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Abstract: Waypoint tracking is a common task for quadrotors, which is usually achieved by the Inner-Outer loop PID 

control method. The outer loop is implemented by establishing PID control for the position and velocity errors of the 

quadrotor. This method requires the quadrotor's desired flight rate as an input. However, setting a fixed desired flight 

rate cannot match to changes in waypoints and the quadrotor's own state, which can lead to a large time consumption 

or even mission failure. To solve this problem, this paper uses a neural network trained by the DDPG algorithm to 

control the desired flight rate of the quadrotor during flight, so that the quadrotor can adjust the desired flight rate 

flexibly to achieve a better waypoint tracking performance. Simulation results show that the method proposed in this 

paper can improve the performance of the Inner-Outer loop PID control system through adjusting the desired flight 

rate. 
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1. INTRODUCTION 

In recent years, tremendous progress has been made in 

researches related to quadrotors (L'Afflitto et al., 2018). And 

this leads to a wide range of applications, such as in the field 

of photography, transportation and rescue (Penicka and 

Scaramuzza, 2022). Waypoint tracking is one of the common 

tasks for quadrotors (Larsson et al., 2020; Qian et al., 2017). 

For the quadrotor waypoint tracking task, the dominant 

solutions are derived from PID control, which consists of 

proportional, integral and differential components. Due to its 

simple structure, PID control has effective parameter tuning 

methods (Mohamad Ali Tousi et al., 2020; Kumar et al., 2021). 

Therefore, it is widely used in industry (Mahmud et al., 2020; 

Bo et al., 2016). The Inner-Outer loop PID control method 

derives from PID control and has been widely used for 

quadrotor control (Julkananusart and Nilkhamhang, 2015). 

(Saraf et al., 2020) approximately linearized the model of the 

quadrotor and presented a comparison between the PID 

method and LQR method acting on a quadrotor. However, the 

fixed PID parameters cannot adapt to complex path conditions 

and the quadrotor may generate large error signals along some 

complicated paths, causing PID controllers to fail. (Zhang et 

al., 2020) proposed a PID gain adjustment method based on 

the reinforcement learning algorithm, and improved the 

dynamic performance and the stability of the PID controller. 

(Cajo et al., 2018) used a fractional order PD control method 

to achieve the path-following control of the quadrotor. (Farid 

et al., 2018) used interpolation methods on linear trajectories 

to generate a series of waypoints to generate a smoother path 

in order to increase the possibility of completing the task. But 

this method does not reduce the time consumption of the task. 

(Song et al., 2022) introduced the fuzzy PID controller to 

improve the flight stability and the robustness of the quadrotor. 

But the simple fuzzy processing of the information of the 

control system leads to a reduction in the control accuracy, and 

the design of the fuzzy rule relies on experience.  

With the development of neural networks and deep learning, 

people begin to seek for new control methods for quadrotors. 

(Lambert et al., 2019) used neural networks to predict changes 

of the state of a quadrotor with different control inputs and 

selected the one that brought the predicted velocity and 

acceleration closest to 0 to keep the quadrotor hovering in the 

air. (Rubí et al., 2020) used neural networks and the DDPG 

algorithm to calculate the expected yaw angle of the quadrotor. 

(Song et al., 2021) used neural networks trained by the PPO 

algorithm, one of the reinforcement learning algorithms 

(Schulman et al., 2017), to directly control the rotor voltage to 

complete a racing competition in a less time consumption than 

quadrotors controlled by professionals. This shows that it is 

feasible to control quadrotors through reinforcement learning 

algorithms and neural networks. 

However, controlling quadrotors through neural networks 

faces two major challenges: a long training time consumption 

and difficulties in convergence (Hwangbo et al., 2017). These 

mainly come from two points: the control instability at the 

beginning of the learning process leading to a large time 

consumption for trial and error and the difficulties of designing 

a proper reward function to avoid local optima of the RL 

algorithm.  

The contribution of this paper is using neural networks trained 

by the DDPG algorithm to control the desired flight rate, which 

is the input of the Inner-Outer loop PID control method of the 

control system. On the one hand, PID control guides the 

quadrotor in the right direction to ensure a reasonable reward 

during reinforcement learning, which largely reduces the 

training difficulties and time consumptions. On the other hand, 

the DDPG algorithm makes use of the nonlinearity and self-

learning ability of neural networks to approximate a control 

policy of the desired flight rate. The simulation result proves 

that using neural networks trained by DDPG to control the 

input of PID controller improves the performance of the 

original Inner-Outer loop PID control method. 
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2. THE MODEL OF A QUADROTOR 

2.1 Rigid Body Model of a Quadrotor 

The model of a quadrotor used in this paper is based on the 

Section 4 of the work from (Zhang et al., 2014). The quadrotor 

is a 6 degree-of-freedom rigid body.  

There are two reference frame concepts in this paper: the flat 

Earth reference frame (𝑂𝑒𝑋𝑒𝑌𝑒𝑍𝑒)  and the body-fixed 

coordinate frame (𝑂𝑏𝑋𝑏𝑌𝑏𝑍𝑏). The schematic of the quadrotor 

and reference frames is shown in Fig. 1. 

 

Fig. 1. The schematic of the quadrotor and reference frames. 

Where 𝑚 is the mass of the quadrotor, 𝑔 is the gravitational 

constant, 𝐿 is the arm length of the quadrotor, which is the 

distance from the center of the rotor to the center of mass of 

the quadrotor, and  𝐹𝑖 is the thrust force generated by rotor 𝑖. 

Let the inertia matrix be 𝐽 = diag(𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧), where 𝐼𝑥𝑥 , 𝐼𝑦𝑦, 

𝐼𝑧𝑧 are inertia components along 𝑥, 𝑦 and 𝑧 axis. 

During the flight, the position 𝑝𝑒 and the velocity 𝑣𝑒 in the flat 

Earth reference frame satisfy the relationship: 

𝑝�̇� = 𝑣𝑒                                                                                             (1) 

The body angular velocity 𝜔𝑏  and the attitude angles of the 

quadrotor satisfy the relationship: 

𝜔𝑏 = [
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Where 𝜑 is the roll angle, 𝜃 is the pitch angle and 𝜓 is the yaw 

angle. 

