
CEAI, Vol.4, No.1, pp.5-18, 2002 Printed in Romania

A PARALLEL 4SID ALGORITHM

Bogdan DUMITRESCU, Boris JORA, Corneliu POPEEA
Alexandru ŞERBĂNESCU

Department of Automatic Control and Computers
”Politehnica” University of Bucharest

313, Spl. Independenţei, 77206 Bucharest, Romania
e-mail: bogdan@lucky.schur.pub.ro

Abstract: In this paper present a parallel implementation, based on ScaLAPACK, of
a direct 4SID method. As the computational stages of the method are solved mainly
by direct calls to ScaLAPACK routines, we concentrate on the specific difficulties of
the implementation, e.g. the redistribution of data between some stages. A structured
matrix multiplication is implemented efficiently by a dedicated algorithm. We report
experimental results that show good behavior for up to 16 processors.

1. INTRODUCTION

High performance computing (HPC) is based
not only on powerful parallel computers, but
also on efficient software that tends to stan-
dardize some of the programming work. Sca-
LAPACK is the most important parallel tool
for linear algebra problems and is built on
top of the most efficient libraries for sequen-
tial computation and communication. With
ScaLAPACK it is possible to tackle difficult
problems of large size, solving them efficiently
on a parallel computer, with relatively small
programming effort.

Identification lies at the basis of control and
new algorithms and approaches continue to
appear. A new impulse in this field was given
by the apparition of 4SID (State-Space Sub-

space-based System IDentification) methods,
proposed in [21, 24], using numerical tools of
high accuracy like the singular value decom-
position (SVD). We mention the 4SID meth-
ods have been extended to stochastic systems
[18, 19, 20, 15], time-variable systems [23],
infinite dimensional systems [13], close-loop
identification [11], real-time identification [9];
moreover, methods similar to 4SID have been
used in several applications in signal process-
ing, see e.g. [10, 12, 16]. Seen in the be-
ginning as difficult to use, due to the large
size of the problems to be solved, 4SID meth-
ods may now benefit from the power of HPC.
The main contribution of our paper is the par-
allel implementation of a 4SID method, us-
ing ScaLAPACK routines, and also special-
ized algorithms when this was the only effi-

6 Control Engineering and Applied Informatics

cient choice.

A short overview of this paper is as follows. In
section 2, we shortly review the computation
environment used for our algorithm: parallel
architecture, communication models, matrix
distribution on processors and the standard
libraries used for computation and communi-
cation. Section 3 presents a (sequential) di-
rect 4SID method. The parallel version of the
method, which is the principal contribution
of this paper, is presented in detail in section
4. Finally, section 5 is dedicated to exper-
imental results that show the good parallel
performance of our algorithm.

2. THE PARALLEL MATRIX
COMPUTATION
ENVIRONMENT

We aim to present in this section the most im-
portant features of the parallel hardware and
software environment used for matrix compu-
tation. This environment has practically be-
come a standard in the latest decade; since
its use in applications of automatic control is
only at the beginning, we consider necessary
to give here a brief description.

2.1. The parallel arhitecture

The model of the target parallel computer is
MIMD (Multiple Instruction Multiple Data)
with distributed memory; each processor ex-
ecutes its own flow of instructions, on local
data stored in a local memory. The proces-
sors are connected by communication chan-
nels and the parallel computer may be viewed
as a graph with processors as vertices and
channels as edges. The most used topology
at this moment is the 2D or 3D grid, but sev-
eral other fixed or configurable topologies also
exist.

The current tendency is that the operating
system provide software communication fa-
cilities for processor-to-processor communica-
tion, regardless the physical links between pro-
cessors. Consequently, and also due to the ef-
ficiency of the corresponding algorithms, the
most used topology in parallel matrix com-

putation is the virtual 2D grid. We denote
p = prpc the number of processors, where pr

and pc are the number of rows and columns of
the grid, respectively. Each processor Pij (on
row i, column j) of the grid has an address,
made up of a single number, e.g. ipc + j.

The programming style is SPMD (Single Pro-
gram Multiple Data); all the processors ex-
ecute the same program, on local data; the
execution is generally asynchronous; although
the program is unique, the processors may ex-
ecute personalized instructions, conditioned
by their address.

The organization of the local memory of a
processor is of high importance. The most
effective architecture is now hierarchical, in
which the memory is structured on (at least)
two levels: a small fast memory ”near” the
processor, and a slow and large one which
stores the data. The fast memory is used
for holding temporary data; as the processors
are very fast, if data from this memory are
reused without being stored on the slow mem-
ory, then the execution of a program is signif-
icantly faster. We will see the programming
implications of this architecture in section 2.4.

2.2. Matrix mapping

In a distributed memory computer, the data
are mapped to processors following three prin-
ciples: (a) each piece of data is given to a
single processor; (b) each processor receives
roughly the same amount of data; (c) the com-
putation is load balanced, i.e. each processor
has roughly the same amount of computation
to perform. With (a) and (b), the use of lo-
cal memory is optimized, allowing to larger
problems to be solved; however, requirement
(c) does not follow automatically.

In matrix computation, the best mapping, sat-
isfying always (a) and (b), and almost always
(c), is the block cyclic mapping. Let A be
a matrix of size m × n; the matrix is split in
blocks of size mb×nb, where usually mb ¿ m,
nb ¿ n; certainly, the blocks corresponding
to the last rows or columns may have smaller
sizes, if m is not a multiple of mb or n is not a
multiple of nb. Let us denote AIJ the blocks
of A, where 0 ≤ I < nr, nr = dm/mbe, and

Control Engineering and Applied Informatics 7

0 ≤ J < nc, nc = dn/nbe; we consider the
indices starting at 0.

