2014), Salp Swarm Optimizer (Mirjalili et al., 

2017), Flower Pollination (Alyasseri et al., 2018), Bat 

Algorithm (Huang and Ma, 2020),  African Vultures 

Optimizer (Abdollahzadeh et al., 2021) are few of the recently 

developed algorithms.  In the proposed work, Ant Lion 

Optimizer is used to tune the LMI based SFC to select proper 

LMI region which in turn gives the optimal state feedback 

gains for the control problem. Unlike PSO and its variants, the 

ALO does not require any pre-requisite information relating to 

the parameter initialisation. The parameters such as inertial 

weights and velocity in the PSO method need to be properly 

chosen else there are more chances for the optimization to get 

trapped with the local optimum. Since the ALO method does  

not have such constraints, it results in a better global optimum 

value within the search space. The proposed ALO tuned LMI 

based SFC is compared with the LMI based SFC without 

optimization (Garone and Ntogramatzidis, 2015) and APSO 

tuned LMI based SFC. The results are then validated with real-

time implementation. In the current work, the stabilization 

problem of the inverted pendulum is considered. Simulation 

results are taken for the common operating conditions with a 

square wave trajectory for the cart to track while stabilizing the 

pendulum. The Integral Square Error (ISE) is taken as the 

performance index for analysing the controller’s performance. 

With the justification of the simulation results along with the 

performance index, the experimental setup is made. The real-

time evaluation result also justifies the ALO tuned LMI based 

SFC’s performance. The following is a breakdown of the 

paper's structure: Section 1 gives a brief introduction to the 

control problem considered along with the recent 

developments. Section 2 deals with the system description. 

Section 3 focuses on the modeling of the Cart-Inverted 

Pendulum system. Section 4 deals with the controller design. 

Section 5 covers the results with the discussions. Section 6 

concludes with the observations from the results. 

2. CART - INVERTED PENDULUM SYSTEM 

The moving cart-inverted pendulum systems (CIPS) schematic 

representation is shown in Figure 1. The under-actuated cart-

inverted pendulum nonlinear system has two degrees of 

motion. The system has a single control input voltage given to 

the motor and has 2-Degrees of Freedom (DOF) outputs and 

such systems are difficult to control. The first output is the 

linear motion of the cart in the railings provided by the gear 

arrangements. The second output is the angular motion of the 

pendulum. Because of this nature, this setup is used for 

designing controllers for Single Input Multiple Output (SIMO) 

Systems. The inverted pendulum framework comprises of a 

mass 𝑀𝑝  pendulum with a length 𝑙𝑝 coupled to a mass 𝑀𝑐 of 

the cart. The cart has a motor attached to it. The control input 

voltage given to the motor drives the cart along the railing 

through gear arrangements. The cart’s mass 𝑀𝑐 is inclusive of 

an additional weight 𝑀𝑤 which is attached to the cart for 

balancing the pendulum’s weight. The cart can only move in 

one direction: horizontally, whereas the pendulum freely 

revolves in the x-y plane. 

Fig. 1. Setup of Cart-Inverted Pendulum.  

As a result, the state variables are taken as the cart 

displacement ‘𝑥𝑐’ in the horizontal direction and the pendulum 

angle ‘𝛼’. 
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3. MATHEMATICAL MODELLING OF INVERTED 

PENDULUM SYSTEM  

The energy equations of the Euler-Lagrangian method are used 

to obtain the inverted pendulum's mathematical model. The 

energy terms are differentiated with respect to the state 

variables in the Lagrangian formulation. This method is 

simpler to use when the system becomes complex. Two 

generalized equations governing the Lagrangian method are as 

follows: one for the linear motions whereas the other is for the 

rotational motions. The effectiveness of this method makes it 

ideal for use in the modeling of the inverted pendulum setup 

which has the cart’s translational motion as well as the 

pendulum’s rotational motion. (Quanser Inc., 2007) 

3.1 Euler – Lagrangian Formulation  

The general form of the Lagrangian 𝐿𝑛 is given by Eqn. 1. 