In accordance with Newton's second law, the linear motion of 

the quadrotor is generated by the combined external forces 

provided by four rotors, and satisfies the relationship: 

𝑚𝑣�̇� = [
0
0
𝑚𝑔

] − 𝑅𝑏2𝑒

[
 
 
 
 
0
0

∑𝐹𝑖

4

𝑖=1 ]
 
 
 
 

                                                     (3) 

Where 𝑅𝑏2𝑒  is the rotation matrix from the body-fixed 

coordinate frame to the flat Earth reference frame. 

𝑅𝑏2𝑒 =

[
cos 𝜃 cos𝜓 sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓 sin𝜑 sin𝜓 + cos𝜑 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 cos𝜑 cos𝜓 + sin𝜑 sin𝜃 sin𝜓 cos𝜑 sin𝜃 sin𝜓 − sin𝜑 cos𝜓
−sin 𝜃 sin𝜑 cos 𝜃 cos𝜑 cos 𝜃

] (4)
 

The angular motion of the drone is generated by the moments 

of four rotors, and the relationship between the moments and 

the body angular velocity can be obtained according to Euler's 

equation as: 

𝐽𝜔�̇� = −𝜔𝑏 × (𝐽𝜔𝑏) + [

𝐿(𝐹2 − 𝐹4)

𝐿(𝐹1 − 𝐹3)
𝑀2 +𝑀4 −𝑀1 −𝑀3

]                   (5) 

Where 𝑀𝑖 is the moment generated by rotor 𝑖. 

2.2 Motor Dynamical Model 

The thrust force and the moment generated by a rotor are 

proportional to the square of the rotor speed (Li, Qi et al., 

2020). Assume each rotor has a rotational force coefficient of 

𝑐𝐹 and a rotational moment coefficient of 𝑐𝑀. The actual rotor 

speed of rotor 𝑖 is 𝑛𝑖. 

Then the thrust forces and moments generated by rotors can be 

obtained by following formulas: 

𝐹𝑖 = 𝑐𝐹𝑛𝑖
2, 𝑖 = 1,2,3,4                                                                 (6) 

𝑀𝑖 = 𝑐𝑀𝑛𝑖
2, 𝑖 = 1,2,3,4                                                                (7) 

The actual rotor speed and the desired rotor speed of rotor 𝑖 
satisfy the relationship: 

𝑛𝑖̇ =
1

𝑇
(𝑛𝑖

𝑑𝑒𝑠 − 𝑛𝑖)                                                                       (8) 

Where 𝑇 is the time constant of the first-order inertial system 

and  𝑛𝑖
𝑑𝑒𝑠 is the desired rotor speed of rotor 𝑖. The actual rotor 

speed is limited to the range of [1200,7800]rpm. 

The desired rotor speeds can be broken down by the effect 

produced into different components: the component 𝑛ℎ  that 

keeps the vehicle hovering, the component ∆𝑛𝐹 that produces 

the lift, and the components ∆𝑛𝜑 , ∆𝑛𝜃 , ∆𝑛𝜓  that cause the 

attitude angles to change. Thus, we can calculate the four 

desired rotor speeds by using the following equation: 

[
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𝑑𝑒𝑠
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𝑑𝑒𝑠
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1
1
1
1
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1
0
−1

1
0
−1
0

−1
1
−1
1

]

[
 
 
 
𝑛ℎ + ∆𝑛𝐹
∆𝑛𝜑
∆𝑛𝜃
∆𝑛𝜓 ]

 
 
 

                                          (9) 

From the force analysis of the hovering state, 𝑛ℎ satisfies the 

relationship: 

4𝑐𝐹𝑛ℎ
2 = 𝑚𝑔                                                                               (10) 

Hence, 𝑛ℎ can be calculated as: 

𝑛ℎ = √
𝑚𝑔

4𝑐𝐹
                                                                                  (11)

The variables and parameters used to model the quadrotor in 

Section 2 are shown in Table 1 and Table 2 according to the 

order of appearance. 
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Table 1. Variables used to model the quadrotor. 

Symbol (Unit) Definition 

𝑝𝑒(m) Position in the geodetic coordinate system 

𝑣𝑒(m ∙ s−1) Velocity in the geodetic coordinate system 

𝜔𝑏(rad ∙ s
−1) Body angular velocity 

𝜑(rad) Roll angle 

𝜃(rad) Pitch angle 

𝜓(rad) Yaw angle 

𝑅𝑏2𝑒 Rotation matrix 

𝐹𝑖(N) Thrust force generated by rotor 𝑖 

𝑀𝑖(N ∙ m) Moment generated by rotor 𝑖 

𝑛𝑖(rpm) Actual rotor speed of rotor 𝑖 

𝑛𝑖
𝑑𝑒𝑠(rpm) Desired rotor speed of rotor 𝑖 

𝑛ℎ(rpm) Rotor speed component for hovering 

∆𝑛𝐹(rpm) Rotor speed component to produce lift 

∆𝑛𝜑(rpm) Rotor speed component to change roll angle 

∆𝑛𝜃(rpm) Rotor speed component to change pitch angle 

∆𝑛𝜓(rpm) Rotor speed component to change yaw angle 

3. PID CONTROL OF WAYPOINT TRACKING 

The Inner-Outer loop PID control method is the most common 

control method for quadrotors, which consists of PID 

controllers. It is easy to understand what this method is trying 

to do. What’s more, this method requires little computation 

time and memories which makes it possible for further 

improvements (Cao, 2016; Parivash et al., 2017). 

The outer loop calculates the force needed by the quadrotor to 

track a path, and then converts the calculated force into the 

desired attitude angles and the thrust force for lift. The inner 

loop uses the PID control method to follow the desired attitude 

angles. 

The structure of the Inner-Outer loop PID control method with 

constant desired flight rate is shown in Fig. 2 and the inputs to 

this system are a set of waypoints and the desired flight rate 

𝑣𝑑𝑒𝑠  of the quadrotor. The implementation of the control 

modules will be interpreted in Section 3.1 and Section 3.2. 

Table 2. Parameters used to model the quadrotor. 