To describe the mapping, we refer only to the
rows of the processor grid and the block rows
of the matrix; the situation on columns is sim-
ilar. A processor on row k of the grid receives
blocks AIJ with I such that I mod pr = k, i.e.
I = `pr +k, ` = 0 : d(nr−k)/pre. So, the ma-
trix is partitioned in groups of pr × pc blocks,
starting from the upper left corner; each block
of such a group is mapped to a processor of the
grid, in the most natural way; the block and
the processor have the same position in the
group and the grid, respectively. The map-
ping can be generalized by allowing any pro-
cessor to hold the block A00, the cyclicity be-
ing preserved.

2.3. Communication routines

The communication model is based on mes-
sages sent between two processors. Two li-
braries implementing communication primi-
tives became popular in the latest years: MPI
(Message Passing Interface) [7, 17] and PVM
(Parallel Virtual Machine) [8].

These libraries were written for general pur-
poses. For matrix computation applications,
the standard BLACS (Basic Linear Algebra
Communication Subprograms) [6] was prop-
osed in 1995, offering communication routines
oriented on transmitting matrices or blocks of
matrices. BLACS is built on top of MPI or
PVM and assumes a block cyclic mapping of
the matrices.

There are two types of communication rou-
tines in BLACS:

• point-to-point communication, where a pro-
cessor sends a submatrix and another re-
ceives it;

• global communication, where all (or several)
processors are involved; the implemented op-
erations are broadcast (one sends to all),
global sum (or minimum, maximum) com-
putation, where all processors cooperate to
compute the sum of blocks mapped in their
local memories.

The global communication routines may be

called by a group of processors, providing they
are organized in a virtual grid.

2.4. Sequential computation libraries

The hierarchical organization of local memo-
ries led to the apparition of routines working
on blocks of matrices; intensive computation
on a block of matrix allows its storing in the
fast memory, thus speeding up computation.
Two important libraries for sequential matrix
computation are now widely used.

Level 3 BLAS (Basic Linear Algebra Subrou-
tines) [5] contains routines for matrix multi-
plication (with general, symmetric, and tri-
angular operands) and for solving triangular
systems with multiple right hand term.

LAPACK (Linear Algebra PACKage) [1] is
a much more general library, dedicated to the
fundamental problems of linear algebra: lin-
ear systems (with matrices with several struc-
tures: general, symmetric, symmetric posi-
tive definite, band), least squares linear prob-
lems, eigenvalues and eigenvectors, singular
values, orthogonal bases for linear subspaces,
etc. There are also distinct routines for the
main factorizations used for solving the above
problems, e.g. LU, QR, LQ, SVD.

LAPACK routines are based on algorithms
at block level (opposite to element level al-
gorithms, as in LINPACK or EISPACK). For
block operations, BLAS 3 routines are called.
A good implementation of BLAS 3 is sufficient
to ensure good performance of LAPACK.

2.5. Parallel computation libraries

Similar to the sequential case, there are two
main matrix computation libraries for MIMD
computers with distributed memory.

PBLAS (Parallel BLAS) [3] contains paral-
lel versions of the BLAS 3 routines. To ex-
ecute an operation, all processors must call
the same routine for matrix operands that are
block cyclically mapped. For communication,
PBLAS uses (internally) BLACS.

ScaLAPACK (Scalable LAPACK) [2] is the
state-of-the-art library in parallel matrix com-

8 Control Engineering and Applied Informatics

putation and contains parallel versions of al-
most all the routines of LAPACK. ScaLA-
PACK uses PBLAS for basic distributed op-
erations and LAPACK for local computation.

Writing a program in ScaLAPACK is facili-
tated by the ease of modifying, to this pur-
pose, a sequential LAPACK program. The
names of the routines are changed by adding
an initial ’P’ and the arguments are also mod-
ified in a systematic way. The main concern
is the proper distribution of the data onto the
processor grid. ScaLAPACK contains at this
moment some particularities that may harden
the task of matrix mapping. However, ScaLA-
PACK offers a routine for matrix redistribu-
tion which may be very useful to cope with
mapping problems, as we will show in section
4; for more information on redistribution al-
gorithms, see [4, 14].

3. THE 4SID IDENTIFICATION
METHOD

In this section, we outline a (sequential) di-
rect 4SID method which determines the state-
space model matrices A, B, C, D of a discrete-
time dynamic linear system with m inputs
and l outputs, using input-output data u(k),
y(k), k = 0 : N − 1. This and other similar
methods for state-space identification can be
found in [19, 22, 24], therefore we present only
the information necessary for the understand-
ing of the parallel version of the method.

The input-output data are organized as fol-
lows





U =
[

u0 u1 · · · ut−1
] ∈ Rαm×t

Y =
[

y0 y1 · · · yt−1
] ∈ Rαl×t

, (1)

where t is the number of (time) windows and
the input and output vectors u(k) ∈ Rm and

y(k) ∈ Rl from a window are concatenated as

uk =




u(k)
u(k + 1)

...
u(k + α− 1)


 ∈ R

αm,

yk =




y(k)
y(k + 1)

...
y(k + α− 1)


 ∈ R

αl.

(2)

The length of a window is α.

The basic functional relation on which the
method is built reads

Y = QαX + TαU, (3)

where

Qα =




C
CA
...

