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Abstract: This paper investigates a robust optimal control algorithm for a renewable energy management 

system. The algorithm is obtained by developing a novel method based on the zero-sum games (ZSG) 

theory for H control and the well-known Q-learning algorithm. Firstly, the H  performance index 

function is formed via real-time parameters including electricity price, load demand, solar energy, and 

battery lifetime. Secondly, a self-learning and control algorithm is established, and the value function 

solution is approximated by the cerebellar model articulation controller (CMAC). Finally, the algorithm 

guarantees that the disturbance compensation policy, optimal value function, and the optimal control 

strategy converge to the near-optimal values. Comparison with other methods in a numerical experiment 

using practically measured data is implemented to evaluate the effectiveness of the designed algorithm. 
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1. INTRODUCTION 

The human brain (Frackowiak & SJ, 2004) is able to deal with 

a huge set of problems with known patterns in a given context 

through the process of perception, memory, learning, and 

behavior generation. Artificial neural networks are rapidly 

being used to obtain a competitive advantage through data and 

automation in production, based on what is achievable with the 

human brain (Bannat, et al., 2010; Carvalho, et al., 2020; 

Dumitrache, et al., 2019). In recent times, the design controller 

for renewable energy storage systems has drawn the attention 

of the control community. One of the challenges of the 

problem that needs to be solved is that the feedback state from 

renewable energy is intermittent, random, and unpredictable. 

The controller does not merely charge/discharge to add more 

power to the grid system, increasing economic efficiency in 

the conventional sense, but also ensures the optimal economy 

over time, extends the maximum battery’s lifetime, and avoids 

overcharging and over-discharging (Guerrero, et al., 2013; 

Angelis, et al., 2013; Lai & McCulloch, 2017; Liu, et al., 

2016). In (Appen, et al., 2014; Shafiee, et al., 2014), an 

intelligent control scheme is designed, which allows the main 

components in the grid system to connect, and all operations 

of the system are fully coordinated with the goal of utilizing 

optimally the available energy, including renewable energy. In 

particular, in any smart grid, the energy storage system is an 

indispensable component. It is used to charge energy taken 

from the grid and discharge energy to the load, with the aim of 

reducing the electricity cost for the grid power supplier. 

Adaptive dynamic programming (ADP) theory has been 

continuously developed and applied to the optimal control 

problem over the past several years  (Lewis, et al., 2012; Yang, 

et al., 2015; Jiang & Jiang, 2014). ADP techniques showed the 

potential control capabilities and were quite widely used in 

many real applications, such as in communication (Liu, et al., 
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2018; Jiang, et al., 2019; Zhang & Xin, 2021), in medical 

diagnosis (Petousis, et al., 2019; Yu, et al., 2020; Mukherjee 

& Bohra, 2020), and particularly, in energy storage system 

(ESS) (Perera, et al., 2021; Ojand & Dagdougui, 2022). ESS 

has been considered as a solution to reduce power losses or as 

a backup, additional power supply in times of power shortage. 

ESS is often embedded in the distributed network, which is 

able to integrate renewable energy sources or not (Zhao & 

Ding, 2018; Duan, et al., 2019; Shuai, et al., 2019). In 

(Venayagamoorthy, et al., 2016; Lu & Wang, 2020; Berrueta, 

et al., 2020; Khan, et al., 2021), the battery structures in ESS 

were focused on being analyzed by the self-learning 

algorithms to improve the battery capacity and the 

management of various types of batteries’ characteristics. In 

this paper, ESS is considered as a part of the electric grid in a 

household area.  

The basic ADP algorithm  (Werbos, 1977) is applied to control 

the energy management systems with optimal performances 

(Wei, et al., 2015; Wei, et al., 2017; Song, et al., 2014; 

Venayagamoorthy, et al., 2016). There exist several basic ADP 

algorithms, but the Q-learning algorithm is a typical ADP 

method having the capability of learning and controlling 

online without completely unknown system dynamics. In 

(Huang & Liu, 2011; Si & Wang, 2001), the basic Q-learning 

algorithm is combined with a neural network (NN) to design 

an optimal controller for a renewable energy management 

system connecting to the grid power, the storage system, and 

the load. In (M. Boaro et al., 2013), the Q-Learning algorithm 

can minimize the value function of a smart energy system, 

including wind and solar energy. To increase the training 

speed of NN, Q-learning, combined with the particle swarm 

optimization (PSO) technique, was proposed in (Fuselli, 

2013). Wei et al. in (Q. Wei et al., 2015) introduced the Q-

learning algorithm with two iterations to obtain optimal power 

control in a residential grid environment. However, the 
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algorithm does not consider solar energy in the optimal 

control. In (Wei, et al., 2017), solar energy was considered 

sequentially, and the value iteration (VI) control method was 

designed for a battery in an energy storage system instead of 

the Q-learning algorithm. Although algorithms ensure that the 

value function converges to a near-optimum, two iterative 

loops are required, increasing the computing complexity. 