Symbol (Unit) Definition Value 

𝑚(kg) Mass of the quadrotor 0.5 

𝐿(m) Arm length 0.2 

𝐽(N ∙ s2 ∙ rad−1) Inertia Matrix diag(𝐼𝑥𝑥, 𝐼𝑦𝑦 , 𝐼𝑧𝑧) 

𝐼𝑥𝑥(N ∙ s
2 ∙ rad−1) 

Inertia components 

along 𝑥 axis 
0.114 

𝐼𝑦𝑦(N ∙ s
2 ∙ rad−1) 

Inertia components 

along 𝑦 axis 
0.114 

𝐼𝑧𝑧(N ∙ s
2 ∙ rad−1) 

Inertia components 

along 𝑧 axis 
0.158 

𝑔(m ∙ s−2) Gravitational constant 9.8 

𝑐𝐹(N ∙ rpm
−2) 

Rotational force 
coefficient 

6.11 × 10−2 

𝑐𝑀(N ∙ m ∙ rpm−2) 
Rotational moment 

coefficient 
1.5 × 10−9 

𝑇(s) 
Time constant of the 

first-order inertial 
system 

10 

𝑛ℎ(rpm) 
Rotor speed component 

for hovering 
√
𝑚𝑔

4𝑐𝐹
 

 

Fig. 2. The structure of the original PID control method.

3.1 Attitude Control 

According to (9), the control signals for different attitude 

angles are decoupled, so it’s easy to establish PD control over 

attitude angles respectively. The control signals can be 

obtained by the following formulas: 

{

∆𝑛𝜑 = 𝑘𝑝,𝜑(𝜑
𝑑𝑒𝑠 − 𝜑) + 𝑘𝑑,𝜑(𝜑

𝑑𝑒𝑠̇ − �̇�)

∆𝑛𝜃 = 𝑘𝑝,𝜃(𝜃
𝑑𝑒𝑠 − 𝜃) + 𝑘𝑑,𝜃(𝜃

𝑑𝑒𝑠̇ − �̇�)

∆𝑛𝜓 = 𝑘𝑝,𝜓(𝜓
𝑑𝑒𝑠 − 𝜓) + 𝑘𝑑,𝜓(𝜓

𝑑𝑒𝑠̇ − �̇�)

(12) 
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Where 𝜑𝑑𝑒𝑠 , 𝜃𝑑𝑒𝑠 , 𝜓𝑑𝑒𝑠  are the desired attitude angles and  

𝑘𝑖,𝑗 , 𝑖 = 𝑝, 𝑑, 𝑗 = 𝜑, 𝜃, 𝜓  are the control parameters of PD 

controllers. 

3.2 Position Control 

(Hoffmann et al., 2008) proposed a control method for 

quadrotor waypoint tracking. They established PID control 

over the cross-segment position error and the velocity error. 

Section 3.2 is based on the work of Hoffmann.  

The position error from the segment 𝑒𝑐𝑡 and the speed error 

𝑒𝑎𝑡 of the quadrotor during flight are shown in Fig. 3. 

 

(a) Position error 

 

(b) Speed error 

Fig. 3(a), (b). The position error and the speed error of the 

quadrotor. 

Where 𝑑𝑖 is the unit vector pointing from the waypoint 𝑝𝑒,𝑖
𝑑𝑒𝑠 to 

the waypoint 𝑝𝑒,𝑖+1
𝑑𝑒𝑠 . 𝑒𝑐𝑡  and 𝑒𝑎𝑡  can be computed from (13) 

and (14). 

𝑒𝑐𝑡 = ((𝑝𝑒 − 𝑝𝑒,𝑖
𝑑𝑒𝑠) ⋅ 𝑑𝑖) ⋅ 𝑑𝑖 − (𝑝𝑒 − 𝑝𝑒,𝑖

𝑑𝑒𝑠)                        (13) 

𝑒𝑎𝑡 = 𝑣
𝑑𝑒𝑠 ⋅ 𝑑𝑖 − (𝑣𝑒 ⋅ 𝑑𝑖) ⋅ 𝑑𝑖                                                 (14) 

PID control is established to 𝑒𝑐𝑡  and PI control to 𝑒𝑎𝑡 . The 

control signals along 𝑥, 𝑦 and 𝑧 axis is obtained as follow: 

[

𝑢𝑥
𝑢𝑦
𝑢𝑧
] = 𝑘𝑝,𝑐𝑡𝑒𝑐𝑡 + 𝑘𝑑,𝑐𝑡𝑒𝑐𝑡̇ + 𝑘𝑖,𝑐𝑡∫ 𝑒𝑐𝑡𝑑𝑡

𝑡

0

+                       

𝑘𝑝,𝑎𝑡𝑒𝑎𝑡 + 𝑘𝑖,𝑎𝑡∫ 𝑒𝑎𝑡𝑑𝑡
𝑡

0

(15)

 

Assume that the roll angle 𝜑  and the pitch angle 𝜃  of the 

quadrotor are very small, the yaw angle 𝜓 changes in a small 

range and the total pull is approximately equal to the gravity 

of the quadrotor: 

{
 
 

 
 
sin𝜑 ≈ 𝜑, cos 𝜑 ≈ 0
sin 𝜃 ≈ 𝜃, cos 𝜃 ≈ 0

𝜓 ≈ 𝜓𝑑𝑒𝑠

∑𝐹𝑖

4

𝑖=1

≈ 𝑚𝑔

                                                             (16) 

𝜑𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠, Δ𝑛𝐹 can be calculated by substituting (16) into (3). 

{
  
 

  
 𝜑𝑑𝑒𝑠 = −

1

𝑔
(𝑢𝑥 sin𝜓 − 𝑢𝑦 cos𝜓)

𝜃𝑑𝑒𝑠 = −
1

𝑔
(𝑢𝑥 cos𝜓 + 𝑢𝑦 sin 𝜓)

Δ𝑛𝐹 = −
𝑚

8𝑐𝐹𝑛ℎ
𝑢𝑧

                                    (17) 

By combining (9), (12) and (17), the desired motor speeds of 

the four rotors can be computed. Thus, the Inner-Outer loop 

PID control method for quadrotor waypoint tracking task is 

obtained. 

Table 3. Variables used in PID controllers. 