CAα−1


 ,

Tα =




D · · · 0 0

CB
. . . 0 0

...
.

...
CAα−2B · · · CB D



∈ Rαl×αm

(4)

are the observability matrix and the causal
block Toeplitz matrix of the discrete linear
system, respectively. The matrix

X =
[

x(0) x(1) · · · x(t− 1)
] ∈ Rn×t (5)

contains the state vectors of the system.

The identification problem is: determine four
matrices A, B, C, D of appropriate dimen-
sions satisfying (3), knowing the input-output
data U and Y built as in (2), (1). The remark-
able structure (4) of the matrices Qα, Tα is
intensively used.

The only hypothesis for solving the problem
is that the input data windows are persistent,
i.e. the matrix U is epic (rankU = αm), and t
is sufficiently large, more precisely t ≥ αm +
n. The method obtains an observable state
space model, so the observability matrix Qα

is monic (rankQα = n), where n is the order
of the desired model.

Control Engineering and Applied Informatics 9

The idea of the method is to begin by deter-
mining n and Qα, thus eliminating the con-
tribution of the second term from din (3). To
this purpose, we compute the right orthogonal
factorization of the epic matrix U , i.e.

UV̄ T = [L 0] (6)

where the matrix

V̄ T = [V̄ T
1 V̄ T

2] (7)

is orthogonal and L is lower triangualar and
invertible. From (6) and (7), one can see that
the block V̄ T

2 represents an orthogonal basis
for the subspace KerU , hence UV̄ T

2 = 0.

Multiplying (3) at right by V̄ T
2 , we obtain

Y V̄ T
2 = Qα(XV̄ T

2). (8)

In order to determine the monic matrix Qα

from (8), we compute the singular value de-
composition (SVD) of the matrix Y V̄ T

2 , and
truncate the singular values below a threshold
ε, conveniently chosen. Let n be the number
of significant singular values of Y V̄ T

2 . With
obvious notations, after the truncation we ob-
tain

Y V̄ T
2 = [UT

1 UT
2]

[
Σ1

0

] [
V1

V2

]

= UT
1 Σ1V1, (9)

where the diagonal block Σ1 of size n con-
tains the first n singular values of Y V̄ T

2 , and
UT

1 has orthogonal columns. Consequently,
we can take

Qα = UT
1 . (10)

Therefore, n is the order of the state space
model and UT

1 represents an orthogonal basis
of the subspace Yα = Im Qα. The matrices A
and C result from the definition of Qα, i.e.

C = Qα(1 : l, :), (11)

and A is the least squares solution to the ma-
trix equation

Qα−1A = Q2:α. (12)

Next, in order to compute the matrix B and
D, we use again (9); since UT

2 is the orthogo-
nal complement of UT

1 , we have U2Qα = 0, see
(10). Multiplying (3) at the left with U2 and
at the right with V̄ T

1 , we obtain the relation

U2Y V̄ T
1 = U2Tα(UV̄ T

1), (13)

from where X disappeared. As, by construc-
tion, UV̄ T

1 = L is lower triangular and in-
vertible, the previous relation can be written
simply as

U2Tα = Y2, (14)

where we define

U2 = [M1 M2 . . . Mα],
(U2Y V̄ T

1)L−1 = Y2 = [N1 N2 . . . Nα],
(15)

where U2 ∈ R(αl−n)×αl, Y2 ∈ R(αl−n)×αm.

Taking advantage of the block Toeplitz struc-
ture of the matrix Tα (where A and C are now
known), the relation (14) can be written, af-
ter some processing we skip here for brevity,
in the form



M1 · · ·Mα−1Mα

M2 · · · Mα 0
...

...
...

...
Mα· · · 0 0




[
Il 0
0Qα−1

] [
D
B

]
=




N1

N2
...

Nα


(16)

from which B and D can be found by solving
a least squares problem.

To summarize, the direct 4SID procedure for
building the state space model (A,B, C,D),
using the relation (3), is the following.

Algorithm 1 (4SIDD) (Input: the size
of a window α, the number of windows t,
the input-output data of the linear system,
organized in the matrices U , Y , with the
structure (2), (1), and a tolerance ε used
to neglect the small singular values. Out-
put: the order n and a state space model
(A,B, C, D).)

1. Compute the right orthogonal triangu-
larization of the matrix UT , i.e.

V̄ UT =
[

LT

0

]
,

10 Control Engineering and Applied Informatics

where, following (6) and (7), the matrix

V̄ =
[

V̄1

V̄2

]

is a sequence of elementary reflectors and
LT is upper triangular and invertible.

2. Build the matrix Z2 = Y V̄ T
2 and com-

pute the truncated SVD (9), choosing
the order n such that σn > ε > σn+1.
Only the blocks U1 and U2 from (9) are
stored for future use.

3. Qα = UT
1 .

4. C = Qα(1 : l, :).
5. Compute the least squares solution A of

the linear matrix equation (12).
6. Compute the matrix Y2 = (U2Y V̄ T

1)L−1

and partition U2 and Y2 according to
(15).

7. Find the least squares solution (B, D)
of the linear matrix equation (16).

Despite its apparent complexity — mainly due
to the complexity of the problem — the algo-
rithm 4SIDD uses standard techniques of nu-
merical computation (orthogonal triangular-
ization, SVD etc.) and is suited to sequential
or parallel implementation using standard li-
braries, such as LAPACK or ScaLAPACK.