There are various approaches to solving the optimization 

problem that can be applied to finding the optimal control 

policy in an energy management system (Zamfirache, et al., 

2022). However, the Q-learning and VI algorithms listed 

above have not been considered as part of the energy 

management system with external disturbance yet. In practice, 

the power disturbance from renewable energy can cause the 

instability of controlled systems. Therefore, the robust control 

problem needs to be given attention. H techniques have 

played an important role in analyzing and designing robust 

control algorithms that can be applied to linear systems by 

solving the Riccati equation (Li, et al., 2014) or to nonlinear 

systems by solving the equation of Hamilton-Jacobi-Isaacs 

(HJI) (Van der Schaft, 1992). In (Rigatos, et al., 2017), H  is 

used to compensate for the disturbances that are created due to 

the linearizing of the oxygenator’s dynamic model and to 

improve robustness of the system against modelling 

uncertainty and external disturbances. Although modern 

control theory has been developed strongly to solve H

solutions for nonlinear systems (Basar & Bernhard, 2008), 

finding a saddle point by analytical solution, which includes 

the optimal control policy and disturbance compensation 

policy, has proven to be impossible (Van der Schaft, 1992; 

Basar & Bernhard, 2008; Wu & Biao, 2012). The ADP method 

is a strong and effective technique to approximate the saddle 

point. In (Abu-Khalaf & Lewis, 2008; Abu-Khalaf, et al., 

2007), based on the ZSG theory, the Nash equilibrium is 

approximated online by three NN structure; one for 

approximating the value function, and the other two for 

approximating the optimal control strategy and disturbance 

compensation policy, respectively. 

In the Q-learning method, at every iteration step, ( , )k kQ x u is 

updated and memorized with all 𝑥𝑘 and 𝑢𝑘 (𝑥𝑘: system state, 

𝑢𝑘: control signal). Therefore, applying this method to control 

renewable energy management systems has some 

disadvantages as follows: 1) Can only be applied to a system 

with finite points in a state space and a finitely quantized 

control signal set. Because there are an infinite number of 

points that need to be discretized in a continuous system, the 

computational cost does not allow one to go through all of 

these points to explicitly update and store the evaluation 

function. 2) The cost of storage and computation grows 

exponentially xU
x  as the number of points and quantized 

signals in the state space and control space increases. This 

leads to a combinatorial explosion. The cost of computation 

and storage is reduced if the function values of the un-updated 

points in the state space can be interpolated from the function 

values of their updated neighbors. The approximator is one of 

the effective tools that can solve this problem (Xu, et al., 

2014). Up to now, there have been many studies and 

applications of approximation applied to ADP, such as radial 

basis function (RBF) with versions of normalized RBF 

(NRBF), resource allocating RBF (RARBF), adaptive 

normalized RBF (ANRBF), multi-layer perceptron (MLP), 

and cerebellar model articulation controller (CMAC). In these 

approximation methods, CMAC has outstanding advantages in 

terms of computational efficiency and convergence speed 

(Tham, 1994). 

In this paper, starting from the above analysis, we first design 

a Q-learning based robust optimal control (Q-ROC) algorithm 

for the full energy management system, including grid, 

renewable power, storage, and load. This is also the first time 

external disturbances are taken into consideration to resolve 

the robust optimal control problem for renewable energy 

storage systems. The following is a list of the paper's main 

contributions: 1) Unlike the methods in (Q. Wei et al., 2015; 