Symbol (Unit) Definition 

𝑣𝑑𝑒𝑠(m ∙ s−1) Desired flight rate 

𝜑𝑑𝑒𝑠(rad) Desired roll angle 

𝜃𝑑𝑒𝑠(rad) Desired pitch angle 

𝜓𝑑𝑒𝑠(rad) Desired yaw angle 

𝑒𝑐𝑡(m) Position error from the segment 

𝑒𝑎𝑡(m ∙ s−1) Speed error 

𝑝𝑒,𝑖
𝑑𝑒𝑠(m) Waypoint 𝑖 

𝑑𝑖 Unit vector pointing from 𝑝𝑒,𝑖
𝑑𝑒𝑠 to 𝑝𝑒,𝑖+1

𝑑𝑒𝑠  

𝑢𝑥(m ∙ s−2) Control signals along 𝑥 axis 

𝑢𝑦(m ∙ s−2) Control signals along 𝑦 axis 

𝑢𝑧(m ∙ s−2) Control signals along 𝑧 axis 

The variables and parameters of PID controllers in Section 3 

are shown in Table 3 and Table 4 according to the order of 

appearance. 

Table 4. Parameters of PID controllers. 

 
Proportionality 

Coefficient 

Integration 

Coefficient 

Differential 

Coefficient 

Attitude 

Control 

𝜑 2000 0 4000 

𝜃 2000 0 4000 

𝜓 800 0 4000 

Position 

Control 

𝑒𝑐𝑡  0.5 3 × 10−4 1 

𝑒𝑎𝑡  0.5 3 × 10−4 0 

4. CONTROL OF DESIRED FLIGHT RATE THROUGH 

NEURAL NETWORKS 

4.1 Task Model 

The task was modelled on a Markov Decision Process (MDP) 

which is defined by the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). 

The observation space is 𝑠𝑡 = [𝑝𝑜 , 𝑣𝑒 , 𝜔𝑏 , 𝑅𝑏2𝑒], where 𝑝𝑜  is 

the relative positions to waypoints, and 𝑅𝑏2𝑒 is the expansion 

of the rotation matrix. The action space is 𝑎𝑡 = [𝑣
𝑑𝑒𝑠]. The 
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reward 𝑟𝑡 is used to evaluate the performance of the action 𝑎𝑡 
taken in the observation space 𝑠𝑡. 

4.2 Control Method 

The structure of the control method proposed in this paper is 

shown in Fig.4. To change the desired flight rate of the 

quadrotor flexibly, the observation space of the quadrotor 𝑠𝑡 is 

mapped onto the action space 𝑎𝑡  using an Actor neural 

network. And this paper uses the DDPG algorithm, one of the 

reinforcement learning algorithms, to train the Actor network 

to give it proper weights for controlling the desired flight rate.  

4.3 DDPG Algorithm 

The DDPG algorithm is a reinforcement learning algorithm 

based on the AC architecture. It derives from the DQN 

algorithm and uses an Actor neural network to compensate for 

the inability of handling continuous control tasks (Lillicrap et 

al., 2015). The DDPG algorithm has been successfully applied 

in different environments (Zhang et al., 2020; Li, Ma et al., 

2020). There are also precedents for using the DDPG 

algorithm in the field of quadrotor control (Rubí et al., 2020; 

Rodriguez-Ramos et al., 2019). 

The Actor network in the DDPG algorithm is used to fit a 

policy function that maps the observation space directly to the 

action space, while the Critic network is used to fit a function 

that calculates the Q value, which is the expectation of the total 

future reward that the RL agent will receive. Under the 

observation space 𝑠𝑡 , a better action  𝑎𝑡  will get a higher Q 

value. When the Actor policy is 𝜇, which means 𝜇(𝑠𝑡) = 𝑎𝑡, 
the Q value of action 𝑎𝑡 in 𝑠𝑡 is as follow: 

𝑄𝜇( 𝑠𝑡 , 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟( 𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄
𝜇( 𝑠𝑡+1, 𝜇(𝑠𝑡+1))](18) 

Where 𝑄𝜇  means the Q value is calculated based on the policy 

𝜇 , 𝔼𝑟𝑡,𝑠𝑡+1~𝐸  denotes the expected discounted future reward 

from taking 𝑎𝑡 in 𝑠𝑡 to the end of the task, 𝑟( 𝑠𝑡 , 𝑎𝑡) is the step 

reward received by the RL agent when taking 𝑎𝑡 in 𝑠𝑡 and 𝛾 ∈
[0,1] represents the discount factor for the future reward. 

The goal of the DDPG algorithm is to find the strategy 𝜇∗ that 

brings the greatest expected discounted reward in one episode. 

 𝜇∗ = argmax𝔼𝜇∗ [∑𝛾𝑡𝑟(𝑡)

𝑡𝑓

𝑡=0

]                                               (19) 

Where 𝑡𝑓 is the end time of the task. 

Assume that there is an initialized Critic network 𝑄𝜇(𝑠, 𝑎|𝜃𝑄) 
and an initialized Actor network 𝜇(𝑠|𝜃𝜇)  where 𝜃𝑄  and 𝜃𝜇 

are respectively the weights of the Critic network and the 

Actor network. From (18), it is clear that the calculation of 

𝑄𝜇(𝑠𝑡 , 𝑎𝑡) requires the use of 𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1)). Therefore, 

updating the network parameters of 𝑄𝜇(𝑠, 𝑎|𝜃𝑄) will produce 

a situation where the Critic network estimates itself, resulting 

in overestimation and oscillation of the Q value. To make the 

training process more stable, the DDPG algorithm introduces 

the target Critic network 𝑄′𝜇′(𝑠, 𝑎|𝜃𝑄′) and the target Actor 

network 𝜇′(𝑠|𝜃𝜇′) with the same initial weights as the original 

networks. 

To get the greatest reward shown in (19), the Actor network is 

updated by maximizing 𝑄𝜇(𝑠, 𝑎). 

max
𝜃𝜇

𝑄𝜇(𝑠, 𝜇(𝑠))                                                                        (20) 

 

Fig. 4. The structure of the control method proposed in this paper. 

