
CEAI, Vol.25, No.1, pp. 90-100, 2023 Printed in Romania

Waypoint Tracking Control for a Quadrotor based on PID and Reinforcement

Learning

Xurui Bao, Zhouhui Jing

School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Abstract: Waypoint tracking is a common task for quadrotors, which is usually achieved by the Inner-Outer loop PID

control method. The outer loop is implemented by establishing PID control for the position and velocity errors of the

quadrotor. This method requires the quadrotor's desired flight rate as an input. However, setting a fixed desired flight

rate cannot match to changes in waypoints and the quadrotor's own state, which can lead to a large time consumption

or even mission failure. To solve this problem, this paper uses a neural network trained by the DDPG algorithm to

control the desired flight rate of the quadrotor during flight, so that the quadrotor can adjust the desired flight rate

flexibly to achieve a better waypoint tracking performance. Simulation results show that the method proposed in this

paper can improve the performance of the Inner-Outer loop PID control system through adjusting the desired flight

rate.

Keywords: quadrotor, waypoint tracking, PID, reinforcement learning, neural network

1. INTRODUCTION

In recent years, tremendous progress has been made in

researches related to quadrotors (L'Afflitto et al., 2018). And

this leads to a wide range of applications, such as in the field

of photography, transportation and rescue (Penicka and

Scaramuzza, 2022). Waypoint tracking is one of the common

tasks for quadrotors (Larsson et al., 2020; Qian et al., 2017).

For the quadrotor waypoint tracking task, the dominant

solutions are derived from PID control, which consists of

proportional, integral and differential components. Due to its

simple structure, PID control has effective parameter tuning

methods (Mohamad Ali Tousi et al., 2020; Kumar et al., 2021).

Therefore, it is widely used in industry (Mahmud et al., 2020;

Bo et al., 2016). The Inner-Outer loop PID control method

derives from PID control and has been widely used for

quadrotor control (Julkananusart and Nilkhamhang, 2015).

(Saraf et al., 2020) approximately linearized the model of the

quadrotor and presented a comparison between the PID

method and LQR method acting on a quadrotor. However, the

fixed PID parameters cannot adapt to complex path conditions

and the quadrotor may generate large error signals along some

complicated paths, causing PID controllers to fail. (Zhang et

al., 2020) proposed a PID gain adjustment method based on

the reinforcement learning algorithm, and improved the

dynamic performance and the stability of the PID controller.

(Cajo et al., 2018) used a fractional order PD control method

to achieve the path-following control of the quadrotor. (Farid

et al., 2018) used interpolation methods on linear trajectories

to generate a series of waypoints to generate a smoother path

in order to increase the possibility of completing the task. But

this method does not reduce the time consumption of the task.

(Song et al., 2022) introduced the fuzzy PID controller to

improve the flight stability and the robustness of the quadrotor.

But the simple fuzzy processing of the information of the

control system leads to a reduction in the control accuracy, and

the design of the fuzzy rule relies on experience.

With the development of neural networks and deep learning,

people begin to seek for new control methods for quadrotors.

(Lambert et al., 2019) used neural networks to predict changes

of the state of a quadrotor with different control inputs and

selected the one that brought the predicted velocity and

acceleration closest to 0 to keep the quadrotor hovering in the

air. (Rubí et al., 2020) used neural networks and the DDPG

algorithm to calculate the expected yaw angle of the quadrotor.

(Song et al., 2021) used neural networks trained by the PPO

algorithm, one of the reinforcement learning algorithms

(Schulman et al., 2017), to directly control the rotor voltage to

complete a racing competition in a less time consumption than

quadrotors controlled by professionals. This shows that it is

feasible to control quadrotors through reinforcement learning

algorithms and neural networks.

However, controlling quadrotors through neural networks

faces two major challenges: a long training time consumption

and difficulties in convergence (Hwangbo et al., 2017). These

mainly come from two points: the control instability at the

beginning of the learning process leading to a large time

consumption for trial and error and the difficulties of designing

a proper reward function to avoid local optima of the RL

algorithm.