Wei, et al., 2017), Q-ROC can compensate for external 

disturbances optimally. 2) Instead of approximating 𝑄(𝑥𝑘 , 𝑢𝑘) 
by MLP as in (Q. Wei et al., 2015), Q-ROC uses the 

approximator CMAC to increase computational efficiency and 

speed up convergence. 3) The Q-ROC algorithm, which is 

executed on real-time data, including solar power, load, and 

price, is compared its effectiveness to that of the existing 

algorithms. The advantage of the proposed algorithm in the 

paper compared to those in our previous works (Luy, 2017; 

Luy, 2018) or the existing works (Wei, et al., 2017; Wei, et al., 

2018) is that Q-Learning is a model-free control method versus 

the actor-critic algorithm. Therefore, identification of the 

structure and the parameters for the renewable energy 

management system is not needed. It is worth noting that the 

nonlinear model in the paper is just used in simulation; it is not 

used in control design. 

The rest content is divided into following sub-parts. Section 2 

formulates the problem, Section 3 designs Q-ROC algorithm, 

Section 4 gives a numerical experiment, and Section 5 draws 

a brief conclusion.  

2. PROBLEM FORMULATION 

This section describes the system model, assumptions, and 

control objective and establishes the performance index 

function with external disturbance.  

2.1 Smart grid system 

A smart grid system, which is described in Fig. 1, consists of 

grid power, solar energy, battery power, load and a controller.  

In this system, the power flows between components are 

defined as follows: (i) Solar energy  can be used to meet 

demand , ,RL kT  while also charging the storage system , .RB kT  

Solar energy, on the other hand, is free and is connected 

directly to load and storage system; (ii) Grid power is a one-

way power flow that is used to meet load demand and charge 

storage system , .GB kT  Power flow from solar to grid or energy 

storage to grid is not allowed; (iii)  Storage system can exist in 

three states: charged by solar energy or grid, discharged to 

meet load demand, and idle; (iv) Load can receive power from 

one or more resources simultaneously, including solar to load 

, ,RL kT grid to load , ,GL kT and storage system to load , .BL kT    
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Fig. 1. Smart grid system.  

The inputs of the controller include grid power, load demand, 

and storage power, which change continuously with solar 

energy and control law. Based on the parameters, including 

price ,kC  load demand , ,L kT  grid power , ,G kT  solar power to 

storage system , ,RB kT  storage power , ,b kF  and storage 

demand 
0 ,bF performance index function is established and 

minimized to get control law. As a result, the control law 

charges/discharges the storage system to ensures the load 

balance. Note that due to the instability of load, disturbance 

from grid, and solar power, which is dependent on weather, 

season, and time a day, there always exists disturbance kd  

affecting  the system. 
1, ,kx 2, ,kx  which are variables of 

system state, are expressed in subsection 2.2, and equation (8) 

Accordingly, the balance of the load and the grid power is 

described as: 

, , , ,L k RL k GL k BL kT T T T= + +   (1) 

, , ,G k GL k GB kT T T= +   (2) 

The balance of the solar energy is defined as: 

, , ,R k RL k RB kT T T= +   (3) 

In this system, the battery, which is utilized as a storage 

system, is designed not to charge or discharge simultaneously, 

and its battery model is expressed as (Huang & Liu, 2011):  

, 1 , , ,

, , , ,

(0.898 0.173 )

( )0.898 0.173( )

b k b k BL k BL k rate

BL k GB k RB k GB k rate

F F T T T

T T T T T

+ = − −

+ + − +
 (4) 

where the battery power ,b kF  has storage limit in range: 

min max
, ,b b k bF F F  min

bF is the battery's minimum storage 

energy,
max

bF  is the battery's maximum storage energy, 

0rateT  is the battery's nominated power output. Note that 

self-discharge is prohibited. As a result, we define the battery 

discharge by , 0,b kF   charge by , 0,b kF   and  idle by 

, 0.b kF =  

 

2.2 Nonlinear model and control objectives 

Due to the costlessness of solar energy, it is prioritized to 

satisfy load demand first, and the rest is stored by charging the 

battery. Hence, the solar energy to load and to battery are 

described as follows: 

, , ,

,
, , ,

,

,

R k L k R k

RL k
L k L k R k

T T T
T

T T T

  
=  
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  (5) 
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0,

,

L k R k

RB k
R k L k L k R k

T T
T

T T T T


= 

− 

 (6) 

Accordingly, the load balance (1) is rewritten using (2) and (6) 

as: 

, , , ,( )L k G k BL k GB kP T T T= + −   (7) 

