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Abstract: The main objective of this paper is the control of the voltage of a DC generator. To
this aim, firstly, we identify the system using PieceWise Auto-Regressive eXogenous (PWARX)
models due to their ability to approximate any nonlinear system with arbitrary precision.
Secondly, we propose to design the one-step-ahead predictive control based on the identified
models. The proposed control strategy exploit the same principle of the multimodel adaptive
control with switching. The major advantage of the proposed control strategy is that the
selection of the best controller is automatically achieved since at any time, the region closest to
the current regression vector is used to assign the corresponding controller. The results of the
proposed identification and control approaches are satisfying.
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1. INTRODUCTION

The representation of nonlinear dynamic systems by hy-
brid models of the class PieceWise AutoRegressive eXoge-
nous (PWARX) has received great attention during the
recent years within the international community of au-
tomation engineers Goudjil et al. (2016), Bako and Yahya
(2019), Paoletti et al. (2019), van den Boom et al. (2016),
Kim (2020). This is justified by two main reasons: fun-
damental and structural. Fundamentally, PWARX models
are characterized by the property of universal approxima-
tion i.e. a PWARX model can be used to approximate
with arbitrary precision the behavior of any nonlinear
dynamic system. Structurally, the operating domain of a
nonlinear system can be decomposed into a finite set of
disjoint regions where a linear or affine sub-model is then
associated to each region. Thus, the considered nonlin-
ear system becomes by modeling like a PWARX system
which switches between the different linear or affine sub-
models. These properties represent important advantages
for the nonlinear systems represented by PWARX models
because several control techniques from the theory of linear
systems can be applied to these systems. Model predic-
tive control has been the most successfully used strategy
since it represent an efficient solution for the synthesis
of controllers in the time domain. It is a technique of
optimal control methodology, since the computed control
sequence is calculated from the minimization of a criterion
in order to maintain the system output close to the desired
reference trajectory. The receding and the anticipatory
action features distinguish it from other optimal control
strategies Camacho et al. (2010). However, the perfor-
mance of this control approach in the case of PWARX
models, namely Hybrid Model predictive control (HMPC),

remains sensitive to the choice of its tuning parameters
due essentially to the switching phenomenon that charac-
terized the PWARX models. Indeed, the switching from
one sub-model to another implies the readjustment of
the tuning parameters in order to maintain the desired
performance. In the literature, some methods have been
proposed for the parameters adjustement of generalized
predictive control such as the parametric identification
algorithms using fuzzy logic Chen and Narendra (2001),
the multi-objective optimization algorithms Bempora and
Penab (2009), the fuzzy supervisor Yahya et al. (2019) .

In this paper, we propose an alternative solution inspired
by the principles of adaptive open loop control or switching
multimodel control. The principle of this approach consists
in synthetizing a controller for each sub-model ensuring
the desired performances and then in developing a super-
visor which allows selecting the best controller at every
instant based on the minimization of a performance index.
The precision of the control depends on the efficiency of
the performance index. However, the synthesis parameters
used by this index, such as the forgetting factor and the
weightings for instantaneous and past errors, are set em-
pirically. Consequently, a bad choice of these parameters
leads to a degradation of the control law even to an
instability of the control system. The use of the PWARX
models allows to overcome this problem because the select
of the best controller is done automatically based on the
actual regressor which determines the well-partition of the
regression space and then generates the active sub-model.

In this paper, we suggest the use of the PWARX models
for the control of nonlinear systems by linear techniques
and more particularly predictive control.
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Predictive control is a control strategy widely used in
research as well as in industry. This control strategy
makes it possible to respond to the problems of regulating
systems that may be subjected to constraints while solving
an optimization problem. The principle of this control
strategy involves knowing a mathematical model of the
system in order to anticipate the future behavior of the
process. The main idea of the predictive control can be
summarized as follows: ” use a model in order to predict
the behavior of the system and to choose the best decision
by minimizing a performance criterion while respecting the
constraints”.

The elements of predictive control are therefore a model
of the system for the prediction, a performance criterion
(cost function), constraints to be imposed on the state,
input or output variables, an optimization algorithm gen-
erating the control law. For each element, several options
can be considered, resulting in a multitude of predictive
control algorithms. We are interested in this work in one-
step ahead predictive control. The choice of a one-step
prediction horizon is justified by the fact that the switch-
ing dynamics of the sub-models is a priori unknown and
therefore switching from the actual sub-model to another
can occur at each sampling instant.