The contribution of this paper is using neural networks trained

by the DDPG algorithm to control the desired flight rate, which

is the input of the Inner-Outer loop PID control method of the

control system. On the one hand, PID control guides the

quadrotor in the right direction to ensure a reasonable reward

during reinforcement learning, which largely reduces the

training difficulties and time consumptions. On the other hand,

the DDPG algorithm makes use of the nonlinearity and self-

learning ability of neural networks to approximate a control

policy of the desired flight rate. The simulation result proves

that using neural networks trained by DDPG to control the

input of PID controller improves the performance of the

original Inner-Outer loop PID control method.

91 CONTROL ENGINEERING AND APPLIED INFORMATICS

2. THE MODEL OF A QUADROTOR

2.1 Rigid Body Model of a Quadrotor

The model of a quadrotor used in this paper is based on the

Section 4 of the work from (Zhang et al., 2014). The quadrotor

is a 6 degree-of-freedom rigid body.

There are two reference frame concepts in this paper: the flat

Earth reference frame (𝑂𝑒𝑋𝑒𝑌𝑒𝑍𝑒) and the body-fixed

coordinate frame (𝑂𝑏𝑋𝑏𝑌𝑏𝑍𝑏). The schematic of the quadrotor

and reference frames is shown in Fig. 1.

Fig. 1. The schematic of the quadrotor and reference frames.

Where 𝑚 is the mass of the quadrotor, 𝑔 is the gravitational

constant, 𝐿 is the arm length of the quadrotor, which is the

distance from the center of the rotor to the center of mass of

the quadrotor, and 𝐹𝑖 is the thrust force generated by rotor 𝑖.

Let the inertia matrix be 𝐽 = diag(𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧), where 𝐼𝑥𝑥 , 𝐼𝑦𝑦,

𝐼𝑧𝑧 are inertia components along 𝑥, 𝑦 and 𝑧 axis.

During the flight, the position 𝑝𝑒 and the velocity 𝑣𝑒 in the flat

Earth reference frame satisfy the relationship:

𝑝�̇� = 𝑣𝑒 (1)

The body angular velocity 𝜔𝑏 and the attitude angles of the

quadrotor satisfy the relationship:

𝜔𝑏 = [
�̇�
0
0

] + [
1 0 0
0 cos 𝜑 sin𝜑
0 − sin𝜑 cos𝜑

] [
0
�̇�
0

]

+ [
1 0 0
0 cos𝜑 sin 𝜑
0 − sin𝜑 cos𝜑

] [
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
] [

0
0
�̇�
]

= [

1 0 − sin 𝜃
0 cos𝜑 sin𝜑 cos 𝜃
0 − sin𝜑 cos𝜑 sin 𝜃

] [

�̇�

�̇�
�̇�

] (2)

Where 𝜑 is the roll angle, 𝜃 is the pitch angle and 𝜓 is the yaw

angle.

In accordance with Newton's second law, the linear motion of

the quadrotor is generated by the combined external forces

provided by four rotors, and satisfies the relationship:

𝑚𝑣�̇� = [
0
0
𝑚𝑔

] − 𝑅𝑏2𝑒

[

0
0

∑𝐹𝑖

4

𝑖=1]

 (3)

Where 𝑅𝑏2𝑒 is the rotation matrix from the body-fixed

coordinate frame to the flat Earth reference frame.

𝑅𝑏2𝑒 =

[
cos 𝜃 cos𝜓 sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓 sin𝜑 sin𝜓 + cos𝜑 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 cos𝜑 cos𝜓 + sin𝜑 sin𝜃 sin𝜓 cos𝜑 sin𝜃 sin𝜓 − sin𝜑 cos𝜓
−sin 𝜃 sin𝜑 cos 𝜃 cos𝜑 cos 𝜃

] (4)

The angular motion of the drone is generated by the moments

of four rotors, and the relationship between the moments and

the body angular velocity can be obtained according to Euler's

equation as:

𝐽𝜔�̇� = −𝜔𝑏 × (𝐽𝜔𝑏) + [

𝐿(𝐹2 − 𝐹4)

𝐿(𝐹1 − 𝐹3)
𝑀2 +𝑀4 −𝑀1 −𝑀3

] (5)

Where 𝑀𝑖 is the moment generated by rotor 𝑖.

2.2 Motor Dynamical Model

The thrust force and the moment generated by a rotor are

proportional to the square of the rotor speed (Li, Qi et al.,

2020). Assume each rotor has a rotational force coefficient of

𝑐𝐹 and a rotational moment coefficient of 𝑐𝑀. The actual rotor

speed of rotor 𝑖 is 𝑛𝑖.