Let system state vector be 1, 2,, ,
T

k k kx x x =   1, , ,k G kx T=

0
2, , .k b k bx F F= −  Let the control policy be 

, , , .k RB k BL k GB ku T T T= + −  The equation of the nonlinear 

discrete dynamic with disturbance 𝑑𝑘, which is derived from 

the storage model and the equations (1)-(7), are expressed as: 

1

,

2, , ,

( , , , )

( ) ( )

k k k k

L k k k

k k R k k R k

x F x u d k

P u d

x u P u P

+ =

− + 
=  
 − − − 

 (8) 

where  

, ,( ) 0.898 0.173 /k R k k R k rateu P u P T − = − −  

For convenience of analysis, assumptions are described as 

follows: 

Assumption 1 (Wei, et al., 2017): Given the period of λ = 24 

hours and time step of 1 hour, the price, load energy, and 

renewable energy are discrete-time as: 

, , , ,; ;k k L k L k R k R kC C T T T T  + + += = =  (9) 

Assumption 2 (Wei, et al., 2017): The power transfer from 

renewable solar or battery to grid is not taken into account, 

thus we specify , 0.G tT   

Assumption 3: The battery is only in one of three states: 

charge, discharge, or idle. That is, it can’t charge and discharge 

at the same time. Then, , 0BL kT   and , 0GB kT   imply 

, 0,GB kT =  and , 0,BL kT =  respectively. 

Based on the H  control theory and the required performance 

of renewable energy management systems in optimal control 

(Wei, et al., 2017), the cost function in the paper is presented 

as follows: 
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where 0 1  is discount factor, , , 0    is performance 

index factors, kd  is disturbance compensation factor. The 

performance index function (10) describes the total cost that 

must be paid for the electricity supplier in the first term. The 

second term ensures that the battery’s stored power is 

maintained not far away from the average level of the battery 

storage 
0 min max( ) / 2.b b bF F F= +  The third term prohibits the 

battery from being fully charged or fully discharged. The 

second term and the third one are both designed to increase the 

battery's life. The last term relates to the disturbance 

compensation in 𝐻∞ control problem with 
*.   

*  is 

defined as the minimum compensation factor so that the closed 

system remains stable (Van der Schaft, 1992). 

Optimization objective: Under the influence of the unstable 

components, including solar energy, disturbance from grid, 

load, a robust optimal method is developed to minimize the 

cost function so that the economic efficiency is increased, the 

battery lifetime is extended, and the load balancing is 

maintained. 

3. Q-ROC ALGORITHM 

3.1 Q-learning in the energy management system 

The cost function (10) is written as: 

0 0 0

0

( , , ) ( , , )k
k k k

k

Q x u w S x u w


=

=  (11) 

where 
2 2( , , ) ,T

k k k k k k k kS x u w x M x u d = + − 0x  is the initial 

state,  and 2 , 0;0 .k kM C  =
 

 

According to Watkins (Watkins, 1989) and  ZSG theory in 𝐻∞ 

control (Basar & Bernhard, 2008; Wu & Biao, 2012; Wei, et 

al., 2018), the optimal value function is expressed by: 

1 1

*
0 0 0

*
1 1 1

( , , ) ( , , )

min max ( , , )
k k

k k k

k k k
u w

Q x u w S x u w

Q x u w
+ +

+ + +

=

+
 (12) 

The optimal cost function (10) fulfills the Bellman’s principle 

as: 

( )* *
1( ) min max , , ( )

k k

k k k k k
u w

J x S x u w J x +
= +   (13) 

The disturbance compensation law kw  (first player) is utilized 

to maximize the cost function (13), meanwhile the control 

strategy ku  (second player) is utilized to minimize its value. 

If there is a saddle point in the control method, the control law 

and disturbance compensation law are defined as follows: 

* *arg min ( , , )
k

k k k k
U

u Q x U w=   (14) 

* *arg max ( , , )
k

k k k k
W

w Q x u W=   (15) 

From (12) and (13), we get the optimal value function: 

* * * *( ) ( , , )k k k kJ x Q x u w=   (16) 

However, the result of 
*( , , )k k kQ x u w  equation can’t be 

obtained explicitly by the mathematical expressions. An 

iterative algorithm is developed to approximate this result. The 

value of Q-function is updated at the iterative step l  by  

(Watkins, 1989): 

(

)