This paper is organized as follows. Section 2 adresses
the clustering technique based on the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algo-
rithm to identify PWARX systems. Section 3 describes the
proposed control strategy. In section 4, the identification
and control approaches are applied on the DC generator.

2. MATHEMATICAL MODELING AND PROBLEM
FORMULATION

2.1 PWARX systems representation

Dynamic hybrid systems are heterogeneous dynamical sys-
tems which exhibit both continuous and event phenomena.
Among these systems, we distinguish the PieceWise Au-
toRegressive eXogenous (PWARX) which are obtained by
decomposing the operating domain into a finite number
of non-overlapping convex polyhedral regions, and then
associating a linear or affine model to each region.

A PWARX system is defined as:

y(k) =


θT1 φ̄(k) + e(k) if φ(k) ∈ H1

...
θTs φ̄(k) + e(k) if φ(k) ∈ Hs

(1)

φ(k) =



y(k − 1)
...

y(k − na)
u(k − 1)

...
u(k − nb)


θi =



ai,1
...

ai,na

bi,1
...

bi,nb

gi


(2)

φ̄ =
[
φT 1

]T
. (3)

where

• y(k) ∈ R, u(k) ∈ R, e(k) ∈ R, s ∈ N are respectively
the output, the input, the additive noise and the
number of sub-models.

• θi ∈ Rna+nb+1 is the parameter vector of the ith sub-
model having na and nb as orders

• ai,j and bi,j represent the coefficients of the ith

sub-model and gi represents the independent affine
coefficient of the ith sub-model.

• φ(k) ∈ Rna+nb is the regressor vector.

• Hi ∈ Rna+nb is the polyhedral partition of the ith

sub-model. The polyhedral partitions Hi, i = 1, .., s
must verify the following assumptions:

s⋃
i=1

Hi = H

Hi

⋂
Hj = ∅ ∀i ̸= j

(4)

2.2 PWARX systems identification

System identification consists in building mathematical
models from the input-output measurements of the sys-
tem. This approach is the most used in the field of system
control because it ensures a good compromise between
simplicity and precision of the model and is distinguished
by its easy implementation. Moreover, it is generally ap-
plicable to all physical systems Bedoui et al. (2011).
The problem of PWARX system identification can be
formulated as follows:

From a set of input / output measurements, estimate the
orders of submodels, the number of submodels, the vectors
of the parameters of the submodels and the coefficients
of the affine hyperplanes defining the partitions of the
regression space.

It is easy to deduce that the PWARX identification prob-
lem is one of the most difficult problems. To reduce this
complexity, all existing approaches assume that the orders
of the sub-models are known a priori as well as the number
of sub-models for certain methods. Despite the considera-
tion of these hypotheses, the subject still remains difficult
because it requires the resolution of two problems which
are the identification of the parameters of the sub-models
and the estimation of the coefficients of the hyperplanes
defining the regression domain. Numerous methods have
been presented in the literature for the identification of
PWARX models which can be classified in different solu-
tions: algebraic Tian et al. (2011), classification Ferrari-
Trecate et al. (2003), greedy solution Bemporad et al.
(2003), Bayesian Juloski et al. (2005), bounded error solu-
tion Bemporad et al. (2005), sparse optimization Mattsson
et al. (2016), and so on. Only the classification approach is
considered in this work because it is based on a simple and
informative procedure Lassoued and Abderrahim (2013a)
Camacho et al. (2010) Lassoued and Abderrahim (2013b).

2.3 Clustering-based approach for the identification of
PWARX models

This approach is based on a three main steps: data classi-
fication, parameter estimation and region reconstruction.
The parameter estimation and the region reconstruction
are ensured by efficient solutions which are the least
squares method and the Support Vector Machine (SVM)
method. But, the data classification step is realized by the
k-means algorithm which is sensitive to additive noise. It
also does not deal with outliers. Moreover, it assumes that
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the number of classes is known a priori Ferrari-Trecate
et al. (2003). These drawbacks lead to a degradation
of the estimation quality of the parameters of the sub-
models as well as of the coefficients of the hyperplanes.
To overcome these problems, we have advocated the use
of other clustering algorithms. Among them, we cite the
DBSCAN approach Lassoued and Abderrahim (2019) Ku-
mar and Reddy (2016). This algorithm allows assigning
the data into distinct classes while being based on certain
density conditions, i.e. the classes are considered as dense
regions which are separated by regions of low density.
This method is also able to eliminate outliers during the
partitioning process. In addition, it can determine the
number of classes. This algorithm was tested on simulated
examples and on real measurements where it provided the
best results by comparison with the k-means method and
its variants. Indeed, it is able to overcome the initialization
problem which can lead to convergence towards local min-
ima or even to a divergence of the algorithm. In addition, it
automatically generates the number of sub-models. It also
gives the best results even if the output is contaminated
with noise having a high level Lassoued and Abderrahim
(2014a).