𝐿𝑛 = 𝐾𝐸 − 𝑃𝐸                                               (1) 

Where 𝐾𝐸  and 𝑃𝐸 corresponds to that of the total kinetic 

energy and potential energy of the system respectively.  

𝐾𝐸 =
1

2
(𝑀𝑐 + 𝑀𝑝)𝑥̇𝑐

2 
(𝑡) − 𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝛼̇(𝑡)𝑥̇𝑐(𝑡) 

+
1

2
(𝐼𝑝 + 𝑀𝑝𝐼𝑝

2)𝛼̇2 
(𝑡)            (2) 

For the inverted pendulum setup, the linear translational 

motion is given by the cart’s position 𝑥𝑐 and the rotational 

motion is given by pendulum position α. The total Kinetic 

Energy of the system is given by Eqn. 2 and the total Potential 

Energy of the system is given as in Eqn. 3. 

𝑃𝐸 = 𝑀𝑝𝑔𝑙𝑝 cos(𝛼(𝑡))            (3) 

The Euler-Lagrangian for the inverted pendulum system is 

given by Eqn. 4. 

𝐹𝑖 =
𝑑

𝑑𝑡

𝜕𝐿𝑛

𝜕𝑥̇𝑐
−

𝜕𝐿𝑛

𝜕𝑥𝑐
                 (4) 

𝑇𝑖 =
𝑑

𝑑𝑡

𝜕𝐿𝑛

𝜕𝛼̇
−

𝜕𝐿𝑛

𝜕𝛼
               (5) 

Where 𝐹𝑖 is the translational force and 𝑇𝑖 is the rotational force 

exerted on the 𝑥𝑐 and α co-ordinates respectively. The forces 

are given by the below expressions. 

𝐹𝑖 = 𝐹𝑐(𝑡) − 𝐵𝑒𝑞𝑥̇𝑐 and 𝑇𝑖 = −𝐵𝑝𝛼̇(𝑡)          (6) 

The nonlinear model obtained by the Euler-Lagrangian 

method is given by Equations (7) and (8).  

(𝑀𝑐 + 𝑀𝑝)𝑥̈𝑐
 (𝑡) = 𝐹𝑐(𝑡) − 𝐵𝑒𝑞𝑥̇𝑐(𝑡)

 +𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝛼̈(𝑡) − 𝑀𝑝𝑙𝑝 sin(𝛼(𝑡)) 𝛼̇2(𝑡)                  

(7) 

(𝐼𝑝 + 𝑀𝑝𝑙𝑝
2)𝛼̈  (𝑡) = 𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝑥̈𝑐(𝑡) − 𝐵𝑝𝛼̇(𝑡) +

𝑀𝑝𝑔𝑙𝑝 sin(𝛼(𝑡))                        (8) 

The nonlinear model represented by Eqn. 7 and 8 can be 

linearized around the equilibrium point (upright pendulum 

position) such that 𝑠𝑖𝑛(𝛼)  ≅  𝛼, 𝑐𝑜𝑠(𝛼)  ≅  1, and the higher-

order terms in the models are also neglected for simplicity. The 

linearized approximated model is represented in state-space to 

design the state feedback controller for upright pendulum 

stabilization.  

 𝑋̇ = 𝐴𝑋 + 𝐵𝑈                            (9) 

 𝑌 = 𝐶𝑋                        (10) 

Where, 𝑋 = [𝑥𝑐  𝛼 𝑥̇𝑐  𝛼̇]𝑇 , 𝑈 = 𝑉 𝑎𝑛𝑑 𝑌 = [𝑥𝑐  𝛼 𝑥𝑐̇  𝛼̇]𝑇. The 

inverted pendulum setup's state-space model is depicted in 

Eqn. 11.  