4. PARALLEL ALGORITHM AND
IMPLEMENTATION

We propose in this section a parallel version of
the algorithm 4SIDD, using as much as pos-
sible the routines of the library ScaLAPACK.
The algorithm 4SIDD can be naturally split
into two parts:

• the steps 1-6 (and 7, partially), having a
straightforward implementation by calls at
ScaLAPACK routines;

• the construction, in step 7, of the matrix
of the system (16), operation that could be
performed in several ways; a difficulty re-
lated to this part is the unfavorable initial
distribution of the matrices.

The two parts will be treated distinctly in the
sequel.

4.1. ScaLAPACK implementation details

The input data of the algorithm 4SIDD are
the matrices U and Y (of input-output data
of the system to be identified), of size αm× t,
and αl × t, respectively. Remind that t >
α max(m, l) and, practically, t has a value sig-
nificantly larger than α max(m, l). The matri-
ces U and Y are block cyclically distributed
over the processor grid; the blocks have size
mb × nb;

The steps 1-6 of the algorithm 4SIDD are im-
plemented via calls to ScaLAPACK routines.
For the sake of completeness, we list below
the names of the routines and the steps where
they are used.

PDGELQF orthogonal LQ factorization, in
step 1, relation (6);

PDORMLQ application of the correspond-
ing transformations, to compute Y V̄ T , in
step 2, the left hand side term of (8) and in
step 6; these two transformations are con-
densed in a single function call, in order to
increase the parallelism;

PDGESVD singular value decomposition, in
step 2, relation (9));

PDGELS orthogonal QR factorization and
least squares solution of overdetermined lin-
ear systems, in steps 5 and 7.

There are also two PBLAS routines that are
used, namely PDGEMM (general matrix
multiplication) and PDTRSM (triangular
system solution), both in computing the ma-
trix Y2 from (15), in step 6.

Although specifying the arguments of the rou-
tines above is a simple (but somewhat tedious)
task, some data alignment constraints require
special attention. For many ScaLAPACK and
PBLAS routines, the initial indices IA and JA
of the submatrix of interest, have to corre-
spond to the upper left corner of a block, i.e.,
for instance, IA = kmb + 1, for a positive in-
teger k (the indices start at 1). This condi-
tion is often restrictive, as we notice for our
algorithm. We will give three examples show-
ing the impact of this alignment constraint;

Control Engineering and Applied Informatics 11

of course, in order to meet the alignment re-
quirements, the general solution is the redis-
tribution of the matrix, a communication op-
eration that is implemented by the routine
PDGEMR2D and that could be costly.

1. The free term of the system (12) is the
matrix denoted Q2:α and represents the sub-
matrix starting with row l + 1 of the matrix
UT

1 of the SVD (9). As an output of the rou-
tine PDGESVD, the factor UT

1 is aligned with
its first element at a block beginning, which
is very convenient, since UT

1 is necessary in
step 5 of algorithm 4SIDD, as the matrix of
the linear system (12). However, for Q2:α to
be aligned, l should be a multiple of mb; this
is a relatively tough constraint, since l has
usually small values, while mb is chosen suf-
ficiently large in order to have efficient local
BLAS operations (typically mb = 16, 32, . . .).

2. In the same SVD (9), the block UT
2 is used

in the computation of the matrix Y2 from (15).
The block U2 starts at column n + 1 of the
orthogonal factor from (9); opposite to the
previous case, where the dimensions l and mb

are initially known, now n is found during the
computation, function of the data and the tol-
erance ε. Thus, the redistribution of the ma-
trix UT

2 must be performed when n is not a
multiple of nb.

A solution not requiring redistribution is to
take instead of n the first multiple of nb greater
than n, let it be n′; this solution could be ac-
cepted only if σn ≈ σn′ (obviously, we have
σn > ε > σn′). Although a reduction of the
execution time is expected, this idea should
be applied carefully, since the dimension of
the identified system is affected.

3. Another alignment constraint is related to
the computation of the SVD of matrix Ȳ2 =
Y V̄ T

2 from (8). Since Y V̄ T is computed in
place in Y , the submatrix Ȳ2 starts in column
αm+1. The routine PxGESVD requires that
the first element of the argument (sub)matrix,
in our case Ȳ2, be placed on the diagonal of
a local block. This condition can be fulfilled
only if αm is a multiple of nb, which is not
very restrictive.

4.2. Parallel computation of the matrix
product (16)

We will detail here the parallel algorithm for
building the system (16), rewritten as

S

[
D
B

]
= N, (17)

where the matrices S and N are obvious no-
tations. (Remind that the system itself is
solved by a call to the routine PDEGELS from
ScaLAPACK.)

In order to build N , only a redistribution of
the matrix Y2 from (15) is necessary. To ob-
tain S is a more difficult task, since a ma-
trix product must be computed, in which the
operands are matrices with particular struc-
tures; an efficient algorithm should take ad-
vantage of these structures, opposite to the
easy solution of calling directly the routine
PDGEMM (thus ignoring the structure).

As a principle, we chose to design an algo-
rithm which is efficient on a small number
of processors; this is a less scalable solution.
This approach is supported by the sizes of ma-
trices for which parallel computation (partic-
ularly with ScaLAPACK) is efficient; a com-
mon recommendation is to choose the number
of processors such that each processor have in
its local memory at least one million matrix
elements. For identification problems, such
matrix dimensions are usually large, that is a
small number of processors is usually needed.