Constructing local data sets We construct a local set Ck

to each pair of data {φ(k), y(k)}Nk=1. Every set Ck contain
{φ(k), y(k)} and their (nρ − 1) nearest neighbors Ferrari-
Trecate et al. (2001) verifying:

∀(⌣φ,⌣
y) ∈ Ck,

∥∥∥φ(k)− ⌣
φ
∥∥∥2 ≤ ∥φ(k)− φ̂∥2,∀(φ̂, ŷ) /∈ Ck.(5)

The number of neighbors nρ is a random parameter. It
has an important role in the algorithm. So, it must be
properly chosen in order to ameliorate the identification

result. For the obtained local sets {Ck}Nk=1, we identify the

parameters vectors {θk}Nk=1 using least square method or
any standard linear regression techniques Ferrari-Trecate
et al. (2002).

θk = (ϕT
k ϕk)

−1ϕT
k Yk. (6)

where
ϕk =

[
φ̄(t1k)...φ̄(t

nρ

k )
]T

,

Yk =
[
y(t1k)...y(t

nρ

k )
]T

and
{
t1k, · · · , t

nρ

k

}
are the indices of data points belonging

to the sets Ck.

Data clustering and parameters’ estimation The ob-
jective of this step is to classify the parameters vectors

{θk}Nk=1 into s clusters and determine the sub-models
parameters vectors {θi}si=1.

We consider in this paper the DBSCAN approach. The
main principle of this method is that for each data object
of a cluster, the neighborhood of a given radius ϵ must
hold in at least a minimum number MinPts of objects.
ϵ and (MinPts) represent the input parameters of the
algorithm. Therefore, they must be properly chosen in
order to guarantee a good classification of the data.

Given ϵ and MinPts as input and a data set S = {θk}Nk=1,
the ϵ-neighborhood of a point θk is defined as:

Nε(θk) = {θj ∈ S; ∥θk − θj∥ ≤ ε} (7)

The DBSCAN constructs clusters by checking the ϵ-
neighborhood of each object in the data set. So, a step
of differentiation of points’ nature is necessary. Then, the
point is considered as:

• core, if the number of neighbors is higher or equal to
MinPts.

• border, if the number of neighbors is less than MinPts
and the considered point is within the neighborhood
of any core point.

• noise, for the remaining points that are not core nor
border.

The first cluster is formed by the first core point and its
neighbors. Thereafter, all the other core points are recur-
sively evaluated. If the considered point is not previously
associated to a cluster, a new cluster will be created.
A detailed algorithm of the DBSCAN method is described
in Lassoued and Abderrahim (2014b).

Region reconstruction The region reconstruction prob-
lem consists in determining a complete polyhedral parti-
tion {Hi}si=1. Since the polyhedral regions are defined by
hyperplanes, estimating the regions amounts to separating
s sets of points by means of linear classifiers (hyperplanes)
Richhariya and Tanveer (2018).
Separating the points in Hi from Hj , i ̸= j with an
hyperplane without errors is a fabulous task because the
sets Hi and Hj have intersecting convex hulls. Therefore,
we just have to find the hyperplane that minimizes some
misclassification index. For the s sets Hi,...,Hs, two types
of linear separation can be handled:

• Binary classification: for each pair (Hi, Hj), with
i ̸= j, a linear classifier is constructed.

• Multi-class classification: a piecewise linear classifier
is constructed having as object the discrimination of
s classes.

The separation task can be accomplished by resorting to
the support-vector machines SVMs which are considered
among the best supervised learning algorithms Hsu and
Lin (2002).

3. PROPOSED ONE-STEP-AHEAD PREDICTIVE
CONTROL STRATEGY FOR PWARX SYSTEMS

After describing the nonlinear behaviour of the system by
a PWARX model using the clustering based procedure of
identification, we can proceed with the design of a system
control law.

Since results of linear system control can be applied to
the PWA model, we propose a simple control approach
that would emphasize the accuracy of the model which
is the predictive control. This method always attracts the
attention of researchers as it is broadly used in the field of
industry as well as in the field of research.