𝐴 =

[
 
 
 
 
 
0              0
0              0

                
1                                        0
0                                        1

0
𝑔𝑀𝑝

2𝑙𝑝
2

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

0
𝑀𝑝𝑔𝑙𝑝(𝑀𝑝+𝑀𝑐)

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

−𝐵𝑒𝑞(𝑀𝑝𝑙𝑝
2)

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

−𝑀𝑝𝑙𝑝𝐵𝑝

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

−𝑀𝑝𝑙𝑝𝐵𝑒𝑞

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

−(𝑀𝑝+𝑀𝑐)𝐵𝑝

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2]
 
 
 
 
 

 

𝐵 =

[
 
 
 
 
 

0
0

𝐼𝑝+𝑀𝑝𝑙𝑝
2

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

𝑀𝑝𝑙𝑝

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2]
 
 
 
 
 

  𝐶 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

]                 (11) 

The values of the parameters of the inverted pendulum setup 

listed in Table 1 are substituted in Eqn. 11 to get the state-space 

model (Quanser Inc., 2007).  

Table 1. The inverted pendulum's system parameters. 

Parameter Description Value 

𝑀𝑐 cart mass 1.0731 𝐾𝑔 

𝑀𝑝 Pendulum mass  0.127 𝐾𝑔 

𝑙𝑝 Length of the Pendulum  0.1778 𝑚 

𝐼𝑝 
Pendulum moment of 

Inertia 

1.2
× 10−3 𝐾𝑔𝑚2 

𝑔 
Acceleration due to 

gravity 
9.81 𝑚/𝑠2 

𝐵𝑝 
Viscous damping co-

efficient at Pendulum 

axis 

0.0024 𝑁𝑚𝑠
/𝑟𝑎𝑑 

𝐵𝑒𝑞  
Viscous damping co-

efficient at the motor 

pinion 

5.4 𝑁𝑚𝑠/𝑟𝑎𝑑 

The parameters are substituted in Eqn. 11 and the inverted 

pendulum setup's state-space model obtained is shown by Eqn. 

(12) and (13). 

[

𝑥̇𝑐

𝛼̇
𝑥̈𝑐

𝛼̈

] = [

0               0                   1                 0
0               0                   0                 1
0     1.3101 − 5.8717 − 0.0142
0  48.1625 − 25.4309 − 0.5218

] [

𝑥𝑐

𝛼
𝑥̇𝑐

𝛼̇

] + [

0
0

1.3655
5.9142

]𝑢  (12)      

𝑌 = [

1 0 0 0 
0 1 0 0 
0 0 1 0
0 0 0 1

] [

𝑥𝑐

𝛼
𝑥̇𝑐

𝛼̇

]                                    (13) 

4. CONTROLLER DESIGN 

For the control problem of stabilizing the pendulum in the 

unstable upright equilibrium position while the cart is made to 

track the desired trajectory, a novel Ant Lion Optimizer tuned 
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Linear Matrix Inequalities based State Feedback Controller is 

designed. The output from the optimization problem is the 

optimal gain of the SFC. Figure 2 depicts the closed loop block 

diagram used to study the state feedback controllers designed. 

The performance of Ant Lion Optimizer tuned controller is 

compared with the LMI based SFC and that of the APSO tuned 

controller. The design of the control scheme is presented next 

in detail.  

 

Fig. 2. ALO tuned LMI based SFC. 

4.1 Design of LMI based SFC 

The linear matrix inequality equations are formed based on the 

Lyapunov method. The condition for global monotonicity is 

explained by (Garone and Ntogramatzidis, 2015). For any 

Linear Time-Invariant system (LTI), there exists a closed-loop 

feedback gain 𝐾 such that the system becomes asymptotically 

stable if there exists 𝑄 = 𝑄𝑇 > 0 and 𝑍 for the inequality 

problem. 𝐴 − 𝐵𝐾 denotes the closed-loop system matrix. If 

and only if there is a feedback gain K that fulfils Eqn. 14, the 

closed-loop system stability is ensured.  