Then the thrust forces and moments generated by rotors can be

obtained by following formulas:

𝐹𝑖 = 𝑐𝐹𝑛𝑖
2, 𝑖 = 1,2,3,4 (6)

𝑀𝑖 = 𝑐𝑀𝑛𝑖
2, 𝑖 = 1,2,3,4 (7)

The actual rotor speed and the desired rotor speed of rotor 𝑖
satisfy the relationship:

𝑛𝑖̇ =
1

𝑇
(𝑛𝑖

𝑑𝑒𝑠 − 𝑛𝑖) (8)

Where 𝑇 is the time constant of the first-order inertial system

and 𝑛𝑖
𝑑𝑒𝑠 is the desired rotor speed of rotor 𝑖. The actual rotor

speed is limited to the range of [1200,7800]rpm.

The desired rotor speeds can be broken down by the effect

produced into different components: the component 𝑛ℎ that

keeps the vehicle hovering, the component ∆𝑛𝐹 that produces

the lift, and the components ∆𝑛𝜑 , ∆𝑛𝜃 , ∆𝑛𝜓 that cause the

attitude angles to change. Thus, we can calculate the four

desired rotor speeds by using the following equation:

[

𝑛1
𝑑𝑒𝑠

𝑛2
𝑑𝑒𝑠

𝑛3
𝑑𝑒𝑠

𝑛4
𝑑𝑒𝑠]

= [

1
1
1
1

0
1
0
−1

1
0
−1
0

−1
1
−1
1

]

[

𝑛ℎ + ∆𝑛𝐹
∆𝑛𝜑
∆𝑛𝜃
∆𝑛𝜓]

 (9)

From the force analysis of the hovering state, 𝑛ℎ satisfies the

relationship:

4𝑐𝐹𝑛ℎ
2 = 𝑚𝑔 (10)

Hence, 𝑛ℎ can be calculated as:

𝑛ℎ = √
𝑚𝑔

4𝑐𝐹
 (11)

The variables and parameters used to model the quadrotor in

Section 2 are shown in Table 1 and Table 2 according to the

order of appearance.

CONTROL ENGINEERING AND APPLIED INFORMATICS 92

Table 1. Variables used to model the quadrotor.

Symbol (Unit) Definition

𝑝𝑒(m) Position in the geodetic coordinate system

𝑣𝑒(m ∙ s−1) Velocity in the geodetic coordinate system

𝜔𝑏(rad ∙ s
−1) Body angular velocity

𝜑(rad) Roll angle

𝜃(rad) Pitch angle

𝜓(rad) Yaw angle

𝑅𝑏2𝑒 Rotation matrix

𝐹𝑖(N) Thrust force generated by rotor 𝑖

𝑀𝑖(N ∙ m) Moment generated by rotor 𝑖

𝑛𝑖(rpm) Actual rotor speed of rotor 𝑖

𝑛𝑖
𝑑𝑒𝑠(rpm) Desired rotor speed of rotor 𝑖

𝑛ℎ(rpm) Rotor speed component for hovering

∆𝑛𝐹(rpm) Rotor speed component to produce lift

∆𝑛𝜑(rpm) Rotor speed component to change roll angle

∆𝑛𝜃(rpm) Rotor speed component to change pitch angle

∆𝑛𝜓(rpm) Rotor speed component to change yaw angle

3. PID CONTROL OF WAYPOINT TRACKING

The Inner-Outer loop PID control method is the most common

control method for quadrotors, which consists of PID

controllers. It is easy to understand what this method is trying

to do. What’s more, this method requires little computation

time and memories which makes it possible for further

improvements (Cao, 2016; Parivash et al., 2017).

The outer loop calculates the force needed by the quadrotor to

track a path, and then converts the calculated force into the

desired attitude angles and the thrust force for lift. The inner

loop uses the PID control method to follow the desired attitude

angles.

The structure of the Inner-Outer loop PID control method with

constant desired flight rate is shown in Fig. 2 and the inputs to

this system are a set of waypoints and the desired flight rate

𝑣𝑑𝑒𝑠 of the quadrotor. The implementation of the control

modules will be interpreted in Section 3.1 and Section 3.2.

Table 2. Parameters used to model the quadrotor.