In this work, we are interested in the one-step ahead
predictive control because switching from one submodel to
another can occur at each sampling instant and therefore
the switching dynamics of the submodels is not known a
priori.
Obviously, this control strategy requires a mathematical
model that permit the prediction of the behaviour of the
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system and then it proceeds to minimize a performance
criterion that can be constrained.

Indeed, in order to design the predictive control for
PWARX systems, we propose a solution that exploit the
same idea of multimodel adaptive control with switching
Landau et al. (2011), Islam et al. (2016). This approach
consists in selecting the suitable sub-model that represent
the process at every sampling time by solving a perfor-
mance criterion. Then, the output of the corresponding
controller is applied to the process Anderson et al. (2001),
Wang et al. (2005), Chen and Narendra (2001).

The main advantage o the proposed method is that the
selection of the sub-model is based only on the regression
vector which is constructed by the input and the output of
the system. The convenient controller is then determined
by the SVM approach which is already applied in deter-
mining the regions of the sub-model.
Therefore, since the nonlinear system is represented by
a PWA model described by the parameters vectors of s
sub-models with their corresponding regions, the control
structure is then simplified as shown in Figure 1.

 

Process 
u(k) y(k) 

Controller 1 

Controller 2 

Controller s 

PWARX 

Supervisor 

yc(k) 

+-

Switching indicator 

us(k) 

u2(k) 

u1(k) 

Fig. 1. Proposed PWARX control strategy.

The control law is calculated through the minimization of a
quadratic criterion which penalizes the differences between
the predicted outputs and the reference trajectory.
For each sampling time k, we dispose of the current output
y(k) and the precedent inputs and outputs y(k), y(k −
1), ..., y(k − na) and u(k), u(k − 1), ..., u(k − nb).

The objectif of the one-step predictive control is to find
the control low u(k) that coincide the output y(k) with
the reference trajectory yc(k) at the instant k + 1. More
precisely, this control is obtained by minimizing the fol-
lowing criterion:

J =
1

2
∥y(k + 1)− yc(k + 1)∥2Q +

1

2
∥u(k)∥2R (8)

Q ∈ Rm×m is a positive definite matrix and R ∈ Rn×n is a
semi definite positive matrix and m and n are respectively
the number of outputs and inputs.

PWA control problem formulation
For PWA systems, the quadratic form of the criterion is
given by:

J = [y(k + 1)− yc(k + 1)]TQ[y(k + 1)−
yc(k + 1)] + u(k)TRu(k)

(9)

The output y(k) of a PWA system is given by:



a1,1y(k − 1) + ..+ ana,1y(k − na)+
b1,1u(k − 1) + ..+ bnb,1u(k − nb) + g1

if φ(k) ∈ H1
...

a1,sy(k − 1) + ..+ ana,sy(k − na)+
b1,su(k − 1) + ..+ bnb,su(k − nb) + gs

ifφ(k) ∈ Hs

(10)

The system output can be defined by the following equa-
tion:

y(k) = θTσ(k)φ̄(k)
= a1,σ(k)y(k − 1) + · · ·+ ana,σ(k)y(k − na)
+b1,σ(k)u(k − 1) + · · ·+ bnb,σ(k)u(k − nb)
+gσ(k)

(11)

where ai,σ(k), bi,σ(k) and gσ(k) designate the parameters of
the active sub-model and σ(k) represents the active sub-
model.

The criterion of the one-step predictive control allowing a
coincidence between the output y(k+1) and the reference
yc(k + 1) for a PWARX system described by the relation
(11) can be written as:

J = Q.Ψ2 +Ru2(k) (12)

where

Ψ = yref (k + 1)− a1,σ(k)y(k)− · · ·
−ana,σ(k)y(k − na + 1)− b1,σ(k)u(k)− · · ·
−bnb,σ(k)u(k − nb + 1)− gσ(k)

An explicit solution of the control law u(k) is obtained by
minimising the criterion (12).

u(k) =
Q.b1,σ(k).∆

Q.b21,σ(k) +R
(13)

where

∆ = yref (k + 1)− a1,σ(k)y(k)− · · ·
−ana,σ(k)y(k − na + 1)− b2,σ(k)u(k − 1)− · · ·
−bnb,σ(k)u(k − nb + 1)− gσ(k)

A convenient choice of the weights Q and R can improve
the stability of the one-step-ahead controller.
R can be considered as a tuning parameter allowing to
obtain a balance between control magnitude and tracking
accuracy.