This principle, and further reasons given be-
low, led to the choice of the ring as virtual
parallel architecture. A first reason was the
shape of matrices S and N , which have a
much more rows than columns. A natural
distribution of these matrices is on rows, i.e.
a local block contains all the columns of the
matrices. Therefore, the processors ring may
be seen as a column of processors, topology
denoted C. For ease of manipulation, we will
also use a row ring, denotedR; the initial pro-
cessor grid, whose structure was preserved in
the implementation of steps 1-6 of algorithm
4SIDD, is denoted G.

A second reason is the size of the system (16),
relatively small with respect to the dimen-

12 Control Engineering and Applied Informatics

sions of the data matrices U and Y . Solv-
ing the system (16) has a small weight in the
total number of operations, moreover if the
matrices U2 and Y2 from (15) are truncated
as suggested in the previous section.

Let us first discuss about building the matrix
N . We notice that

Y T
2 =




NT
1

NT
2
...

NT
α


 , N =




N1

N2
...

Nα


 , (18)

which shows that N can be obtained by trans-
posing Y2, and then transposing — locally, if
each block Ni belongs to a single processor
— the blocks Ni. However, there is an alter-
native solution implying the same complex-
ity of communication, but avoiding the double
transposition.

We first redistribute the matrix Y2 from the
grid G onto the row ringR, modifying also the
block size; on the grid, the size was mb × nb,
theoretically independent of the input data;
on the ring R, we use blocks of size (αl−n)×
m, such that a block Ni be mapped onto a
single processor. (Of course, the distribution
of Y2 is perfectly balanced if α is a multiple
of p.) The redistribution is implemented by a
call to the routine PxGEMR2D.

If we look now at the processor ring as a col-
umn C, we remark that each block Ni is on the
correct processor; if α = p, then the redistri-
bution is finished; otherwise, the local blocks
must be rearranged from the row major order
into a column major order, operation which is
entirely local. For instance, in the case p = 4,
α = 8, the processor number 0 should perform
the operation

[N1 N5] −→
[

N1

N5

]
.

We describe now the computation of the ma-
trix S from (17), split into three stages.

1. The matrix U2 from (15) is redistributed
into

M =




M1

M2
...

Mα


 , Mi ∈ R(αl−n)×l, (19)

from the grid G onto the column ring C, us-
ing the same technique as described above for
passing from Y2 to N ; now, the size of the
local blocks Mi is (αl − n)× l.

2. Next, the matrix Qα−1 is redistributed in
the same way as M , i.e.

Qα−1 =




W1

W2
...

Wα−1


 , Wi ∈ Rl×n. (20)

Qα−1 is distributed on C such that each block
Wi is local to a single processor.

3. Finally, the actual multiplication is per-
formed. Using the definition (16), the matrix
S can be written as

S =




S11 S12

S21 S22
...

...
Sα1 Sα2


 ,

Si1 = Mi, Si2 =
∑α

k=i+1 MkWk−i.

(21)

The first block column of S is already avail-
able from step 2 of the algorithm 4SIDD. The
blocks Si2 from the second column are com-
puted via a convolution, as described below.

At the first step, the matrix M , i.e. the first
block column of S, is shifted cyclically up-
wards with one block on the processor ring C;
after the shift, the pairs of blocks necessary
to compute the block

S12 = M2W1 + M3W2 + . . . + MαWα−1

are on the same processor: M2 and W1 on pro-
cessor 0, M3 and W2 on processor 1 etc. Each
processor computes the products MiWi−1 of
its local blocks; then, S12 can be computed

Control Engineering and Applied Informatics 13

via a global sum over the whole ring of pro-
cessors (we remark that this operation is in no
way constrained by the virtual ring topology,
but may be executed more efficiently depend-
ing on the properties of the target computer).
Due to the cyclic block mapping, together
with S12, the blocks Sp+1,2, S2p+1,2 etc., can
be also computed.

At the second step, the matrix M is again
shifted cyclically upwards on the ring, thus
allowing, as described above, the computation
of the blocks S22, Sp+2,2 etc.

After p steps, the matrix M is brought to its
initial distribution and the second block col-
umn of S is entirely computed. The detailed
algorithm is the following.

Algorithm 2 (S) (Input data: the ma-
trices M from (19) and Qα−1 from (20),
block cyclically distributed on a ring with
p processors. Output: the matrix S from
(21). The algorithm is written for proces-
sor i, whose local blocks are initially Mi+1,
Mp+i+1, M2p+i+1 etc. and Wi+1, Wp+i+1,
W2p+i+1 etc. The processors ”up” and
”down” with respect to i have the addresses
(i − 1)mod p, and (i + 1) mod p, respec-
tively.)

1. For ` = 1 : p

1. send ”up” the (currently) local blocks
of M

2. receive from ”down” the blocks M`+i+1,
Mp+`+i+1, M2p+`+i+1 etc.

3. For j = 0 : α−`
p (participate at the

computation of S`+jp,2)
1. compute the local product

T = M`+jp+i+1Wi+1+
M`+(j+1)p+i+1W2i+1 + . . .

2. participate at the global sum of the
blocks T ; the destination is processor
`− 1 (the result is S`+jp,2)

All the operations of this algorithm are per-
formed by calls to library routines, guaran-
teeing a good efficiency in general conditions.
The communication of matrix blocks is imple-
mented through two BLACS routines, namely
xGESD2D and xGERV2D. The global sum is
computed by the BLACS routine xGSUM2D.

The local products are computed with the
BLAS routine xGEMM.

Analyzing the algorithm, we remark immedi-
ately that the computation is balanced. Nat-
urally, when computing a block Si2, some pro-
cessors have to compute one more block prod-
uct that the others; if α À p, as usual for
small number of processors, this unbalance
has a small effect on the efficiency.