Symbol (Unit) Definition Value

𝑚(kg) Mass of the quadrotor 0.5

𝐿(m) Arm length 0.2

𝐽(N ∙ s2 ∙ rad−1) Inertia Matrix diag(𝐼𝑥𝑥, 𝐼𝑦𝑦 , 𝐼𝑧𝑧)

𝐼𝑥𝑥(N ∙ s
2 ∙ rad−1)

Inertia components

along 𝑥 axis
0.114

𝐼𝑦𝑦(N ∙ s
2 ∙ rad−1)

Inertia components

along 𝑦 axis
0.114

𝐼𝑧𝑧(N ∙ s
2 ∙ rad−1)

Inertia components

along 𝑧 axis
0.158

𝑔(m ∙ s−2) Gravitational constant 9.8

𝑐𝐹(N ∙ rpm
−2)

Rotational force
coefficient

6.11 × 10−2

𝑐𝑀(N ∙ m ∙ rpm−2)
Rotational moment

coefficient
1.5 × 10−9

𝑇(s)
Time constant of the

first-order inertial
system

10

𝑛ℎ(rpm)
Rotor speed component

for hovering
√
𝑚𝑔

4𝑐𝐹

Fig. 2. The structure of the original PID control method.

3.1 Attitude Control

According to (9), the control signals for different attitude

angles are decoupled, so it’s easy to establish PD control over

attitude angles respectively. The control signals can be

obtained by the following formulas:

{

∆𝑛𝜑 = 𝑘𝑝,𝜑(𝜑
𝑑𝑒𝑠 − 𝜑) + 𝑘𝑑,𝜑(𝜑

𝑑𝑒𝑠̇ − �̇�)

∆𝑛𝜃 = 𝑘𝑝,𝜃(𝜃
𝑑𝑒𝑠 − 𝜃) + 𝑘𝑑,𝜃(𝜃

𝑑𝑒𝑠̇ − �̇�)

∆𝑛𝜓 = 𝑘𝑝,𝜓(𝜓
𝑑𝑒𝑠 − 𝜓) + 𝑘𝑑,𝜓(𝜓

𝑑𝑒𝑠̇ − �̇�)

(12)

93 CONTROL ENGINEERING AND APPLIED INFORMATICS

Where 𝜑𝑑𝑒𝑠 , 𝜃𝑑𝑒𝑠 , 𝜓𝑑𝑒𝑠 are the desired attitude angles and

𝑘𝑖,𝑗 , 𝑖 = 𝑝, 𝑑, 𝑗 = 𝜑, 𝜃, 𝜓 are the control parameters of PD

controllers.

3.2 Position Control

(Hoffmann et al., 2008) proposed a control method for

quadrotor waypoint tracking. They established PID control

over the cross-segment position error and the velocity error.

Section 3.2 is based on the work of Hoffmann.

The position error from the segment 𝑒𝑐𝑡 and the speed error

𝑒𝑎𝑡 of the quadrotor during flight are shown in Fig. 3.

(a) Position error

(b) Speed error

Fig. 3(a), (b). The position error and the speed error of the

quadrotor.

Where 𝑑𝑖 is the unit vector pointing from the waypoint 𝑝𝑒,𝑖
𝑑𝑒𝑠 to

the waypoint 𝑝𝑒,𝑖+1
𝑑𝑒𝑠 . 𝑒𝑐𝑡 and 𝑒𝑎𝑡 can be computed from (13)

and (14).

𝑒𝑐𝑡 = ((𝑝𝑒 − 𝑝𝑒,𝑖
𝑑𝑒𝑠) ⋅ 𝑑𝑖) ⋅ 𝑑𝑖 − (𝑝𝑒 − 𝑝𝑒,𝑖

𝑑𝑒𝑠) (13)

𝑒𝑎𝑡 = 𝑣
𝑑𝑒𝑠 ⋅ 𝑑𝑖 − (𝑣𝑒 ⋅ 𝑑𝑖) ⋅ 𝑑𝑖 (14)

PID control is established to 𝑒𝑐𝑡 and PI control to 𝑒𝑎𝑡 . The

control signals along 𝑥, 𝑦 and 𝑧 axis is obtained as follow:

[

𝑢𝑥
𝑢𝑦
𝑢𝑧
] = 𝑘𝑝,𝑐𝑡𝑒𝑐𝑡 + 𝑘𝑑,𝑐𝑡𝑒𝑐𝑡̇ + 𝑘𝑖,𝑐𝑡∫ 𝑒𝑐𝑡𝑑𝑡

𝑡

0

+

𝑘𝑝,𝑎𝑡𝑒𝑎𝑡 + 𝑘𝑖,𝑎𝑡∫ 𝑒𝑎𝑡𝑑𝑡
𝑡

0

(15)

Assume that the roll angle 𝜑 and the pitch angle 𝜃 of the

quadrotor are very small, the yaw angle 𝜓 changes in a small

range and the total pull is approximately equal to the gravity

of the quadrotor:

{

sin𝜑 ≈ 𝜑, cos 𝜑 ≈ 0
sin 𝜃 ≈ 𝜃, cos 𝜃 ≈ 0

𝜓 ≈ 𝜓𝑑𝑒𝑠

∑𝐹𝑖

4

𝑖=1

≈ 𝑚𝑔

 (16)

𝜑𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠, Δ𝑛𝐹 can be calculated by substituting (16) into (3).

{

 𝜑𝑑𝑒𝑠 = −

1

𝑔
(𝑢𝑥 sin𝜓 − 𝑢𝑦 cos𝜓)

𝜃𝑑𝑒𝑠 = −
1

𝑔
(𝑢𝑥 cos𝜓 + 𝑢𝑦 sin 𝜓)

Δ𝑛𝐹 = −
𝑚

8𝑐𝐹𝑛ℎ
𝑢𝑧

 (17)

By combining (9), (12) and (17), the desired motor speeds of

the four rotors can be computed. Thus, the Inner-Outer loop

PID control method for quadrotor waypoint tracking task is

obtained.

Table 3. Variables used in PID controllers.

Symbol (Unit) Definition

𝑣𝑑𝑒𝑠(m ∙ s−1) Desired flight rate

𝜑𝑑𝑒𝑠(rad) Desired roll angle

𝜃𝑑𝑒𝑠(rad) Desired pitch angle

𝜓𝑑𝑒𝑠(rad) Desired yaw angle

𝑒𝑐𝑡(m) Position error from the segment

𝑒𝑎𝑡(m ∙ s−1) Speed error

𝑝𝑒,𝑖
𝑑𝑒𝑠(m) Waypoint 𝑖

𝑑𝑖 Unit vector pointing from 𝑝𝑒,𝑖
𝑑𝑒𝑠 to 𝑝𝑒,𝑖+1

𝑑𝑒𝑠

𝑢𝑥(m ∙ s−2) Control signals along 𝑥 axis

𝑢𝑦(m ∙ s−2) Control signals along 𝑦 axis

𝑢𝑧(m ∙ s−2) Control signals along 𝑧 axis

The variables and parameters of PID controllers in Section 3

are shown in Table 3 and Table 4 according to the order of

appearance.

Table 4. Parameters of PID controllers.

Proportionality

Coefficient

Integration

Coefficient

Differential

Coefficient

Attitude

Control

𝜑 2000 0 4000

𝜃 2000 0 4000

𝜓 800 0 4000

Position

Control

𝑒𝑐𝑡 0.5 3 × 10−4 1

𝑒𝑎𝑡 0.5 3 × 10−4 0

4. CONTROL OF DESIRED FLIGHT RATE THROUGH

NEURAL NETWORKS

4.1 Task Model

The task was modelled on a Markov Decision Process (MDP)

which is defined by the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1).

The observation space is 𝑠𝑡 = [𝑝𝑜 , 𝑣𝑒 , 𝜔𝑏 , 𝑅𝑏2𝑒], where 𝑝𝑜 is

the relative positions to waypoints, and 𝑅𝑏2𝑒 is the expansion

of the rotation matrix. The action space is 𝑎𝑡 = [𝑣
𝑑𝑒𝑠]. The

CONTROL ENGINEERING AND APPLIED INFORMATICS 94

reward 𝑟𝑡 is used to evaluate the performance of the action 𝑎𝑡
taken in the observation space 𝑠𝑡.

4.2 Control Method

The structure of the control method proposed in this paper is

shown in Fig.4. To change the desired flight rate of the

quadrotor flexibly, the observation space of the quadrotor 𝑠𝑡 is

mapped onto the action space 𝑎𝑡 using an Actor neural

network. And this paper uses the DDPG algorithm, one of the

reinforcement learning algorithms, to train the Actor network

to give it proper weights for controlling the desired flight rate.