4. EXPERIMENTAL VALIDATION: A DC VOLTAGE
GENERATOR

4.1 System description

DC generator or direct current generator is one kind of
electrical machine, and the main function of this machine
is to convert mechanical energy into DC (direct current)
electricity. The energy alteration process uses the principle
of energetically induced electromotive force.

Two most important categories of DC generator exist
namely separately excited and self-excited. In separately
excited type, the field coils are strengthened from an au-
tonomous exterior DC source.
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In the self-excited type, the field coils are strengthened
from the generated current with the generator. The gen-
eration of the first electromotive force will occur because
of its outstanding magnetism within field poles.

The applications of different types of DC generators in-
clude the following.

* The separately excited type DC generator is used for
boosting as well as electroplating. It is used for power and
lighting purpose using a field regulator.

* The self-excited DC generator or shunt DC generator
is used for power as well as ordinary lighting using the
regulator. It can be used for battery lighting.

* The series DC generator is used in arc lamps for lighting,
stable current generator, and booster.

* A compound DC generator is used to provide the power
supply for DC welding machines.

In this paper, the studied system is a DC voltage generator
which consists of a DC motor mechanically coupled with
an induction motor. The speed of the induction motor is
controlled by a variable-frequency drive. An acquisition
card is used to adjust the frequency reference of the
variable-frequency drive and acquire measurement of the
DC voltage generated by the DC motor. Figure 2 is a real
photo of the system.

Fig. 2. DC voltage generator.

The Induction motor is the most used electric motor world-
wide in industrial facilities and large buildings. However,
asynchronous motors do not inherently have the capabil-
ity of variable speed operation. Therefore, using variable
frequency drives is necessary.
By changing the supply frequency, the motor speed can
be altered and thus the speed of a three-phase induction
motor can be controlled.

The variable frequency drive used in this application is a
DIGIDRIVE SK from Leroy Somer. Its control input is
the frequency reference in 0− 10V DC range.

The DC voltage generator is a DC motor with a shunt-
excitation. It does not require an independent electrical
supply. It is characterised by an unidirectional output and
thus it may be considered as a source to supply its own

field current.
The electrical characteristics of each component of the
studied system are presented in Tables 1, 2 and 3.

Table 1. Electrical characteristics of the induc-
tion motor

Parameters Value

nominal voltage 400V

frequency 50Hz

nominal speed 1500rpm

nominal power 0.9kW

nominal current 1.75A

Table 2. Electrical characteristics of the vari-
able frequency drive

Parameters Value

connection to a 3-phase supply
380V − 480V
48Hz − 62Hz

power for motor 4 poles 1.5kW

nominal current 3.8A

maximum current 5.2A

Table 3. Electrical characteristics of the gener-
ator

Parameters Value

nominal voltage 220V

nominal speed 1500rpm

nominal power 1.5kW

nominal current 6.8A

4.2 System analysis

The frequency reference input of the variable-frequency
drive represents the control input of the system u(k).
The output of the system y(k) is a linear transformation
of the voltage U generated by the DC generator such that
y = U/22.
According to the experimental studies, we can note that
the real process is a Single-Input Single-Output (SISO)
system. Indeed, we have used the static characteristic for
the determination of the nature of the system and for
the construction of the identification signal. Therefore, the
process can be considered as non linear as shown in Figure
3. In addition, we have used the system step responses for
different levels to derive the structure of the sub-models
which as in Figure 4. This figure shows that it is a second
order system.
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10

Fig. 3. Static characteristic of the real system.
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Fig. 4. Step responses of the real system.

4.3 Identification results

In this paragraph, the DC voltage generator is approxi-
mated by a PWARX model using the proposed identifica-
tion method.
Indeed, the determination of a model to this process starts
with the acquisition of some input-output measurements.
We have picked out one measurement file for the identifi-
cation and another one for the validation.

In fact, for nonlinear dynamic systems, the input must
be designed to excite both all the bandwidth frequencies
of the system and all the amplitude rang of the system.
For these reasons, we have considered as input a multisine
sequence (10 sinusoids) characterized by a frequency band
[0.01 0.02] and an amplitude-range [1 10]. The sampling
time of this signal is equal to 0.05s.
Figure 5 shows the input-output measurement files used
for the identification of the real process.

k
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u(k)

y(k)

Fig. 5. Input-output data of the real system.