(𝐴 − 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾) < 0 𝑎𝑛𝑑 𝑃 > 0            (14) 

A simple change of variables is done so that the feedback gain 

is also a function of LMI variable. There is a symmetric 

positive definite matrix Q that has the property of 𝑄 =
𝑃−1𝑎𝑛𝑑 𝑍 = 𝐾𝑄. The above inequalities are transformed as in 

Eqn. 15 that defines the inequality problem.  

(𝐴𝑄 − 𝐵𝑍)𝑇 + (𝐴𝑄 − 𝐵𝑍) < 0, 𝑃 > 0               (15) 

The inequality problem in (15) is solved to get the value of 𝑄 

and 𝑍 which is related to the feedback gain by 𝐾 = 𝑍𝑄−1. The 

inequality problem is modified to place the poles in the LMI 

region of the left half of the s-plane which gives an improved 

transient response. The second inequality equation is thus 

added to include 𝜆1 and 𝜆2 which defines the LMI region on 

the left half of s-plane where the closed loop poles should lie. 

The modified inequality problem is shown in Eqn. 17. 

(𝐴𝑄 − 𝐵𝑍)𝑇 + (𝐴𝑄 − 𝐵𝑍) < 0 

𝜆1𝑄 < (𝐴𝑄 − 𝐵𝑍) < 𝜆2𝑄                           (16) 

The control law is taken to be 𝑢 = −𝐾𝑥 to minimize the error 

propagation in the presence of disturbances. The values of 𝜆1 

and 𝜆2 are to be chosen in such a way that the solution of the 

inequality problem gives an optimal value of feedback gain K 

of the SFC. This selection of 𝜆1 and 𝜆2 are done by trial and 

error method. The SFC thus designed should be able to track 

the desired trajectory while stabilizing the pendulum with 

minimum tracking error. In the existing LMI based SFC, the 

optimization / ALO block shown in Figure 2 is not present. 

The random trial and error 𝜆1 and 𝜆2 values are used to solve 

the inequality problem to get the state feedback gain. For 

proper selection of 𝜆1 and 𝜆2 to give optimal feedback gain 

‘K’, a recent optimization algorithm known as the Ant Lion 

Optimizer is used to tune the LMI based SFC.  

4.2 ALO tuned LMI based SFC 

The Ant Lion Optimizer (Mirjalili, 2015) is a nature inspired 

stochastic (metaheuristic) optimisation algorithm. The 

algorithm is developed based on the foraging nature of the 

doodlebugs (Ant Lion). The hunting steps of Ant Lions 

involve: random walks of ants, building traps, trapping ants in 

Ant Lion’s pits, sliding ants towards Ant Lions, catching ants, 

and rebuilding the pits. 

In the optimisation problem, the ants are similar to the particles 

in swarm optimisations or an individual in Genetic 

Algorithms. The ants' position corresponds to that of the values 

of 𝜆1 and 𝜆2 defining the LMI region in inequality Eqn. 16. 

Each ant is evaluated by using a fitness function during 

optimization.  

The pseudocodes of the algorithm for ALO tuned LMI based 

SFC is as follows: 

Initialise the parameters: Population size, Maximum 

Iteration, Boundary of search space 

Randomly initialise the population of Ants and Ant Lions 

(𝜆1 and 𝜆2) 

Evaluate the fitness of all initial population 

Select the fittest Ant Lion as elite 

While iteration < max iteration 

Determine random walking of ants and select potential ants 

through roulette wheel 

Simulate random walks and select Ant Lions based on their 

fitness 

Check the boundaries to keep the ants within the search 

space 

Calculate the fitness of ants and replace Ant Lion with ants 

if its fitter 

Update elite if Ant Lion becomes fitter than previous elite 

Increment iteration and repeat till maximum iteration 

condition is met 

The Integral Square Error (ISE) as given in the Eqn. 17 is taken 

as the fitness function.  