1

1
1

1

( , , ) ( , , ) ( , , )

min max ( , , )

( , , )

k k

l l
k k k k k k k k k

l
k k k

U W

l
k k k

Q x u w Q x u w S x u w

Q x U W

Q x u w





−

−
+

−

= +

+

−

 (17) 

where 0 1   is the updating speed. Accordingly, the 

control law and disturbance compensation law are at the 

iterative step l: 

arg min ( , , )
k

l
k k k k

U
u Q x U w=   (18) 

arg max ( , , )
k

l
k k k k

W
w Q x u W=   (19) 

Equations (17) – (19) proceed iteratively until obtaining the 

convergence condition 1( , , ) ( , , ) ,l l
k k k k k kQ x u w Q x u w −−   

where   is a small positive constant. 

3.2 Q-ROC with CMAC approximator 

From the equation (17), at the iterative step l, the storage and 

computation costs increase exponentially (𝛺𝑥𝑘
‖𝑈𝑘‖×‖𝑊𝑘‖, 𝑥𝑘 ∈

𝛺𝑥𝑘) between the number of explicit points in state space and 

the number of control signals and disturbance signals of each 

state. It leads to a combinatorial explosion. To overcome this 

disadvantage, function approximation is employed. 

The Q-ROC learning structure is proposed in Fig.2. The 

CMAC approximator is to find ( , , )l
k k kQ x u w . The control 

strategy ,ku  and the disturbance compensation policy kw  are 

approximated by two two-layer perceptron (2-LP) 

approximators. 

Remark: Although the 2-LP method is utilized, the 

( , , w )k k kQ x u  function is approximated by CMAC to speed up 

the convergence and decrease the computational complexity.  

The CMAC network simulates the information processing 

model in the human cerebellum, consisting of many cells 

stacked on top of each other (Si & Wang, 2001). When 

receiving external information, only certain cells in the 

cerebellum are stimulated to interpolate the output using 

information stored in memory. The value range of input 𝑖 is  
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quantized by the CMAC into iB elements that have an equal 

resolution width. 

  

Fig. 2. Q-ROC learning structure. 

Next, they are replicated onto K layers, stacked, and then 

slided over each other by a distance. Every input is 

successively mapped into quantized values at all layers, and 

this mapping occurs at each dimension of the input vector.  

Figure 3 details an architecture and operation of the CMAC for 

Q-Learning algorithm. The CMAC is used to approximate a 

function ( , , ) :k k kQ x u w Q → , 
4[ , , ]T

k k kx u w = 

and Q . The CMAC algorithm consists of two mapping 

steps for determining the value of the output, i.e., 

: ,P A Q→  where A  is dimensional association space. 

With  1 2 3 4, , , ,
T

    =  define 

 min max, ,1 4,i i i      select the number of 

resolution elements , 1,..., 4,iN i =  which is strictly 

increasing integer numbers.  

In the paper, to reduce the computational complexity, CMAC 

uses receptive field functions as unit impulse functions, then 

multi-dimensional receptive-field functions, which was used 

in (Kim & Lewis, 2000), is omitted. When the input  receives 

the values, the CMAC performs a mapping to calculate the 

output value of the approximation function: 

ˆ ˆ( , , )l T
k k k cQ x u w W =   (20) 

where ˆ T
cW is the set of the active resolution elements of input 

vector for layers. It is worth noting that the operating range of 

the inputs is quantized into values with equal intervals in this 

paper. 

 

Fig. 3. Architecture of a CMAC for Q-Learning. 

Figure 4 describes how to divide the input space into the hyper 

rectangles, and map the input values into the memory cells in 

the specific CMAC network with two dimensions and four 

layers. The weights are stored in the memory cells, and are 

optimized throughout training. The algebraic total of the 

weights in all the memory cells activated by the input point is 

the output of a CMAC. When the value of the input point 

changes, the number of activated hyper-rectangles changes, 

and the number of memory cells participating in the CMAC 

output changes as well. 

 
Fig. 4. Two-input CMAC with four layers. 

The control law and disturbance compensation law are 

expressed by: 

1 1
ˆˆ ( )T T

k ku W V x=   (21) 

2 2
ˆˆ ( )T T

k kw W V x=   (22) 

where  iV ,  ˆ
iW , 1,2i =   are the weight vectors of the 2-LP 

network.  

