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Abstract-This paper describes a method for stability analysis and design of a fast voltage loop in 
DC-DC converters. The method is based on the Popov criterion, which unifies tools for nonlinear 
system analysis with frequency domain analysis tools used in linear systems. This study establishes 
sufficient conditions for absolute stability of time-varying control systems. The proposed condi-
tions extend in a simple way the classical Popov criterion to time-varying memoryless nonlineari-
ties, using previous results of Kharitonov. They are expressed in terms of Linear Matrix Inequali-
ties (LMIs). The controller design procedure is demonstrated and experimentally verified on a 
DC-DC converter. 
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1. INTRODUCTION 
 
During the last decade, practical considerations 
have motivated the study of control systems 
where the physical parameters are uncertain. 
One way to represent uncertainties is to let each 
physical parameter take value independently in 
an interval. This model, inspired by the paper of 
Kharitonov (see [1], [10]), has motivated a great 
amount of research in recent years (see [18], [3], 
[15]). The so-called interval transfer function 
family has been extensively studied because of 

their utility (they easily model more complex 
uncertainty structure) and because they enjoy 
powerful extremality properties. For example, in 
Bhattacharyya et al. [2] robust absolute stability 
and stabilization criteria for interval transfer 
function family have been established. 
 
The Popov plot of a transfer function is an in-
valuable tool in absolute stability theory and 
adaptive control. Similarly, the collection of 
Popov plots of the interval transfer function 
family plays an important role in robustness 
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analysis and synthesis of control systems under 
nonlinear sector-bounded feedback. In this pa-
per, by exploiting the geometry of Popov plot 
and related strict positive realness properties, it 
is shown that, for the collection of Popov plots 
of interval transfer function family, a large por-
tion of its outer boundary comes from the six-
teen Kharitonov transfer functions.  
 
This result is useful in estimating the maximal 
Popov sector guaranteeing absolute stability of 
the closed-loop systems 
 
. 

2. BUCK CONVERTER 
 
In order to dynamically generate a lower supply 
voltage from a fixed high voltage set by the sys-
tem, a DC-DC step-down converter is used. The 
buck converter, shown in Figure 1, is a switch-
ing regulator that can efficiently deliver power 
to a load. Its operation is straight forward and 
relies on an inductor and capacitor that act as a 
low-pass filter. 
 
Although there have been significant develop-
ments to build inductors and capacitors on-chip 
[14], [6], current CMOS technology still cannot 
provide reactive elements that store sufficient 
energy to efficiently convert power, and there-
fore this design requires off-chip reactive ele-
ments. As long as the switching frequency of the 
input pulse-width modulated (PWM) rectangu-
lar-waves is at least an order of magnitude 
greater than the cut-off frequency of the low-
pass filter, the output voltage of the filter is an 
average value where its magnitude is set by the 
duty-cycle of the incoming rectangular-wave.  
 

 
 

Fig. 1 Buck Converter 
 

Low pass filtering through the inductor and ca-
pacitor therefore reduces the AC component of 
the incoming rectangular wave to an acceptable 
ripple and its magnitude is set by the ratio of the 
switching frequency to the filter cut-off fre-

quency. Since the LC filter is a second-order 
filter, high-frequency AC attenuation is 40 
dB/dec. The pMOS and nMOS transistors are 
large on-chip devices that chop the input high 
voltage Vdd to generate a rectangular-wave at 
node Vx with an average voltage that is equal to 
the desired output voltage with the following 
equation: 
 

ddVDV ×=0  (1) 
 
Therefore, modulating the duty-cycle, D, of the 
input rectangular wave modulates the regulated 
output voltage, Vo. These devices also support 
the average current delivered to the load. 
 
The conversion efficiency of this type of con-
verter approaches 100% as all its components 
becomes ideal. However, due to several loss 
mechanisms, efficiency degrades, but values 
greater than 90 % are still attainable [17], [6]. 
Using off-chip reactive components can provide 
very high quality reactive elements with quality 
factors (Q) greater than 100 and are not the 
dominant source of loss. Instead, loss is domi-
nated by the resistive losses through the on-chip 
switching transistors and the power required 
switching them. The "on" resistance of these 
devices is inversely proportional to the gate 
width (W). 
 