𝑓𝑜𝑏𝑗 = 𝐼𝑆𝐸 = ∑[𝑦𝑑(𝑡) − 𝑦(𝑡)]2             (17) 

In Eqn. 17, 𝑦𝑑(𝑡) is the desired trajectory value and 𝑦(𝑡) is the 

actual output value at tth instant. The block diagram of ALO 

tuned LMI based SFC is shown in Fig. 2. The ALO algorithm 

is used for offline tuning of the LMI based SFC. The ALO 

algorithm finds the elite values of 𝜆1 and 𝜆2 which gives the 

best fitness (minimum Integral Square Error of trajectory 

tracking) within the search space. The elite values of 𝜆1 and 𝜆2 

are used in the inequality problem to obtain the optimal state 
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feedback gain which is used in the state feedback controller. 

For evaluating the performance of the ALO tuned controller, 

APSO algorithm is also used to tune the LMI based SFC to 

find the optimum LMI region. 

4.3 APSO tuned LMI based SFC 

The Adaptive Particle Swarm Optimisation (APSO) is one of 

the variants of the oldest metaheuristic PSO algorithm 

developed to avoid local optima saturation. APSO method is 

an advancement in the existing particle swarm optimization 

method.  The pseudocode for the APSO tuned LMI based SFC 

is as follows: 

Initialize the parameters: Population size, Maximum Iteration, 

Boundary of search space 

Randomly initialize the population of particles (𝜆1 and 𝜆2) 

position and velocity 

While iteration < max iteration 

Evaluate the fitness of all initial population (∑[𝑦𝑑(𝑡) −
𝑦(𝑡)]2) 

If fitness is better than fittest update local best and global best 

Update inertia weight based on the success rate 

Update the velocity and position of particles 

Increment iteration and repeat till maximum iteration 

condition is met 

The difference in APSO from PSO is that the inertia weight is 

updated based on the success rate. This enables global 

exploration and local exploitation. When the success rate is 

low it indicates that the particles are moving without 

improvement around the optimum value, whereas a high 

success rate indicates the particles are converging towards an 

optimum value. The weights are also adaptively updated based 

on these success rates. The result of the APSO tuned controller 

is the optimal gain which is then used in the SFC. 

5. RESULTS AND DISCUSSIONS 

Detailed comparative study of different SFCs in simulation 

and experimental investigation of stabilizing the pendulum 

and tracking the desired trajectory by the cart in the Quanser’s 

IP02 cart-inverted pendulum system is explained in this 

section.  

The rate of convergence and the results obtained depends on 

several parameters that are initially assigned. The parameters 

that are chosen initially affect the accuracy of the search 

results. In both ALO and APSO methods, the population size 

is taken to be 40 and the number of iterations is taken as 10. 

For APSO method, few more parameters are initially set. They 

are 𝑊𝑚𝑖𝑛 = 0.2, 𝑊𝑚𝑎𝑥 = 0.9, 𝑉𝑚𝑎𝑥 = 20%, 𝐶1, 𝐶2 = 1.43. 

The structure of the ALO algorithm is that it does not get 

trapped within the local optima and that it is better suited for 

global exploration. APSO on the other hand has chances for it 

to be locked in global optima if the velocity and the weights 

are not updated properly. For similar conditions, the results 

obtained are shown and discussed next.  

The cart-inverted pendulum parameters such as maximum 

amplitude is set as 20 mm, saturation voltage is set as ±12 V. 

By trial and error method, the inequality region in LMI based 

SFC is obtained as 𝜆1 = −20 and 𝜆2 = −3. This region is 

taken as the search space for the optimization algorithms. 

Since the algorithms’ results are based on the random initial 

population, to normalise the data, the optimization problem is 

repeated 15 times, and the results are recorded for the 

statistical study of the optimization algorithms' performance. 

The 𝜆1, 𝜆2, closed-loop state feedback gain of the closed-loop 

system corresponding to the best fitness is shown in Table 2.   

Table 2. Results of Optimisation algorithms. 