The activate function (.)  is chosen as the sigmoid function. 

The NN weights of the input layer  ,iV  𝑖 = 1,2, are not required 

to update while the weights of the output layer at the iterative 

step , 1,2...l l =  are updated as follows (Si & Wang, 2001):  

( )ˆ ˆ( 1) ( ) , 1, 2
ˆ ( )

j
j j i

i i i j
i

E l
W l W l i

W l



+ = − =


 (23)  

where 2
1

ˆ( ) 1 2( arg min ( , , )) ,
k

j j
k k k k

U
E l u Q x U w= −

2
2

ˆ( ) 1 2( arg max ( , , ))
k

j j
k k k k

W
E l w Q x u W= −   and  i , 𝑖 = 1,2, 

be learning rate.   

The update law the CMAC weights is designed by: 
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,

,

ˆ( ) ( )ˆ ˆ( 1) ( )
ˆ ˆ ( )( )

j j l
j j c c

c c jj l
c

E l Q
W l W l

K W lQ

 



 
+ = −


 (24) 

where c  is the learning rate, and 

(

)
2

1, 1,
1

1
( ) ( , , )

2

min max ( , , ) ( , , )
k k

j l
c k k k

j l j l
k k k k k k

U W

E l S x u w

Q x U W Q x u w − −
+

=

+ −

 (25) 

3.3 Algorithm 

Based on the preceding preparations, the Q-ROC algorithm, 

which comes with the structure in Fig. 2, as well as the laws 

for updating weights in (23), (24), is explained in detail and 

shown in Algorithm 1.The algorithm's objective is to keep the 

energy storage system running at its best under solar energy 

conditions. 

Algorithm 1: Q-ROC  

Step 1: Initiate ˆ ˆW (0), W (0), , 1,2,0 1c i iV i =   , learning 

rate 
0

1 2 0 0
ˆ0 , , , 1, T

c Q x Px     =  where P  is a 

nonnegative matrix. 

Step 2: Let 0l = . Put kx into 2-LP network. The signal 

from input nodes goes through the hidden nodes forward to 

the output nodes to obtain results ˆ ˆ, wk ku  for all 𝑖 = 1,2, the 

input of the hidden unit 𝑘, 𝑘 = 1,… , 𝑛ℎ at hidden layer: 

, , , ,

1

( ) ( )
in

k j k j i k j

j

net l V l x

=

=                                               (26) 

Output of the hidden unit: 

,
, , ( )

1
( ) ( ( ))

1 k i
k i k i net l

l a net l
e
−

 = =
+

 (27) 

Input of the unit 0, 1,...,h h n= at the output layer:  

,

, , , ,

1

ˆ( ) W ( )
hn i

h i h k i k i

k

net l l

=

=                                             (28) 

Input of the unit ℎ, ℎ = 1,… , 𝑛𝑜 (control law and 

disturbance compensation law) at the output layer:  
 

,1 ,2
ˆ ˆ( ), w ( )k k kk ku net l net l= =                                          (29) 

Exploration procedure: [0,1]rand  . If 0.1  , excite 

the systems using: 

ˆ ˆ
k ku u = +                                                                     (30) 

ˆ ˆ
k kw w = +                                                                   (31) 

where  0.1 1,1rand = − . 

Step 3: Update the CMAC weights: 

1

1 1 1

ˆ ˆˆ ˆ ˆ ˆ( , , w ) ( , , w )

ˆ ˆ( ( , , w )

ˆ ˆ ˆ( , , w )

ˆ ˆ ˆ( , , w )

l l
k k k k k k

k k k

l
k k k

l
k k k

Q x u Q x u

S x u

Q x u

Q x u





+

+ + +

=

+

+

−
 (32) 

Step 4: Compute: 
1

min

1
max

ˆarg min

ˆarg max

k

k

l

u

l

w

u Q

w Q

+



+



=

=
                                                      (33) 

Step 5: Update the weights of 2-LP network: 

1 1 1 min

2 2 2 max

ˆ ˆ ˆ( 1) ( ) ( ) ( )

ˆ ˆ ˆ( 1) ( ) ( ) ( )

T
k k

T
k k

W l W l u u x

W l W l w w x





+ = + − 

+ = + − 
 (34) 

Step 6: If 1ˆ ˆ(.) (.)l lQ Q + −   ( : a small positive 

constant as the condition to stop), stop. Otherwise, 1l l= +  

go to step 2. 