Load current and switching frequency affect the 
optimal gate size. Therefore, a designer must 
consider the power consumption specifications 
of the load to accurately determine the optimum 
gate width, which is set by the maximum power 
requirements. However, for performance driven 
voltage regulation, power consumption dramati-
cally reduces at lower frequencies due to 
power's quadratic dependence on voltage. Under 
lower power conditions, the resistive losses also 
quickly reduce, but gate switching power re-
mains constant for fixed switching transistor 
sizes. Appropriately adjusting the widths to be 
closer to optimal sizing under performance 
driven load conditions therefore reduces the 
losses associated with the converter. The opti-
mum gate width varies with load current to 
achieve higher conversion efficiencies. Switch-
ing frequency also affects optimal sizing, but is 
a nominally fixed parameter constrained by sev-
eral other factors. Higher switching frequency 
allows a higher LC filter cut-off frequency, 
which requires smaller inductor and capacitor 
sizes. This is desirable for portable applications 
where form factor is a primary concern. How-
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ever, magnetic saturation of the magnetic core, 
introduced to increase inductance without affect-
ing the series resistive losses, limits the maxi-
mum frequency [17], [14]. 
 
Given that the switching frequency is at least an 
order of magnitude higher than the LC cut-off 
frequency, a frequency-domain transfer function 
of the buck converter can be approximated by 
the following equation: 
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where the L and C are the inductor and capacitor 
values, RS is the series "on" resistance of the 
switching transistors, and Rld is the resistance of 
the load chip and dielectric loss of the capacitor 
at the output. Given the availability of high-
quality off-chip inductors and capacitors, there 
is a resonance at the cut-off frequency due to the 
complex pole pair of the LC filter. Although 
high Q's are desirable for efficient power con-
version, it can complicate the enclosing control 
loop design. 
 
Given this mechanism for efficiently delivering 
power to the load, this adaptive power supply 
regulation technique needs a way of setting the 
duty-cycle of the input rectangular wave to regu-
late the buck converter's output to the desired 
voltage with respect to some desired frequency 
of operation. 

3. PID CONTROL LOOP 
 
Adaptive setting the duty-cycle of the PWM 
rectangular to regulate the output voltage with 
respect to some desired frequency of operation 
requires a control loop, as shown in Figure 2. It 
consists of a voltage-controlled oscillator (VCO) 
that converts the regulated voltage output of the 
buck converter into a clock signal that oscillates 
at a voltage-dependent frequency, FO. This VCO 
consists of an odd number of inverters in a ring, 
which oscillates due to positive feedback, and 
acts to monitor variations in circuit performance 
relative to process and operating conditions. 
Taking the difference between the input refer-
ence, FSP, and FO generates an error that feeds 
into the loop control block. Through negative 
feedback, the loop locks the output voltage such 
that the two frequencies match. Therefore, the 
output voltage tracks with the input frequency 

reference, where the relationship between the 
two is dictated by the performance monitoring 
VCO. 
 
To achieve good transient response characteris-
tics and stability without sacrificing bandwidth, 
the loop uses proportional, integral, and deriva-
tive (PID) control. A frequency-domain model 
of this PID loop is presented in Figure 2. The 
resulting open-loop transfer function (loop gain) 
is as follows: 
 

( ) ( ) VCOLC
DTs

D
I

Pol KsHesK
s

K
KsG −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=  (3) 

 
KP, KI, and KD set the pole and zero locations of 
the proportional, integral, and derivative control 
block. KVCO represents the oscillator gain (Hz/V). 
Due to the time required to perform the PID 
control calculations, its delay (T) through the 
loop causes additional negative phase shift ac-
counted for by the exponential term in the equa-
tion. 
 
One difficulty associated with designing this 
type of controller arises from the resonant peak 
in the frequency response of the buck converter. 
For simple integral control, which consists of an 
integrator followed by the buck converter, there 
is a potential for instability. An open-loop fre-
quency analysis for this type of loop shows that 
if the magnitude of the resonant peak crosses 
above the unity-gain magnitude, negative phase 
shift due the integrator pole and a pair of poles 
from the LC filter eliminates phase margin.  
 

 
 

Fig. 2 PID control-loop frequency-domain model 
 

Therefore, the integrator's gain must be suffi-
ciently low as to guarantee that the buck con-
verter's resonant peak never crosses unity gain. 
Unfortunately, such a configuration leads to low 
loop bandwidth and slow closed-loop transient 
response characteristics. To combat this effect, 
adding a pair of zeros, utilizing proportional and 
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derivative blocks, can stabilize the loop without 
sacrificing bandwidth. Introducing the zeros at 
frequencies below the cut-off frequency of the 
LC filter pushes unity gain crossing of the open-
loop response beyond the resonant peak and 
roles off at -20 dB/dec. Furthermore, positive 
phase shift from the zeros provides sufficient 
phase margin for a stable loop. The bandwidth 
of the loop extends beyond what was achievable 
with integral control alone and the resonant peak 
of the regulator LC is no longer a limiting factor 
since it occurs below the unity gain frequency. 
In addition, because the bandwidth exceeds the 
LC filter's cut-off frequency, the loop can 
quickly respond to sudden load transients that 
would otherwise perturb the output voltage. This 
fast response also prevents other noise sources, 
such as sudden transients in the supply voltage 
to the buck converter, from propagating to the 
output. 
 