Looking now at the complexity of communi-
cation, we notice that the matrix M passes
entirely through each processor, implying a
volume of (αl − n)αl transmitted matrix el-
ements. To this, we should add the commu-
nication required by the computation of the
global sums; denoting γ = (αl − n)αn the
number of elements in the second block col-
umn of S, this communication volume may
vary between γ log p and γp, depending on the
communication algorithm and the topology of
the target computer. In both cases, if p is suf-
ficiently small, the total communication vol-
ume is small with respect to the computation
effort.

Finally, let us remark that the algorithm S
can be easily generalized from a ring to a grid
topology. We sketch here the main modifica-
tions to be done to this purpose. We suppose
that the matrices M and Qα−1 have the same
(block cyclic) distribution over the grid, and
that each block Mi (or Wi) is distributed over
a row of processors, in the grid. The matrix
M is shifted cyclically upwards, as in algo-
rithm S, on each column of the grid; hence,
the communication volume is smaller than on
ring. However, in order to compute the prod-
ucts T , the processors on a same row of the
grid must cooperate, and the communication
pattern is a complete exchange; this implies
more communication than on ring. The global
sum is performed on the columns of the grid,
thus more efficiently than on ring.

All these considerations lead us to the as-
sumption that, for a sufficiently large number
of processors, e.g. in the tens, the (modified
as above) algorithm S will be more efficient on
grid than on ring. For a small number of pro-
cessors (< 10), however, we expect the ring
variant to be superior, although we have per-
formed no experimental comparison with the

14 Control Engineering and Applied Informatics

grid variant.

5. EXPERIMENTAL RESULTS

The parallel version of the algorithm 4SIDD,
described in the previous section, was imple-
mented in C, using calls to the libraries ScaLA-
PACK, PBLAS, LAPACK, BLAS and BLACS,
in their double precision versions.

The program was tested on a 32 processors
IBM SP1 computer located at LMC-INPG
(Grenoble, France). Each processor has a peak
performance of about 100 Mflops/s, and a
top communication speed of about 30 Mbit/s;
hence, the computation speed is relatively high
with respect to communication speed; as a
consequence, very good performance is ob-
tained for large matrices. The processors are
connected by two crossbar (programmable)
switches and thus virtually any two proces-
sors may be directly connected; however, at a
given moment, only a limited number of direct
connections may be realized.

In our experiments, we monitored the effect of
some variables which affect the parallel per-
formance, i.e.

• the sizes of matrices U and Y , see (1), namely
the number of time windows t, the length of
a window α and the number of inputs m and
outputs l of the considered system;

• the sizes of the block in the block cyclic dis-
tribution of the matrices U and Y on the
processor grid, i.e. mb and nb. These block
sizes are constant through the whole algo-
rithm, excepting step 7;

• the number of processors p, and the config-
uration of the virtual grid, i.e. the number
of rows pr and columns pc.

The performance of the parallel program was
measured by the speed-up

cp =
Ts

Tp
, (22)

where Ts is the execution time of the (best)
sequential program, in our case a LAPACK
based implementation, and Tp is the parallel

execution time. Another performance crite-
rion, normalized with respect to the number
of processors, is the efficiency

εp =
Ts

pTp
. (23)

The efficiency has (theoretically) subunitary
values; the value 1 corresponds to the ideal
case when the computation is perfectly dis-
tributed to the p processors and there are no
overheads.

Before giving a summary of the experimental
results, let us present some general conclu-
sions that are suited also to our algorithm:

• increasing the size of the input matrices in-
creases the efficiency;

• on the contrary, increasing the number of
processors decreases the efficiency;

The authors of ScaLAPACK appreciate that
a good efficiency could be obtained only when
a processors holds in its memory at least one
million elements of the matrix to be processed.
For the IBM SP1, which has slow communica-
tion, even larger matrices could be necessary.

Other general appreciations are the following.

• The block sizes, mb and nb, usually have
an optimum value which maximizes the ef-
ficiency, on a given computer, for a given
matrix size. If the blocks are small, then
the (local) BLAS routines have small per-
formance, but the natural parallelism of the
problem is high, due to the large number of
blocks. If the blocks are large, then the par-
allelism is poor, but the local routines are
efficient. The optimum is given by a com-
promise of these tendencies.

• The shape of the virtual grid, i.e. the ra-
tio of pr and pc, has interesting effects; of
course, we consider p = prpc constant. The
ScaLAPACK routines have generally a bet-
ter performance when pc > pr; this fea-
ture is caused by the nature of numerical
algorithm for matrices 2D block cyclically
distributed; in these algorithms, the highly
sequential operations (representing bottle-
necks), are performed by processors on the

Control Engineering and Applied Informatics 15

same column; thus, grids with ”small” col-
umns are favored.

For PBLAS routines, especially matrix mul-
tiplication, square grids are the most suited.
Moreover, PBLAS routines are less sensitive
at the shape of the grid than ScaLAPACK
routines.

We now present the most significant exper-
imental results, on three data sets, ordered
increasingly upon the sizes of the matrices U
and Y (here n is the actual order of the sys-
tem):

D1. t = 1500, m = l = 10, α = 40, n = 100;

D2. t = 2000, m = l = 10, α = 50, n = 100;

D3. t = 3000, m = l = 10, α = 80, n = 100.