Remark 2: In Q-Learning, the system explore procedure is 

required to make the parameters converge to global optimal 

values. This procedure is called the  -greedy policy (Sutton 

& Barto, 1998). To this end, the probe noise is used to 

persistently excite the control and disturbance policies in (30) 

and (31). By applying the  -greedy action selection for the 

online data-driven approach, the overfitting is avoided. 

4. SIMULATION RESULTS 

In this section, the practical data is collected, the parameters 

are set up for the simulations, and the results are analyzed. The 

Q-ROC algorithm is executed by simulating on the smart grid 

system, including solar, grid, battery and load. The disturbance 

compensation policy and optimal control strategy are gained 

by applying the Q-ROC algorithm. The results are evaluated 

and compared with another algorithm. 

4.1 Data and parameters for simulation 

The simulation data, which includes the electricity price, load 

demand, and solar power, is gathered from statistical sources 

as real-time data. Following assumption 1, the electricity price, 

load demand, and solar power are discrete-time periodic 

functions with a period of 24 hours, so the data utilized for 

simulation needs to be standardized every 24 hours from the 

real-time data every 168 hours by taking an average. The sets 

of the electricity price and load power in 168 hours, which are 

from ComEd Company (ComEd, 2019) and National 

Renewable Energy Laboratory (NREL, 2019), respectively, 

are depicted in Fig. 5a and Fig. 6a. The average sets of 

electricity price and load power in 24 hours are extracted from 

these in 168 hours and depicted in Fig. 5b and Fig. 6b. The 

solar energy depicted in Fig.6a was recorded at the first week 

of July 2019 in San Francisco (NREL, 2019). The average 

solar energy is depicted in Fig. 7b (the power generated by a 

photovoltaic (PV) panel detailed in (Q. Wei et al., 2015). 

To compare with the method without considering external 

disturbance, the battery parameters are chosen as those in 

(Wei, et al., 2015). Thus, the battery is chosen with the 

capacity be 14KWh, the rated power 3rateC = KWh, the initial 

level be 9KWh, the storage limitations (upper and lower) 
max 10bF = KWh, min 2bF = KWh, respectively. Let 0.95, =

1, = 0.3, = 0.2, = 5. =  Choosing the initial state as 



21                                                                                                                  CONTROL ENGINEERING AND APPLIED INFORMATICS  

 0 1,4
T

x = and the positive definite matrix 

 2.05, 0.11;0.11, 8.07 ,P =  then the initial Q-function is 

0
0 0

ˆ .TQ x Px=  Note that without loss of generality, P can be 

chosen equal to zero. The external disturbance from grid and 

solar is , ,0.1sin( )cos( ),k G k R kd T T=  of which the amplitude is 

suitable with  the observed data from (NREL, 2019).  

From the system (8), the structures of 2-LP networks are 

chosen with three inputs and one output. One can choose a 

hidden layer with ten neuron units. It is emphasized that the 

more number of hidden units we choose the more accuracy is 

achieved. However, we need balance between accuracy and 

computational complexity as well as the convergence rate. As 

usual the weights the networks are initialized in range (0,1), 
the learning rate is chosen 0.001.i =  Note that for the larger 

learning rate, the weights quickly converge to their near-

optimal values, but the control performance is reduced.  

According to (C.S & H., 1995), there is no perfect method for 

determining the optimal parameters for the CMAC network, 

such as the number of layers and solution elements. To 

guarantee a trade-off between the accuracy of the output and 

the required memory size, we choose the CMAC network with 

4 layers, 4,K =  and 10 resolution elements on each layer, 

10, 1,2.iB i= =  Therefore, the number of required storage 

locations is 
2

1

4 100 400.w i

i

N K B

=

= =  =  It can be seen that 

although the number wN  for CMAC is large, it requires 

significantly less storage than a lookup table. On the other 

hand, despite of larger ,wN  the CMAC’s converge rate is 

much faster than the networks of MLP and RBF families.  

To guarantee the parameters to converge to the global optimal 

values, the exploration procedure is required. To this end, the 

probe noise is chosen by the trial and error method. The 

suitable probe noise for the exploration in this case is chosen 

as  0.1 1,1rand = −  with the probability 0.1. =  Note that 

according to the actual system, we can choose the larger 

exploration probability and gradually reduce it in time. 