Implementation of the controller in Figure 2 re-
lies on the ability to generate a PWM rectangu-
lar wave, where the duty-cycle (D) is the value 
dictated by the output of a PID control block. 
One possible approach would be to use a fre-
quency detector that compares the incoming ref-
erence clock with the output of the oscillator and 
generate an analog voltage that corresponds to 
the frequency difference (or error). This error 
then drives the PID control implemented with a 
set of amplifiers to generate an analog voltage 
that corresponds to the desired output voltage. 
Translating this voltage to the appropriate duty-
cycle then relies on a comparator that compares 
a linear ramp wave that has a period equal to the 
switching frequency of the buck converter to the 
PID control output. While the PID output is less 
than the ramp input, the output of the compara-
tor is low and goes high once the ramp exceeds 
the PID output. As a result, changing the PID 
output proportionally changes the duty-cycle of 
the rectangular wave. The enclosing feedback 
loop compensates for any offsets and non-
linearities that may exist in the translation. 
 

4. KHARITONOV'S RESULTS 
 
A polynomial α(s) is said to be stable, denoted 
by α(s)∈H, if all its roots lie within the open left 
half of the complex plane ( ). A transfer 

function 
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Consider the n-th order interval polynomial   
family: 
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and denote the four Kharitonov polynomial as: 
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From Kharitonov's Theorem for the Real Inter-
val Polynomials results following double impli-
cation: 
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Now consider the strictly proper interval transfer 
function family: 
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where 

vv nn ΓΓ ,  are -th, -th order 
interval polynomial families respectively. 

n un

 
Denote their Kharitonov polynomials as 

( ) ( ) 4,1, =∀ isun
iKβ , ( ) ( ) 4,1, =∀ isvn

jKα  and de-

note the sixteen Kharitonov transfer functions 
as: 
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The collection of Popov plots for the interval 
transfer function family G is denoted as: 
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and the collection of Popov plots for the sixteen 
Kharitonov transfer functions ( ) ( ) 4,1,, =∀ jisG ji  
is denoted as: 
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Given any convex compact set Π in the complex 
plane, a point G∈Π is said to be an extreme 
point of Π, if it cannot be expressed as a convex 
combination of two distinct points in Π. 
 

The transfer function ( ) ( )
( )s
ssG

α
β

=  is strictly posi-

tive real, if and only if 
 

( )
( )

( )
( ) ( ) ( ) .,

,

,0
0
0Re

ℜ∈∀Η∈+
Η∈

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ηηβα
β

α
β

sjs
s  (15) 

 
For any fixed , 0>k { 1,1−∈ }υ  and ℜ∈η , it fol-
lows that: 
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It is clear that all the extreme points of GΠ  are 
contained in  (the outer boundary of KGΠ GΠ ). 
For the collection of Popov plots of the interval 
transfer function family, a large portion of its 
outer boundary comes from the sixteen Khari-
tonov transfer functions and it is useful in esti-
mating the maximal Popov sector with absolute 
stability. It reduces the verification of Popov 
criterion for infinitely many transfer functions in 
the interval family to the verification of Popov 
criterion for only sixteen critical transfer func-
tions in this family. 
 

5. POPOV STABILITY FOR LTV 
SYSTEMS 

 
Consider the control system given in figure 3, 
where G is a strictly proper rational transfer 
function (matrix) and Φ a time-dependent 
nonlinearity. This system verifies the following 
ordinary differential equation: 
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where L, M are two coprime real polynomial 
matrices such that ( ) ( ) (sMsLsG 1−= ) . Choosing a 
minimal representation (A, B, C) of the transfer 
matrix G, one writes [9]: 
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Fig. 3 A nonlinear feedback system 

 
for a certain nonnegative diagonal matrix K, the 
Popov criterion (see [3], [8], [14]) ensures that 
the system (17) is asymptotically stable in the 
large if the roots of L have negative real part and 
if there exists a constant ℜ∈η  such that 
 

( ) ( )sKGsII η++  is SPR. (19) 
 
Some attempts have been made to generalize the 
Popov criterion to time-varying systems. Ander-
son et al. [1] provide a criterion for systems with 
nonstationnary linear part and time-independent 
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nonlinearities (the results proposed in the case of 
time-varying nonlinearities indeed reduce to 
circle criterion). Narendra et al.[11] are obtained 
conditions for global stability. They involve two 
parts: the Popov condition plus a differential (in 
the case of a separate nonlinearity 

) or integro-differential ine-

quality linking 

( ) ( ) ( )tftkyt ×=Φ ,

t∂
Φ∂  and Φ. 