The proposed identification method is applied with the
following synthesis parameters:
nρ = 72, ϵ = 0.23 and MinPts = 28.
The orders of each sub-model na and nb are fixed to the
value 2 since this system can be considered as a second-

order system around each operating point. The following
structure is then adopted:

y (k) =


−a1,1y (k − 1)− a1,2y (k − 2)
+b1,1u (k − 1) + b1,2u (k − 2)

ifφ (k) ∈ H1

...
−as,1y (k − 1)− as,2y (k − 2)
+bs,1u (k − 1) + bs,2u (k − 2)

ifφ (k) ∈ Hs

(14)

where the regressor vector and the parameter vectors are
as follows:

φ (k) =

−y (k − 1)
−y (k − 2)
u (k − 1)
u (k − 2)

 θi (k) =

 ai,1
ai,2
bi,1
bi,2


The obtained results are as follows:

• The number of sub-models s is equal to 4.

• The estimated parameter vectors θi(k), i = 1,..,4 are:

θT1 = [0.5411 0.4397 0.6980− 0.6920]

θT2 = [0.3963 0.3100 0.1537− 0.0856]

θT3 = [0.3817 0.3562 0.2309− 0.1751]

θT4 = [0.4200 0.3675 0.2407− 0.1958]

The obtained results of the estimated PWARX model and
the real output are depicted in Figure 6 which prove the
efficiency of the proposed approach. We can note that
the four sub-models contribute to the estimated output
evolution. In addition, the real and the estimated outputs
have a similar evolution.
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Fig. 6. Real and estimated outputs, estimation error and
switching instances.
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A new input-output measurement file is considered in
order to validate the obtained PWARX model. Figure 7
prove the efficiency of the proposed method.
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Fig. 7. Real and estimated outputs, estimation error and
switching instances: validation.

4.4 Control results

The one-step ahead predictive strategy is applied using
the obtained PWARX model using the reference and
the disturbance trajectories as shown in Figure 8. The
reference has a sinusoidal part to evaluate the tracking
performance and includes two steps of different amplitudes
to test the behavior in regulation.
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Fig. 8. Reference and disturbance evolutions.

Figure 9 shows the evolution of the output and the desired
trajectory. We remark that the proposed control strategy
provides good closed-loop performances. The evolution of

the output is close to that of the reference trajectory. We
remark also the convergence of the tracking error to zero.
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Fig. 9. Output and desired trajectory

As shown in Figures 10 and 11 the control law evolution is
soft even when switching from one sub-model to another.
It is noticeable that the control law allows to reject
constant disturbances. Furthermore, there is switching
of all sub-models with the reference trajectory evolution
and one sub-model is activated if the trajectory remains
unchanged.
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Fig. 10. Control evolution
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Fig. 11. Switching instances

From the obtained results, we can extract the following
remarks:

• Good control and good tracking are performed.

• All sub-models are turned on by changing the refer-
ence signal.

• One sub-model is activated if the reference is un-
changed.

5. CONCLUSION

In this paper, we have preconized the use of the PWARX
models and the one-step predictive control to solve the
problem of nonlinear system control. The suggested strat-
egy is inspired by the switching multimodel control.

In fact, in the multimodel adaptive control with switching,
the supervisor allows to select the best controller to be
used at each sampling instant. The supervisor operation is
based on the minimization of a criterion which relates the
current and the past estimation errors weighted by some
design parameters.

The major disadvantage of this supervisor lies in the
fact that the choice of the design parameters is made
empirically by the trial-and-error method. However, a bad
choice of these parameters can lead to a degradation of the
desired performances in a closed loop.

Our proposed approach suggests a control strategy where
the selection of the best controller is done automatically
by the SVM approach i.e., at any time, the region closest
to the current regression vector is used to assign the
corresponding controller.

The identification and the control approaches are succes-
fully applied to the DC voltage genarator and the obtained
results are satisfying. Indeed, it is important to point
out that the implementation of the proposed approaches
is generally difficult in the case of a real system. These
difficulties arise at several levels such as the determination
of the number of sub-models, the choice of the structure
of the sub-models, the choice of the identification signal,
the choice of the synthesis parameters, the stability of the
control system, etc . To overcome these difficulties, we have
suggested some heuristic solutions. Therefore, we used the
static characteristic for the determination of the number
of sub-models and for the construction of the excitation

signal. In addition, the step responses can be used to
deduce the structure of the sub-models. These choices are
then refined both by a trial-and-error procedure. Indeed,
the confirmation of these choices by fundamental concepts
represents the core of our future contributions and there-
fore the problem is still open.
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