Method 𝜆1, 𝜆2 Feedback Gain (K) 

LMI 
-20 

-3 
  [-36.9987 65.1271 -26.3948 9.0870] 

ALO 
-10.008 

-3.0017 
  [-23.5123 46.1916 -18.5787 6.2293] 

APSO 
-10 

-3.0097 
 [-18.7132 65.3010 -20.6683   9.1041] 

The mean, standard deviation, minimum, and maximum of the 

fitness obtained in both the optimization algorithms are shown 

in Table 3. From the statistical data, it is clear that the Ant Lion 

Optimizer has found the best fit solution with the lowest 

minimum. The mean fitness obtained in the ALO method is 

also slightly lesser compared to that of the APSO method. The 

standard deviation of the fitness is slightly higher in the ALO 

method indicating that the method has wider search space. 

Even the maximum fitness value of optimization algorithms 

tuned controllers is less than the LMI based SFC’s fitness. 

 

Fig. 3. Convergence Plot. 

Table 3. Statistical analysis of Optimisation methods 

Method 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  𝑓𝑜𝑏𝑗𝑚𝑒𝑎𝑛 𝑓𝑜𝑏𝑗𝑚𝑎𝑥  𝑓𝑜𝑏𝑗𝜎  

ALO 0.17325 0.183239 0.19291 0.006148 

APSO 0.175901 0.183327 0.18762 0.004015 

LMI 𝑓𝑜𝑏𝑗 =0.24680 

The convergence curve of both ALO and APSO methods is 

shown in Figure 3. The convergence curve implies that the 

ALO method descends faster towards the optimal value. The 

final fitness obtained in ALO method is also less compared to 

that of the APSO method. Figure 4 shows trajectory tracking 
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of the cart for the different SFCs as shown. A square wave of 

0.1 Hz, 20 mm peak wave is given as the reference signal. The 

movement of the cart while stabilizing the pendulum in the 

upright position is shown. From the plot, it is evident that both 

the optimization algorithm tuned SFCs can track the desired 

trajectory. The ALO method has less rise time though the 

difference is very small. The time-domain values to indicate 

the performance of trajectory tracking are shown in Table 4. 

 

Fig. 4. Cart Position Response. 

The rise time, settling time, Peak Overshoot and performance 

index of the ALO method are slightly lower than that of the 

APSO method. Thus with minimum initial parameter 

selection, the ALO method is able to give a slightly better 

result compared to that of the APSO method. 

Table. 4. Comparison of performance during trajectory 

tracking 

Method 

Time Domain Values 
Performance 

Index 

Rise 

Time 
(𝑡𝑟) 

𝑆𝑒𝑐 

Settling 

Time 

(𝑡𝑠) 

𝑆𝑒𝑐 

Peak 

Overshoot 

(𝑀𝑝) 

% 

Integral 

Square Error 

(ISE) 

ALO 0.79 2.52 10.5 0.17325 

APSO 0.865 2.62 14.1 0.175901 

LMI 1.1 3.29 17.2 0.2468 

The pendulum angle variations when the cart is tracking the 

given reference signal is shown in Figure 5. From the plot, it 

is clear that the ALO method has minimum pendulum angle 

variations than that of the APSO method. The dynamic 

performance of the pendulum angle variations and control 

input is shown in Table 5. Figure 6 shows the variations of the 

control input to balance the pendulum and track the desired 

trajectory. The ALO method has lesser control voltage 

fluctuations compared to that of the APSO method.  

The simulation results from Figures 4 to 6 obtained in 

MATLAB Simulink indicate that both the SFCs can track the 

trajectory while the pendulum angle is within the stable 

operating range of ±5°. Also, the control input voltage 

remains within the safe operating range of ±12 𝑉 for the 

motor. 

 

Fig. 5. Pendulum Angle Variations. 

Table 5. Maximum Pendulum Angle  and Control Input 

Variations. 