However, if   is near to 1, the system may be unstable and 

control performance may be poor in the early stages. 

Conversely, if   is too small, the control performance will be 

trapped at local optimal values. In other words, the choice of 

exploration-exploitation trade-off is difficult and depends on 

the experience of the designer regarding a particular system. 

4.2 Simulation Results 

The simulation results of the Q-ROC algorithm with the data 

and parameters described above are compared with those of 

the Q-Learning optimal control (Q-OC) algorithm, which does 

not consider the external disturbance (Q. Wei et al., 2015). The 

simulation data and parameters of Q-OC algorithm are also set 

up the same as the Q-ROC algorithm.  

Figure 8 and Fig. 9 show the optimal control stratery of the Q-

ROC algorithm and the Q-OC algorithm, respectively. The 

battery’s charging/discharging power is accompanied by this 

optimal control law, which is achieved based on the real-time 

load demand, price, and solar power in Fig. 5b - Fig. 7b. The 

battery is in charging state when ˆ
ku  is negative and in 

discharging state when ˆ
ku  is positive. 

Figure 10 and Fig. 11 show the battery’s optimal power of the 

Q-ROC algorithm and the Q-OC algorithm, respectively. With 

the battery’s average power ( )0 1
10 2 6

2
bF = + = KWh and one 

of the optimal objectives in the cost function is to guarantee 

the battery’s charging/discharging around 
0

bF  to prolong the 

battery lifetime, the Q-ROC algorithm gives the result that 

satisfies this objective better than the Q-OC algorithm. The 

battery’s power changes not much higher (charge) or lower 

(discharge) than 
0

bF  in the Q-ROC algorithm, while it changes 

further away from 
0

bF  in the Q-OC algorithm. 

Figure 12 and Fig. 13 show the optimal grid power of the Q-

ROC algorithm and the Q-OC algorithm, respectively. The 

load can receive power simultaneously from the solar, the grid, 

and the battery. Depending on the battery's and load's feedback 

signals, when the solar power is zero at night, the load 

requirement is satisfied by the grid power and battery power, 

or only the grid power satisfies both the load requirement and 

the battery charge sequentially. 

Figure 14 and Fig. 15 show the load demand and total power 

required to meet the load demand from grid power, solar 

power, and battery power in two cases of the Q-ROC algorithm 

and the Q-OC algorithm, respectively. It can be seen that the 

total power is consistent with the charge and discharge of the 

battery. Because the Q-ROC algorithm has ability to 

compensate for external disturbance, total power satisfies the 

load demand and the most optimal value is obtained. 

Otherwise, the Q-OC algorithm without the disturbance 

compensator, total power is higher than the load demand, 

which leads to wasted power.  

5. CONCLUSION 

This paper employs the Q-learning algorithm and CMAC to 

establish a robust optimal control scheme for the renewable 

energy management system. The controller has the ability to 

 

 

Fig. 5. Electricity price. 
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Fig. 6. Load demand. 

 

 

Fig. 7. Solar power. 

 

Fig. 8. Optimal control law in Q-OC algorithm. 

 

Fig. 9. Optimal control law in Q-ROC algorithm. 

 

Fig. 10. Battery power in Q-OC algorithm. 

 

Fig. 11. Battery power in Q-ROC algorithm. 

 

Fig. 12. Optimal grid power in Q-OC algorithm. 

 

Fig. 13. Optimal grid power in Q-ROC algorithm. 

 

Fig. 14. Optimal load balance in Q-OC algorithm. 

 

Fig. 15. Optimal load balance in Q-ROC algorithm.  
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charge and discharge optimally according to the sum of 

squares of electricity price, battery lifetime, control signals, 

and disturbance compensation signals. By utilizing the 

advantages of CMAC, the computational complexity is 

reduced and the convergence is speeded up, which are required 

as the important conditions in online control. The external 

disturbance is compensated for by utilizing ZSG theory in 𝐻∞ 

control. As a result, the saddle point, including the control 

policy and disturbance compensation policy, is approximated. 

According to the practically measured data, the results from 

simulation for the system, including solar energy, grid, and 

battery, compared to another method without disturbance 

rejection, justify the proposed algorithm. Distributed control 

for the multi-renewable energy system or the multi-battery 

system will be concentrated on in future work. 
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