 
Bliman and Krasnosel'skii [3] have obtained an 
extension of the Popov criterion to nonautono-
mous systems, more precisely, one provides 
conditions ensuring local stability of the origin. 
These conditions are expressed in terms of Lin-
ear Matrix Inequalities (LMIs), as a frequency 
condition, as a graphical condition in the Popov 
plane. A computational advantage of the LMIs 
is the fact that they now constitute a standard 
class of problems, for which recent numerical 
methods have been developed (see [4], [3], [10], 
[15]). 
 
In the case when the nonlinearity Φ is decentral-

ized and ( ) 0,
2
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nonnegative matrix K≜  the sys-
tem (17) is asymptotically stable if and only if 
the following LMIs is feasible: 
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When the zeros of L have negative real part, the 
frequency interpretation of this condition yields 
the Popov criterion. 
 
 
5.1 Graphical Interpretation of Popov Stability 

Criterion 
 
In the SISO case Popov obtained elegant suffi-
cient condition for the global asymptotic stabil-
ity of system from figure 3. If G(s) is a stable 
transfer function, and Φ is a time-invariant 
nonlinearity which belong to the Sector [0, k], 
then a sufficient condition for absolute stability 
is that there exists a real number η such that 
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To illustrate the Popov criterion, it must be gen-
erated the Popov plot 
 
( ) ( ){ } ( ){ }ωωωω jGjjGjG ImRe~

×+= . 
 
As shown in figure 4, the limiting value of the 
Popov gain k is obtained by selecting a straight 
line in the Popov plane such that the Popov plot 
of ( )ωjG~  lies below this line. 
 
 
5.2 The Robust Absolute Stability Problem 
 
Now it is extend the classical absolute stability 
problem by allowing the linear system G(s) to 
lie in a family of systems G(s) containing para-
metric uncertainty. Thus, it is possible to deal 
with a robustness problem where parametric 
uncertainty as well as sector bounded nonlinear 
feedback gains are simultaneously present. For a 
given class of nonlinearities lying in a pre-
scribed sector the closed loop system will be 
said to be robustly absolutely stable for every 
G(s)∈G(s). It is presented a constructive proce-
dure to calculate the size of the stability sector 
using the Popov Criterion when G(s) is an inter-
val system or a linear interval system. There is 
no difficulty to see that an appropriate sector can 
be determined by replacing the family G(s) by 
the extremal set ( )sGE . 
 

 
 

Fig. 4 A graphical interpretation of Popov criterion 
 

It consider the system from figure 3, where the 
forward loop element G(s) lies in an interval 
family G(s) and the feedback loop contains as 
before a time-varying sector bounded nonlinear-
ity Φ lying in the Sector [0, k]. As usual let 

( )sGK  denote the transfer functions of the 
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Kharitonov systems associated with the family 
G(s). 
 
The feedback system in figure 3 is absolutely 
stable for every G(s) in the interval family G(s) 
of stable proper systems, if the time-varying 
nonlinearity Φ belongs to the Sector [0, k] 
where ( ){ } ,0Reinfinf, ≥∞→

ℜ∈
ω

ω
jGk

KG
 otherwise 

( ){ } ,
Reinf

1
ωω jGing

k
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−<  where ( )sGK  is 

the set of sixteen Kharitonov systems corre-
sponding to G(s). 

6. EXPERIMENTAL RESULTS 
 
The open-loop transfer function (3) is as fol-
lows: 
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To obtain the robust Popov gain it must deter-
minate the solution of LMI (20) for the set of 
sixteen Kharitonov systems corresponding to 
(21). The result when the Popov criterion is sat-
isfied (stable close loop) is presented in Figure 
5. 
 
The result when the Popov criterion is not satis-
fied (unstable close loop) is presented in Figure 
6. In this case the PWM rectangular wave gen-
eration is variable. 
 

 
 

Fig. 5 PWM rectangular wave for stable closed loop 
 

 
 

Fig. 6 PWM rectangular wave for unstable closed 
loop 

 
7.CONCLUSIONS 

 
In this paper, it was studied a robust stability 
condition of nonlinear feedback systems and 
derived its LMI representation in the state space 
when the linear part of the nonlinear control sys-
tem is finite-dimension. With this LMI ap-
proach, it is possible to get around the difficulty 
of the convex optimization approach in the fre-
quency domain. 
The method for stability analysis of a fast volt-
age loop controller of buck converter is pre-
sented and a set of guidelines for the design and 
implementation of a fast voltage loop compensa-
tor are given. The method, which follows di-
rectly from the Popov criterion, is simple to use 
and is capable of guaranteeing the system stabil-
ity under all operating conditions. 
The proposed stability analysis and voltage loop 
design guidelines can be used with many differ-
ent techniques for elimination of the influence of 
the output voltage ripple on the voltage loop. 
The experimental results show fast and stable 
operation of the voltage loop and verify validity 
of the proposed method. 
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