Method 

Amplitude of 

Pendulum Angle 

Oscillations (deg) 

Amplitude of Control 

Input Oscillations 

(Volts) 

ALO 0.5942 0.75 

APSO 0.9482 1.704 

LMI 1.181 2.676 

 

Fig. 6. Control Input Variations. 

The rise time and the settling time for the cart position to track 

the desired square wave trajectory is less in ALO tuned LMI 

based SFC compared to that of the APSO tuned LMI based 

SFC. Also, the transient performance including the overshoot 

is better in ALO tuned LMI based SFC indicating a robust 

performance. The pendulum angle varies between plus or 

minus two degrees and the control input variations are also 

very less which makes the SFCs feasible for experimental 

investigation. 

The block diagram of the real-time experimental setup shown 

in Figure 7 consists of a PC with MATLAB R2015b, a 

Quanser’s Linear Inverted Pendulum IP02 workstation, a Q2-

USB data acquisition board, and a VoltPAQ-X1 Power 

Amplifier. The ID numbers in Figure 8 indicate the list of all 

principal elements contained in the IP02 System, as listed in 

Table 6. In the workstation, the overall rack length is 1.02 m, 
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the overall rack height is 0.061 m and the overall rack depth is 

0.15 m. 

 

Fig. 7. Experimental Setup for Stabilizing and Trajectory 

Tracking. 

As a safety feature, parts of the rack are kept missing at both 

ends to prevent the cart from running into the ends and 

damaging the workstation. The IP02 incorporates a Faulhaber 

Coreless DC motor (2338S006). This model is a highly 

efficient low inductance motor that responds significantly 

faster than a normal DC motor. 

Table 6. Components of IP02 system. 

ID # Description ID # Description 

1 IP02 Cart 10 
Cart Encoder 

Connector 

2 Cart Shaft 11 
Pendulum Encoder 

Connector 

3 Rack 12 Motor Connector 

4 Cart Position Pinion 13 DC Motor 

5 Cart Motor Pinion 14 Planetary Gearbox 

6 
Cart Motor Pinion 

Shaft 
15 Linear Bearing 

7 Pendulum Axis 16 Pendulum Socket 

8 IP02 Cart Encoder 17 Additional weight 

9 
IP02 Pendulum 

Encoder 
 

 

 

Fig. 8(a) – IP02 Front View, 8(b) – IP02 Bottom View and  

8(c) – Front View of IP02 with weight.   

The motor is rated at ± 15 𝑉, 3 A peak and 1 A during 

continuous loading conditions. The DC motor is coupled to a 

Faulhaber Planetary Gearhead Series 23/1 with a gear 

reduction ratio of 3.71:1. The efficiency of the Gearhead is 

88%. To measure cart position and pendulum angle, the 

workstation has two US Digital S1 single-ended optical shaft 

encoders with a resolution of 4096 counts per revolution. The 

cart encoder resolution is 2.275E-005 m/count and the 

pendulum encoder resolution is 0.0015 rad/count. The number 

of teeth in the motor pinion is 24 whereas the number of teeth 

in the position pinion is 56. The power amplifier VoltPAQ-X1 

capable of providing ± 10 𝑉 at 4 A maximum drives the DC 

motor of the cart in the workstation. 

 

Fig. 9. Hardware Wiring Connection. 