4.3 DDPG Algorithm

The DDPG algorithm is a reinforcement learning algorithm

based on the AC architecture. It derives from the DQN

algorithm and uses an Actor neural network to compensate for

the inability of handling continuous control tasks (Lillicrap et

al., 2015). The DDPG algorithm has been successfully applied

in different environments (Zhang et al., 2020; Li, Ma et al.,

2020). There are also precedents for using the DDPG

algorithm in the field of quadrotor control (Rubí et al., 2020;

Rodriguez-Ramos et al., 2019).

The Actor network in the DDPG algorithm is used to fit a

policy function that maps the observation space directly to the

action space, while the Critic network is used to fit a function

that calculates the Q value, which is the expectation of the total

future reward that the RL agent will receive. Under the

observation space 𝑠𝑡 , a better action 𝑎𝑡 will get a higher Q

value. When the Actor policy is 𝜇, which means 𝜇(𝑠𝑡) = 𝑎𝑡,
the Q value of action 𝑎𝑡 in 𝑠𝑡 is as follow:

𝑄𝜇(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄
𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))](18)

Where 𝑄𝜇 means the Q value is calculated based on the policy

𝜇 , 𝔼𝑟𝑡,𝑠𝑡+1~𝐸 denotes the expected discounted future reward

from taking 𝑎𝑡 in 𝑠𝑡 to the end of the task, 𝑟(𝑠𝑡 , 𝑎𝑡) is the step

reward received by the RL agent when taking 𝑎𝑡 in 𝑠𝑡 and 𝛾 ∈
[0,1] represents the discount factor for the future reward.

The goal of the DDPG algorithm is to find the strategy 𝜇∗ that

brings the greatest expected discounted reward in one episode.

 𝜇∗ = argmax𝔼𝜇∗ [∑𝛾𝑡𝑟(𝑡)

𝑡𝑓

𝑡=0

] (19)

Where 𝑡𝑓 is the end time of the task.

Assume that there is an initialized Critic network 𝑄𝜇(𝑠, 𝑎|𝜃𝑄)
and an initialized Actor network 𝜇(𝑠|𝜃𝜇) where 𝜃𝑄 and 𝜃𝜇

are respectively the weights of the Critic network and the

Actor network. From (18), it is clear that the calculation of

𝑄𝜇(𝑠𝑡 , 𝑎𝑡) requires the use of 𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1)). Therefore,

updating the network parameters of 𝑄𝜇(𝑠, 𝑎|𝜃𝑄) will produce

a situation where the Critic network estimates itself, resulting

in overestimation and oscillation of the Q value. To make the

training process more stable, the DDPG algorithm introduces

the target Critic network 𝑄′𝜇′(𝑠, 𝑎|𝜃𝑄′) and the target Actor

network 𝜇′(𝑠|𝜃𝜇′) with the same initial weights as the original

networks.

To get the greatest reward shown in (19), the Actor network is

updated by maximizing 𝑄𝜇(𝑠, 𝑎).

max
𝜃𝜇

𝑄𝜇(𝑠, 𝜇(𝑠)) (20)

Fig. 4. The structure of the control method proposed in this paper.

4.5 Reward Function

For the quadrotor waypoint tracking, the major task is to

reduce the time consumption for a quadrotor to pass all

waypoints in sequence. Once the waypoints are set, the

quadrotor is expected to fly on the line connecting adjacent

waypoints, and there is no additional effort for computing the

reference path. The reward function consists of four

components: the progress reward 𝑟𝑝(𝑡) , the position error

reward 𝑟𝑒(𝑡), the action reward 𝑟𝑎(𝑡) and the terminal reward

𝑟𝑡(𝑡).

The progress reward is set to measure the length of the route

completed by the quadrotor per step. A greater progress reward

means the quadrotor completes more distances in this step. As

is not easy to measure the length of the completed route in

three dimensions, this paper uses the projection of the

quadrotor’s position on the line connecting adjacent waypoints

as an approximation.

(a) The structure of the Actor neural network

95 CONTROL ENGINEERING AND APPLIED INFORMATICS

(b) The structure of the Critic neural network

Fig. 5(a), (b). The structures of the Actor neural network and

the Critic neural network.