4.5 Reward Function 

For the quadrotor waypoint tracking, the major task is to 

reduce the time consumption for a quadrotor to pass all 

waypoints in sequence. Once the waypoints are set, the 

quadrotor is expected to fly on the line connecting adjacent 

waypoints, and there is no additional effort for computing the 

reference path. The reward function consists of four 

components: the progress reward 𝑟𝑝(𝑡) , the position error 

reward 𝑟𝑒(𝑡), the action reward 𝑟𝑎(𝑡) and the terminal reward  

𝑟𝑡(𝑡). 

The progress reward is set to measure the length of the route 

completed by the quadrotor per step. A greater progress reward 

means the quadrotor completes more distances in this step. As 

is not easy to measure the length of the completed route in 

three dimensions, this paper uses the projection of the 

quadrotor’s position on the line connecting adjacent waypoints 

as an approximation. 

 

(a) The structure of the Actor neural network 
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(b) The structure of the Critic neural network 

Fig. 5(a), (b). The structures of the Actor neural network and 

the Critic neural network. 

According to Fig. 3(a), at time 𝑡 , the projection of the 

quadrotor on the line connecting the adjacent waypoints 𝑠𝑃(𝑡) 
is defined as follow: 

𝑠𝑃(𝑡) =
(𝑝𝑒 − 𝑝𝑒,𝑖

𝑑𝑒𝑠) ∙ (𝑝𝑒,𝑖+1
𝑑𝑒𝑠 − 𝑝𝑒,𝑖

𝑑𝑒𝑠)

‖𝑝𝑒,𝑖+1
𝑑𝑒𝑠 − 𝑝𝑒,𝑖

𝑑𝑒𝑠‖
                                  (24) 

This gives the progress reward for the quadrotor at time 𝑡 as 

follow: 

𝑟𝑝(𝑡) = 𝑠𝑃(𝑡 + 1) − 𝑠𝑃(𝑡)                                                       (25) 

The position error reward 𝑟𝑒(𝑡) is used to penalize the position 

error from the flight path. Because the position error is the 

input of the PID controllers according to (15), and the PID 

controller will fail if the input is too large. The position error 

reward is determined by the positional error of (13): 

𝑟𝑒(𝑡) = −‖𝑒𝑐𝑡‖                                                                           (26) 

The action reward 𝑟𝑎(𝑡) is used to avoid a large desired flight 

rate when the quadrotor is close to waypoints or a small desired 

flight rate when the quadrotor is away from a waypoint. The 

PID controller outputs the control signal when the error signal 

appears and it takes some time for the integrator in the PID 

controller to "ramp up" to eliminate the error signal. However, 

if the quadrotor is moving too fast when approaching 

waypoints, the position error increases quickly before the 

quadrotor slows down and the PID controller will fall due to 

the large error input. In fact, it is hard for the RL agent to learn 

to slow down when closing a waypoint, as it has to give up 

some step rewards to gain a greater total reward, like jumping 

out of the local maximum to find the global maximum (Kamar 

et al, 2020). Thus, 𝑟𝑎(𝑡) can reduce the quadrotor crash and 

accelerate the training process of the RL agent. 

At time 𝑡, the distance between the projection of the quadrotor 

and the next waypoint 𝑠𝑅(𝑡)  can be calculated as follow 

according to Fig. 3(a): 

𝑠𝑅(𝑡) =
(𝑝𝑒,𝑖+1

𝑑𝑒𝑠 − 𝑝𝑒,𝑖
𝑑𝑒𝑠)

‖𝑝𝑒,𝑖+1
𝑑𝑒𝑠 − 𝑝𝑒,𝑖

𝑑𝑒𝑠‖
− 𝑠𝑃(𝑡)                                            (27) 

Introduce ∆ as follow: 

∆= {
𝑎𝑡 ∙ 𝑡𝑅 − 𝑠𝑅(𝑡), 𝑎𝑡 ∙ 𝑡𝑅 − 𝑠𝑅(𝑡) ≥ 0

𝑎𝑡 ∙ 𝑡𝑅 −min(𝑠𝑅(𝑡), 𝑎𝑡
𝑢𝑡𝑅), 𝑎𝑡 ∙ 𝑡𝑅 − 𝑠𝑅(𝑡) < 0

        (28) 

Where 𝑡𝑅 is a parameter for time and 𝑎𝑡
𝑢 is the upper bound of 

the action 𝑎𝑡  (which is set to 20m ∙ s−1  in this paper), and 

min(𝑠𝑅(𝑡), 𝑎𝑡
𝑢𝑡𝑅)  limits the range of ∆  when 𝑎𝑡 ∙ 𝑡𝑅 −

𝑠𝑅(𝑡) < 0. The action reward 𝑟𝑎(𝑡) is defined as follow: 

𝑟𝑎(𝑡) = −1 + 2 ∙ 𝑒
−(
∆
𝜎
)2                                                            (29) 

Where 𝜎 is a hyperparameter to control the range of 
∆

𝜎
 so 𝑟𝑎(𝑡) 

will change significantly while ∆ changes. Equation (29) is 

derived from the equation as follow: 

𝑦 = −1 + 2 ∙ 𝑒−𝑥
2
                                                                     (30) 

Equation (30) has a large gradient when 𝑥 ∈ [−2.5,2.5], so, 

when ∆ is away from 0, which means the action 𝑎𝑡  is either 

too big or too small for 𝑠𝑅(𝑡), the action reward 𝑟𝑎(𝑡) will 

decrease quickly. The action reward is big when |∆| is small. 

The image of (30) is shown in Fig. 6 and can help to understand 

the action reward 𝑟𝑎(𝑡). 

 

Fig. 6. The image of  𝑦 = −1 + 2 ∙ 𝑒−𝑥
2
. 

The terminal reward 𝑟𝑡(𝑡) is used for penalizing the quadrotor 

crash. The quadrotor crashes when |𝑒𝑐𝑡| is too big to eliminate. 

𝑟𝑡(𝑡)  makes the quadrotor easier and faster to learn to avoid 

the crash. The terminal reward 𝑟𝑡(𝑡)  can be calculated as 

follow: 

𝑟𝑡(𝑡) = {
𝑟𝑡 , 𝑖𝑓 𝑐𝑟𝑎𝑠ℎ
0, 𝑒𝑙𝑠𝑒

                                                                (31) 

Where 𝑟𝑡 < 0. Combining (25), (26), (29) and (31) gives the 

reward function as follow: 

𝑟(𝑡) = 𝑎1𝑟𝑝(𝑡) + 𝑎2𝑟𝑒(𝑡) + 𝑎3𝑟𝑎(𝑡) + 𝑟𝑡(𝑡)                       (32) 

𝑎1 , 𝑎2 , 𝑎3  are hyperparameters that balance the order of 

magnitude of different rewards. 