The best execution times Tp are presented in
table 1, function of the number of processors
Tp, together with the corresponding speed-ups
cp. A graph of the speed-ups for the three
data sets is presented in figure 1. We no-
tice that, naturally, the performances are im-
proved when data matrices are larger. For the
set D3, an anomaly can be observed: a speed-
up greater than 2 for p = 2; however, there is
a simple explanation of this fact. Due to the
large sizes, the matrices cannot be stored in
the local memory of one processor; the mech-
anism of virtual memory is therefore used,
slowing down the computation; on two pro-
cessors or more, the local data have smaller
size, thus the local memory is sufficient.

As announced, the efficiency decreases as the
number of processors is increased, as shown
by figure 2. The values of the efficiency could
be considered satisfactory for a small number
of processors, especially for the set D3.

To give an idea on the optimum block size, we
present in table 2 two sequences of execution
times for the set D2, for blocks of size 10×10
and 20×20. It can be noticed that for a small
number of processors, the larger size gives the
best results, which is explained by the good
behavior of BLAS 3 routines; when the num-
ber of processors increases, the smaller block
size is favored, as the degree of parallelism is
higher.

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16

Sp
ee

d-
up

Number of processors

D1
D2
D3

Figure 1: Speed-ups for the three experimen-
tal data sets.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16

E
ff

ic
ie

nc
y

Number of processors

D1
D2
D3

Figure 2: Efficiencies for the three experimen-
tal data sets.

A glimpse of the effect of the grid shape (the
ratio of pr and pc) on the execution time is
presented in table 3, for the data set D2, with
mb = nb = 10. It can be noticed that more
”horizontal” grids favor the efficiency. The
most important differences appear for the case
p = 4, when the grid 1×4 is significantly bet-
ter than the grid 2 × 2. Some measurements
on grids with pr > pc showed that this shape
is not efficient.

Since our program calls several ScaLAPACK
and PBLAS routines, with matrices of sev-
eral sizes, we considered necessary to study
what routines (or program parts, generally)
are the most time consuming and what is their
scalability (i.e. the property of preserving a
good efficiency as the number of processors
increases). To this purpose, we split our pro-

16 Control Engineering and Applied Informatics

Table 1: Execution times and speed-ups for the parallel 4SIDD algorithm.

p 1 2 4 6 8 12 16
D1 Tp 54.6 40.6 24.4 19.0 16.3 14.6 13.5

cp 1.35 2.24 2.87 3.35 3.74 4.04
D2 Tp 104.7 72.2 42.3 31.8 27.2 23.3 20.8

cp 1.45 2.48 3.29 3.85 4.49 5.03
D3 Tp 656 308 171.5 132.6 95.8 77.8 65.4

cp 2.13 3.83 4.95 6.85 8.43 10.03

Table 2: Execution times for the set D2, for two block sizes.

p 2 4 6 8
D2 mb = nb = 10 82.2 42.5 31.8 27.2

mb = nb = 20 72.2 42.3 32.3 28.5

gram into three parts:

1. The orthogonal right triangularization of the
matrix U (6) and the application of the cor-
responding transformations on Y from (8)
and (15).

2. The SVD of Y V̄ T
2 (9).

3. The other operations, i.e. steps 3-7 of algo-
rithm 4SIDD.

This split is natural for the following reasons.
The first two parts operate on large matrices,
opposite to the third part, where relatively
small matrices appear. Moreover, the SVD is
the most costly operation (in terms of flops),
thus it is interesting to study its weight on the
total execution time.

Table 4 presents the weight of the execution
times of each part of the program, for the
three sets of data. The time required by the
SVD represents slightly less than half the to-
tal time, and thus the efficiency of the pro-
gram depends crucially on the efficiency of the
ScaLAPACK routine PxGESVD. The first
part, representing the orthogonal LQ factor-
ization and the application of the transforma-
tions, is the most scalable of the three parts,
its weight obviously decreasing as the number
of processors increases. On the contrary, the
efficiency of the last part decreases as p grows;

this is due mainly to the relatively small sizes
of the matrices used in this part, but also to
the matrix multiplication algorithm S, chosen
especially for performance on small p.

Concluding this section, let us appreciate that
the experimental results show a convenient ef-
ficiency of our program, thus confirming our
approach of using ScaLAPACK as a base and
also the good performance of our new routines
for matrix multiplication. The fact that suffi-
ciently large matrices lead naturally to a good
efficiency is confirmed, but we also showed
that the performance can be improved by a
careful choice of some parameters, such as the
size of the blocks and the shape of the proces-
sor grid.

6. REFERENCES

[1] Anderson, E., Bai, Z., Bischof, C., Dem-
mel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKen-
ney, A., Ostrouchov, S., and Sorensen, D.
”LAPACK Users’ Guide, Second Edi-
tion”. SIAM, 1995.

[2] Blackford, L.S., Choi, J., Cleary, A.,
D’Azevedo, E., Demmel, J., Dhillon, I.,
Dongarra, J.J., Hammarling, S.,
Henry, G., Petitet, A., Stanley, K.,
Walker, D.W., and Whaley, R.C.

Control Engineering and Applied Informatics 17

Table 3: Execution times for the data set D2, for several sizes and shapes of the processor grid.

pr × pc 2× 2 1× 4 2× 4 1× 8 4× 4 2× 8
Tp 50.6 42.5 29.2 27.2 22.4 20.8

Table 4: The weights, in percents, of the three parts of the program (100% is the total execution
time).