The hardware wiring connections are made as shown in Figure 

9. The workstation consists of the Quanser’s Q2-USB Data 

acquisition (DAQ) board connected to a PC with MATLAB 

via the USB port. The Q2-USB DAQ board has provisions for 

two channels each of Encoder input with quadrature decoding, 

12-bit Analog input, and 12-bit Analog output. The Analog 

Output #0 in the DAQ board is connected to the “Amplifier 

command” terminal in the power amplifier, to pass the control 

signal from MATLAB Simulink, using the 2xRCA to 2xRCA 

connector. The power amplifier supplies the required control 

voltage to the DC motor from the “To Load” terminal to the 

“motor connector” terminal in the IP02 cart using the 4-pin-

DIN to the 6-pin-DIN connector. The IP02 cart and pendulum 

shaft angle encoders are connected to Encoder Input #0 and 

Encoder Input #1 respectively in the DAQ board to pass the 

cart position and pendulum angle measurements to the SFC in 

MATLAB using the 5-pin-stereo-DIN to the 5-pin-stereo-DIN 

connector. During real-time testing, the control scheme 

implemented in Simulink’s external mode with a sampling 

time of 0.002 s interacts with the workstation through a real-

time software called QUARC. The QUARC’s Read Encoder 

Input and Write Analog Output blocks in Simulink 

communicate with the hardware through QUARC 

communications protocols. Based on the error between the 

desired cart position and the actual cart position, the control 

signal is passed on to the workstation. This process repeats 

until the execution is stopped in the Simulink. 

The experimental results, for the same operating conditions 

obtained from the different SFCs in tracking the desired 



84                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

trajectory while maintaining the pendulum in the upright 

position, are recorded and are shown in Figures 10-12. 

 

Fig. 10. Real-time Cart Position Response. 

From Figure 10, it is observed that the rise time for trajectory 

tracking by the ALO tuned LMI based controller is less similar 

to that of the simulation results compared to that of the APSO 

tuned LMI based SFC and the direct LMI based SFC. The 

settling time is also slightly less in the case of an ALO-based 

controller. The cart position oscillates around the desired 

trajectory for the ALO controller, which shows a faster 

response to minimize the error and this conforms to the low-

performance index (ISE) for the controller as shown in Table 

7.  

Table 7. Real-time Evaluation Results. 

Method ISE 

Maximum 

Pendulum Angle 

Oscillations (deg) 

Maximum 

Control Input 

Oscillations 

(Volts) 

ALO 0.5235 1.1198 1.3870 

APSO 0.9022 0.9610 1.4243 

LMI 1.9476 1.1281 1.8423 

 

Fig. 11. Real-time Pendulum Angle Variations. 

From Figure 11, it is observed that there is not much difference 

in the pendulum angle oscillations. 

 

Fig. 12. Real-time Control Input Variations. 

The variations of the pendulum angle lie within ±1.25° for 

ALO tuned LMI based controller. The control input remains 

within the safe operating range and the actual value ranges 

within ±2 𝑉 for all the SFCs. Thus, with minimal control 

effort for one-time offline tuning, ISE of cart position 

trajectory tracking, and the variation of the pendulum angle is 

kept within the minimum value by ALO tuned controller 

compared to that of the APSO tuned controller and LMI based 

SFC. 

6. CONCLUSION 

This paper puts forward the Ant Lion Optimizer tuned Linear 

Matrix Inequality based State Feedback Controller for the 

improved trajectory tracking of the cart while stabilizing the 

pendulum in the unstable position. Proper selection of the LMI 

region is needed to get the optimal performance from the LMI 

based SFC. The ALO tuned controller is proposed to overcome 

the cumbersome trial and error method in selecting the LMI 

region for the Linear Matrix Inequality based State Feedback 

Controller. Statistical analysis establishes that the precision 

and search results of the ALO tuned controller is better than 

the APSO tuned controller and the LMI based SFC without 

optimization. The Ant Lion Optimizer is preferred over other 

metaheuristic algorithms because ALO algorithm does not 

require any parameter initializations like PSO’s inertial weight 

and velocity factor. The proposed controllers' performance is 

experimentally validated, and the results show that the ALO 

tuned LMI based SFC has a better transient response while 

reducing the desired trajectory tracking error by 41.97%, in 

addition to the stabilization of the inverted pendulum than the 

APSO tuned controller, which requires proper parameter 

initialization, and the LMI based SFC without optimisation. 

Thus, the addition of proposed optimization algorithms in 

tuning the LMI region improves the performance of the LMI 

based State Feedback Controller. Further, the suggested ALO 

tuned controller can be extended to higher-order systems, 

MIMO systems and for systems with uncertainties as well. 
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