5. SIMULATION AND DISCUSSIONS 

The quadrotor model is built in the Simulink environment 

according to the formulas in Section 2 and Section 3, and the 

DDPG algorithm is implemented by PyTorch. The interaction 

between Simulink and Python is achieved with the MATLAB 

Engine API for Python. 

A time metric and position error metrics are set in order to 

describe the control performance. 

The time metric 𝑡𝑓 is the time it takes for the quadrotor to pass 

all waypoints in sequence, which is the main goal of the task. 

The position error metrics are used to describe the extent to 
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which the quadrotor deviates from the path. During flight, the 

largest position errors occur when switching waypoints and the 

quadrotor has the biggest possibility to get out of control. In 

this paper, the maximum position error when switching 

waypoint 𝑑𝑚  and the cumulative position error during the 

whole flight 𝑑𝑐  are used to describe the local and overall 

position errors of the quadrotor. A smaller  𝑑𝑚  means the 

quadrotor will be less likely to get out of control. A smaller 𝑑𝑐 
means the quadrotor will fly more accurately along the path. 

The cumulative position error 𝑑𝑐 is given by: 

𝑑𝑐 = ∫ ‖𝑒𝑐𝑡‖
𝑡𝑓

𝑡=0

𝑑𝑡(m ∙ s)                                                         (33) 

The starting point of the quadrotor is set to [0,0,0](m). The 

randomly generated set of waypoints is shown in Table 5. 

Table 5. The set of waypoints. 

No. Position(m) 

1 [244.42,83.55,19.82] 

2 [271.74,164.06,19.51] 

3 [38.10,287.25,32.68] 

4 [274.01,289.47,88.03] 

5 [189.71,47.28,47.11] 

5.1 Policy Training 

The main challenge during training is that the experiences 

stored in the replay buffer have an uneven distribution, as there 

are more experiences when the quadrotor is away from 

waypoints than close to waypoints. Therefore, the RL agent 

has less chance to learn how to pass a waypoint as the 

experiences in the replay buffer have equal importance. (Hou 

et al., 2017) proposed a prioritized replay buffer method using 

prioritized sampling. In this paper, the replay buffer is divided 

into two parts, respectively storing the experiences when the 

quadrotor is far from the waypoints and close to the waypoints. 

This helps the quadrotor learn to pass waypoints and reduces 

the training time. 

The policy training process with the DDPG algorithm in this 

paper is shown below. 

Algorithm 1 Policy Training with the DDPG algorithm 

1: Randomly initialize Actor network and Critic network 

2: Initialize target networks with the same weights 

3: Initialize two replay buffers to store experiences when 

the quadrotor is far from waypoints and close to 

waypoints respectively 

4: for episode ← 1 to M do 

5:     Initialize the quadrotor 

6:     for t ← 1 to T do 

7:         Compute 𝑎𝑡 according to the current actor network 

and exploration noise 

8:         Execute 𝑎𝑡  in the Simulink environment and 

compute 𝑠𝑡+1 and 𝑟𝑡 

9:         Store tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)  in one of two replay 

buffers according to the distance between the quadrotor 

and waypoints 

10:        Sample a random minibatch of 
𝑁

2
 in each replay 

buffer 

11:         Update the Actor network using (20) 

12:         Update the Critic network using (21) and (22) 

13:         Update target networks according to the soft 

update strategy 

14:     end for 

15: end for 

(Song et al., 2021) used a parallelized implementation 

simulating hundreds of quadrotors in parallel to collect up to 

25000 environment interactions per second, which was even 

larger than the memory capacity of the replay buffers in this 

paper. With the help of the Inner-Outer loop control method, 

the control instability at the beginning of learning is reduced, 

and thus reducing the time consumptions and the cost of 

computation needed for training. It takes 3 hours for training 

50 episodes.  

The average step reward gained by the RL agent is shown in 

Fig. 7. In the first four episodes, 𝑎𝑡  increased very fast and 

caused the quadrotor to crash, therefore, the average reward 

reduced at the first 4 episodes. After that, the quadrotor didn’t 

crash anymore with the training set of waypoints. 

The loss curves of the Actor network and the Critic network 

are shown in Fig. 8.  

 

Fig. 7. Average step reward gained by the RL agent. 

 

(a) Loss curve for the Actor network 
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(b) Loss curve for the Critic network 

Fig. 8(a), (b). The loss curves of the Actor network and the 

Critic network. 

The metrics during training are shown in Table 6. Fig. 9 shows 

the outputs of the Actor network before and after training. Fig. 

10 shows the quadrotor’s trajectories after different episodes. 

This can give an intuitive view of the learning process of the 

RL agent. 

Table 6. The metrics during training. 

 𝑡𝑓(s) 𝑑𝑚(m) 𝑑𝑐(m ∙ s) 

1 episode 140.14 8.30 139.52 

4 episodes Crash 

30 episodes 76.26 14.36 219.53 

50 episodes 74.78 14.06 206.89 

 

(a) 𝑎𝑡 before training 

 

(b) 𝑎𝑡 after training 

Fig. 9(a), (b). The output of the Actor network. 

5.2 Training Results 

To evaluate the performance of the trained Actor network, this 

paper introduces three methods as baselines. 

Our method is the method proposed in this paper. 

Method A is setting the desired flight rate 𝑣𝑑𝑒𝑠 = 13m ∙ s−1, 

which is set as large as possible while finishing the training 

route in this paper successfully. 

Method B is gained from the shape of the output of the Actor 

network, and is defined by 𝑠𝑅(𝑡) in (27): 

𝑣𝑑𝑒𝑠 = {
20m ∙ s−1, 𝑠𝑅(𝑡) ≥ 100m

10m ∙ s−1, 𝑠𝑅(𝑡) < 100m
                                       (34) 

Method C is the sliding mode control method based on the 

backstepping approach (Bouadi et al., 2007). 