Part 1 2 (SVD) 3
p = 4 29.7 44.5 25.8

D1 p = 8 27.2 46.5 26.3
p = 16 23.5 45.0 31.5
p = 4 32.8 48.0 19.2

D2 p = 8 31.0 48.1 20.9
p = 16 27.3 47.6 25.1
p = 4 38.1 42.9 19.0

D3 p = 8 33.9 44.1 22.0
p = 16 34.1 43.6 22.3

”ScaLAPACK Users’ Guide”. SIAM,
1997.

[3] Choi, J., Dongarra, J.J., Ostrouchov, S.,
Petitet, A., Walker, D. and Whaley, R.C.
”LAPACK Working Note 100, A Pro-
posal for a Set of Parallel Basic Linear
Algebra Subprograms”. Technical Re-
port CS-95-292, University of Tennessee,
Knoxville, 1995.

[4] Desprez, F., Dongarra, J.J., Petitet, A.,
Randriaramaro, C., and Robert, Y.
”LAPACK Working Note 120, Schedul-
ing Block-Cyclic Array Redistribution”.
Technical Report CS-97-349, University
of Tennessee, Knoxville, 1997.

[5] Dongarra, J.J., Duff, I., Du Croz, J.,
and Hammarling, S. ”A Set of Level-
3 Basic Linear Algebra Subprograms”.
ACM Trans.Math.Software, vol.16, pp.1–
17, 18–28, 1990.

[6] Dongarra, J.J., and Whaley, R.C. ”LA-
PACK Working Note 94, A User’s Guide
to the BLACS v1.0”. Technical Re-
port CS-95-281, University of Tennessee,
Knoxville, 1995.

[7] MPI Forum. ”A message passing interface
standard”. Int. J. Supercomputer Appl.
and High Perf. Comp., vol. 8, 1994. (Spe-
cial issue on MPI).

[8] Geist, A., Beguelin, A., Dongarra, J.J.,
Jiang, W., Mancheck, R., and Sun-
deram, V. ”PVM: Parallel Virtual Ma-
chine. A User’s Guide and Tutorial for
Networked Parallel Computing”. MIT
Press, 1994.

[9] Jora, B., Popeea, C., and Popescu, D.
4SID Identification for Control. In Proc.
Int. Conf. Control Systems and Com-
puter Science, volume 1, pp.132–137,
Bucharest, Romania, 1997.

[10] Liu, H., Xu, G., Tong, L., and Kailath, T.
”Recent Developments in Blind Channel
Equalization: from Cyclostationarity to
Subspaces”. Signal Processing, vol.50,
pp.83–99, 1996.

[11] Ljung, L., and McKelvey, T. ”Subspace
Identification from Closed Loop Data”.
Signal Processing, vol.52, pp.179–194,
1996.

[12] MacInnes, C.S., and Vaccaro, R.J.
”Tracking Directions-of-arrival with In-

18 Control Engineering and Applied Informatics

variant Subspace Updating”. Signal Pro-
cessing, vol.50, pp.137–150, 1996.

[13] McKelvey, T., Akcay, T., and Ljung, L.
”Subspace Based Identification of
Infinite-Dimensional Multivariable Sys-
tems from Frequency-response Data”.
Automatica, vol.32, no.6, pp.885–902,
1996.

[14] Petitet, A., and Dongarra, J.J. ”LA-
PACK Working Note 133, Algorithmic
Redistribution Methods for Block-Cyclic
Decompositions”. Technical report, Uni-
versity of Tennessee, Knoxville, 1998.

[15] Picci, G., and Katayama, T. ”Stochastic
Realization with Exogenous Inputs and
’Subspace-Methods’ Identification”. Sig-
nal Processing, vol.52, pp.145–160, 1996.

[16] Porumbescu, A., Dobrescu, R., Jora, B.,
and Popeea, C. ”Patient Specific Ex-
pert System for IDDM Control”. In Proc.
Int. Conf. Control Systems and Computer
Science, vol.1, pp.132–137, Bucharest,
Romania, 1997.

[17] Snir, M., Otto, S.W., Huss-Lederman, S.,
Walker, D.W., and Dongarra, J.J. ”MPI:
The Complete Reference”. MIT Press,
1996.

[18] Van Overschee, P., and De Moor, B.
”Subspace Algorithms for the Stochas-
tic Identification Problem”. Automatica,
vol.29, no.3, pp.649–660, 1993.

[19] Van Overschee, P., and De Moor, B.
”N4SID. Subspace Algorithms for the
Identification of Combined Deterministic-
Stochastic Systems”. Automatica, vol.30,
no.1, pp.75–93, 1994.

[20] Van Overschee, P., and De Moor, B.
”Choice of State-Space Basis in Com-
bined Deterministic-Stochastic Subspace
Identification”. Automatica, vol.31,
no.12, pp.1877–1883, 1995.

[21] Verhaegen, M. ”A Novel Non-iterative
MIMO State-Space Model Identification
Technique”. In Proc. 9-th IFAC/IFORS
Symposium on Identification and System
Parameter Estimation, pp.1453–1458,
Budapest, Hungary, 1991.

[22] Verhaegen, M. ”Identification of the De-
terministic Part of MIMO State Space
Models Given in Innovations Form from
Input-Output Data”. Automatica, vol.30,
no.1, pp.61–74, 1994.

[23] Verhaegen, M., and Yu, X. ”A Class
of Subspace Model Identification Algo-
rithms to Identify Periodically and Ar-
bitrarily Time-Varying Systems”. Auto-
matica, vol.31, no.2, pp.201–216, 1995.

[24] Viberg, M. ”Subspace-based Methods
for the Identification of Linear Time-
Invariant Systems”. Automatica, vol.31,
no.12, pp.1835–1851, 1995.