The metrics of different control methods are shown in Table 7. 

Table 7. The metrics of different control methods. 

 𝑡𝑓(s) 𝑑𝑚(m) 𝑑𝑐(m ∙ s) 

Ours 74.78 14.06 206.89 

Method A 102.12 14.66 208.32 

Method B 78.40 14.19 208.45 

Method C 79.97 5.33 138.63 

The quadrotor’s real trajectories using different control 

methods are shown in Fig. 11. 

 

Fig. 10. The quadrotor’s trajectories after different episodes. 

 

Fig. 11. The quadrotor’s trajectories using different control 

methods. 
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To compare the performances directly, this paper uses the 

length of the path completed by the quadrotor as the 𝑥 axis of 

the figures, which is equal in different control methods. 

For four control methods, the quadrotor’s motions along 𝑥, 𝑦 

and 𝑧 axis are shown in Fig. 12. 

 

(a) the quadrotor’s motions along 𝑥 axis 

 

(b) the quadrotor’s motions along 𝑦 axis 

 

(c) the quadrotor’s motions along 𝑧 axis 

Fig. 12(a), (b) and (c). The quadrotor’s motions along 𝑥, 𝑦 and 

𝑧 axis. 

5.3 Discussions 

Method A and method B are Inner-Outer loop PID control 

methods that are the same as the method proposed in this 

paper. According to Table 7, the method proposed in this paper 

outperforms both Method A and method B in terms of all three 

metrics. This demonstrates that the method proposed in this 

paper is able to control the desired flight rate of the quadrotor 

properly and improve the performance of the Inner-Outer loop 

PID control system. The performance of the method B is 

similar to the method proposed in this paper, and this is 

because the output of the Actor network after training in this 

paper is easy to imitate due to the upper bound on the desired 

flight rate. 

Method C is another common type of control method for 

quadrotors. According to Table 7, the method proposed in this 

paper does better in 𝑡𝑓 while is not as good as the method C in 

terms of 𝑑𝑚 and 𝑑𝑐. As shown in Fig. 13, the trajectory of the 

method C presents a permanent tracking error which also 

occurs in the paper of the method C. 

 

Fig. 13. The position errors of the quadrotor using different 

control method. 

As shown in Fig. 14, the velocity of the quadrotor using the 

method C changes drastically compared with the quadrotor 

using the method proposed in this paper, and this leads to 

higher energy consumption which will reduce the quadrotor’s 

endurance. Additionally, there is chatter when using the 

method C based on the sliding mode control in Fig. 14 that 

does damage to the quadrotor and increases the risk of 

quadrotor crash if applied in reality (Lin et al., 2022). What’s 

more, the proper parameters of the sliding mode control 

(method C) are more difficult to find than those of the PID 

control method (method proposed in this paper). Therefore, the 

method proposed in this paper is more suitable for practical 

application with less time consumption. 

 

Fig. 14. The speed curves of the quadrotor. 

6. CONCLUSIONS 

This paper uses neural networks to control the input of the 

Inner-Outer loop PID control method, the desired flight rate, 

to accomplish the quadrotor waypoint tracking task. Firstly, 

this paper presents the Inner-Outer loop PID control method to 

complete the waypoint tracking task. In order to make the 

quadrotor adjust its flight rate flexibly, the Actor network is 

introduced to control the desired flight rate and is trained by 

the DDPG algorithm. Simulation results prove that the 

proposed method is able to adjust the desired flight rate 

successfully and improve the performance of the Inner-Outer 

loop PID control system. 
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In future, there is room for improvements of the control system 

in this paper. Using fractional order PID controllers can 

improve the performance of PID control (Trivedi and Padhy, 

2021). Using more advanced reinforcement algorithms like 

twin delayed deep deterministic policy gradient algorithm 

(Fujimoto et al., 2018) and changing the structures of the 

networks like using multilinear map of state and action as a 

new input (Long et al., 2018) are possible improvements from 

a reinforcement learning perspective.  

REFERENCES 

Bo, G.,  Xin, L., Hui, Z., and Ling, W. (2016). Quadrotor 

helicopter Attitude Control using cascade PID. 2016 

Chinese Control and Decision Conference, 5158-5163. 

Bouadi, H., Bouchoucha, M., Tadjine, M. (2007). Sliding 

mode control based on backstepping approach for an 

UAV type-quadrotor. World Academy of Science, 

Engineering and Technology, 26(5): 22-27. 

Cajo, R., Copot, C., Ionescu, C.M., De Keyser, R., and Plaza, 

D. (2018). Fractional Order PD Path-Following Control 

of an AR. Drone Quadrotor. 2018 IEEE 12th 

International Symposium on Applied Computational 

Intelligence and Informatics, 291-296. 

Cao, N., and Lynch, A. F. (2016). Inner–Outer Loop Control 

for Quadrotor UAVs With Input and State Constraints. 

IEEE Transactions on Control Systems Technology, vol 

(24), 5:797-1804. 

Farid, G., Mo, H., Zahoor, M.I., and Liwei, Q. (2018). 

Computationally efficient algorithm to generate a 

waypoints-based trajectory for a quadrotor UAV. 2018 

Chinese Control And Decision Conference, 4414-4419. 

Fujimoto, S., Hoof, H., Meger, D. (2018). Addressing function 

approximation error in actor-critic methods. 

International conference on machine learning, 1587-

1596. 

Julkananusart, A., and Nilkhamhang, I. (2015). Quadrotor 

tuning for attitude control based on double-loop PID 

controller using fictitious reference iterative tuning 

(FRIT). IECON 2015 - 41st Annual Conference of the 

IEEE Industrial Electronics Society, 4865-4870. 

Hoffmann, G., Waslander, S., and Tomlin, C. (2008). 

Quadrotor helicopter trajectory tracking control. AIAA 

guidance, navigation and control conference and 

exhibit, 7410. 

Hou, Y., Liu, L., Wei, Q., Xu, X., and Chen, C. (2017). A novel 

DDPG method with prioritized experience replay. 2017 

IEEE International Conference on Systems, Man, and 

Cybernetics, 316-321. 

Hwangbo, J., Sa, I., Siegwart, R., and Hutter, M. (2017). 

Control of a quadrotor with reinforcement learning. 

IEEE Robotics and Automation Letters, 2(4), 2096-2103. 

Kamar, D., Akyol, G., Mertan, a., and İnceoğlu, A. (2020). 

Comparative Analysis of Reinforcement Learning 

Algorithms on TORCS Environment. 2020 28th Signal 

Processing and Communications Applications 

Conference, 1-4. 

Kumar, V. B., Sampath, D., Siva Praneeth, V. N., and Pavan 

Kumar, Y. V. (2021). Error Performance Index Based 

PID Tuning Methods for Temperature Control of Heat 

Exchanger System. 2021 IEEE International IOT, 

Electronics and Mechatronics Conference, 1-6. 

L'Afflitto, A., Anderson, R. B., and Mohammadi, K. (2018). 

An Introduction to Nonlinear Robust Control for 

Unmanned Quadrotor Aircraft: How to Design Control 

Algorithms for Quadrotors Using Sliding Mode Control 

and Adaptive Control Techniques [Focus on Education]. 

IEEE Control Systems Magazine, 38(3), 102-121. 

Lambert, N.O., Drew, D.S., Yaconelli, J., Levine, S.,  

Calandra, R., and Pister, K.S.J. (2019). Low-Level 

Control of a Quadrotor With Deep Model-Based 

Reinforcement Learning. IEEE Robotics and 

Automation Letters, 4(4), 4224-4230. 

Larsson, D.T., Nguyen, C. H., and Artemiadis, P. (2020). 

Modeling and Control of Mid-flight Coupling of 

Quadrotors: A new concept for Quadrotor cooperation. 

2020 International Conference on Unmanned Aircraft 

Systems, 310-315. 

Li, X., Qi, G., Guo, X., and Ma, S. (2020). Trajectory Tracking 

of a Quadrotor UAV based on High-Order Differential 

Feedback Control. 2020 IEEE 9th Data Driven Control 

and Learning Systems Conference, 201-206. 

Li, Z., Ma, H., Ding, Y., Wang, C., and Jin, Y. (2020). Motion 

Planning of Six-DOF Arm Robot Based on Improved 

DDPG Algorithm. 2020 39th Chinese Control 

Conference, 3954-3959. 

Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al. (2015). Continuous 

control with deep reinforcement learning. ArXiv, 

1509.02971. 

Lin, C.H., Ho, C.W., Hu, G.H., Sreeramaneni, B., Yan, J.J. 

(2022). Robust chaos suppression of uncertain unified 

chaotic systems based on chattering-free sliding mode 

control. Measurement and Control. 55(5-6):321-329. 

Long, M., Cao, Z., Wang, J., et al. (2018). Conditional 

adversarial domain adaptation. Advances in neural 

information processing systems, 31. 

Mohamad Ali Tousi, S., Mostafanasab, A., and Teshnehlab, 

M. (2020). Design of Self Tuning PID Controller Based 

on Competitional PSO. 2020 4th Conference on Swarm 

Intelligence and Evolutionary Computation, 22-26. 

Mahmud, M., Motakabber, S.M.A., Zahirul Alam, A.H.M., 

and Nordin, A.N. (2020). Adaptive PID Controller Using 

for Speed Control of the BLDC Motor. 2020 IEEE 

International Conference on Semiconductor Electronics, 

168-171. 

Parivash, F., and Ghasemi, A. (2017). Trajectory tracking 

control for a quadrotor using fuzzy PID control scheme. 

2017 IEEE 4th International Conference on Knowledge-

Based Engineering and Innovation, 0553-0558. 

Penicka, R., and Scaramuzza, D. (2022). Minimum-Time 

Quadrotor Waypoint Flight in Cluttered Environments. 

IEEE Robotics and Automation Letters, 7(2), 5719-5726. 

Qian, G.M., Pebrianti, D., Chun, Y.W., Hao, Y.H., and  

Bayuaji, L. (2017). Waypoint navigation of quad-rotor 

MAV. 2017 7th IEEE International Conference on 

System Engineering and Technology, 38-42. 

Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Puente, P., 

and Campoy, P. (2019). A deep reinforcement learning 

strategy for uav autonomous landing on a moving 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                                                                                             100      

platform. Journal of Intelligent & Robotic Systems, 

93(1), 351-366. 

Rubí, B., Morcego, B., and Pérez, R. (2020). A Deep 

Reinforcement Learning Approach for Path Following 

on a Quadrotor. 2020 European Control Conference, 

1092-1098. 

Saraf, P., Gupta, M., and Parimi, a.m. (2020). A Comparative 

Study Between a Classical and Optimal Controller for a 

Quadrotor. 2020 IEEE 17th India Council International 

Conference, 1-6. 

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and 

Klimov, O. (2017). Proximal Policy Optimization 

Algorithms. ArXiv, 1707.06347. 

Song, W., Li, Z., Xu, B., Wang S., and Meng, X. (2022). 

Research on Improved Control Algorithm of Quadrotor 

UAV based on Fuzzy PID. 2022 IEEE International 

Conference on Artificial Intelligence and Computer 

Applications, 361-365. 

Song, Y., Steinweg, M., Kaufmann, E., and Scaramuzza, D. 

(2021). Autonomous Drone Racing with Deep 

Reinforcement Learning. 2021 IEEE/RSJ International 

Conference on Intelligent Robots and Systems, 1205-

1212. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trivedi, R., and Padhy, P.K. (2021). Design of Indirect 

Fractional Order IMC Controller for Fractional Order 

Processes. IEEE Transactions on Circuits and Systems 

II: Express Briefs, 68(3): 968-972. 

Zhang, Q., Tang, R., Gou, S., and Zhang, W. (2020). A PID 

Gain Adjustment Scheme Based on Reinforcement 

Learning Algorithm for a Quadrotor. 2020 39th Chinese 

Control Conference, 6756-6761. 

Zhang, M., Zhang, Y., Gao, Z., and  He, X. (2020). An 

Improved DDPG and Its Application Based on the 

Double-Layer BP Neural Network. IEEE Access, 8, 

177734-177744. 

Zhang, X., Li, X., Wang, K., et al. (2014). A survey of 

modelling and identification of quadrotor robot. Abstract 

and Applied Analysis, vol (2014). 