According to Fig. 3(a), at time 𝑡 , the projection of the

quadrotor on the line connecting the adjacent waypoints 𝑠𝑃(𝑡)
is defined as follow:

𝑠𝑃(𝑡) =
(𝑝𝑒 − 𝑝𝑒,𝑖

𝑑𝑒𝑠) ∙ (𝑝𝑒,𝑖+1
𝑑𝑒𝑠 − 𝑝𝑒,𝑖

𝑑𝑒𝑠)

‖𝑝𝑒,𝑖+1
𝑑𝑒𝑠 − 𝑝𝑒,𝑖

𝑑𝑒𝑠‖
 (24)

This gives the progress reward for the quadrotor at time 𝑡 as

follow:

𝑟𝑝(𝑡) = 𝑠𝑃(𝑡 + 1) − 𝑠𝑃(𝑡) (25)

The position error reward 𝑟𝑒(𝑡) is used to penalize the position

error from the flight path. Because the position error is the

input of the PID controllers according to (15), and the PID

controller will fail if the input is too large. The position error

reward is determined by the positional error of (13):

𝑟𝑒(𝑡) = −‖𝑒𝑐𝑡‖ (26)

The action reward 𝑟𝑎(𝑡) is used to avoid a large desired flight

rate when the quadrotor is close to waypoints or a small desired

flight rate when the quadrotor is away from a waypoint. The

PID controller outputs the control signal when the error signal

appears and it takes some time for the integrator in the PID

controller to "ramp up" to eliminate the error signal. However,

if the quadrotor is moving too fast when approaching

waypoints, the position error increases quickly before the

quadrotor slows down and the PID controller will fall due to

the large error input. In fact, it is hard for the RL agent to learn

to slow down when closing a waypoint, as it has to give up

some step rewards to gain a greater total reward, like jumping

out of the local maximum to find the global maximum (Kamar

et al, 2020). Thus, 𝑟𝑎(𝑡) can reduce the quadrotor crash and

accelerate the training process of the RL agent.

At time 𝑡, the distance between the projection of the quadrotor

and the next waypoint 𝑠𝑅(𝑡) can be calculated as follow

according to Fig. 3(a):

𝑠𝑅(𝑡) =
(𝑝𝑒,𝑖+1

𝑑𝑒𝑠 − 𝑝𝑒,𝑖
𝑑𝑒𝑠)

‖𝑝𝑒,𝑖+1
𝑑𝑒𝑠 − 𝑝𝑒,𝑖

𝑑𝑒𝑠‖
− 𝑠𝑃(𝑡) (27)

Introduce ∆ as follow:

∆= {
𝑎𝑡 ∙ 𝑡𝑅 − 𝑠𝑅(𝑡), 𝑎𝑡 ∙ 𝑡𝑅 − 𝑠𝑅(𝑡) ≥ 0

𝑎𝑡 ∙ 𝑡𝑅 −min(𝑠𝑅(𝑡), 𝑎𝑡
𝑢𝑡𝑅), 𝑎𝑡 ∙ 𝑡𝑅 − 𝑠𝑅(𝑡) < 0

 (28)

Where 𝑡𝑅 is a parameter for time and 𝑎𝑡
𝑢 is the upper bound of

the action 𝑎𝑡 (which is set to 20m ∙ s−1 in this paper), and

min(𝑠𝑅(𝑡), 𝑎𝑡
𝑢𝑡𝑅) limits the range of ∆ when 𝑎𝑡 ∙ 𝑡𝑅 −

𝑠𝑅(𝑡) < 0. The action reward 𝑟𝑎(𝑡) is defined as follow:

𝑟𝑎(𝑡) = −1 + 2 ∙ 𝑒
−(
∆
𝜎
)2 (29)

Where 𝜎 is a hyperparameter to control the range of
∆

𝜎
 so 𝑟𝑎(𝑡)

will change significantly while ∆ changes. Equation (29) is

derived from the equation as follow:

𝑦 = −1 + 2 ∙ 𝑒−𝑥
2
 (30)

Equation (30) has a large gradient when 𝑥 ∈ [−2.5,2.5], so,

when ∆ is away from 0, which means the action 𝑎𝑡 is either

too big or too small for 𝑠𝑅(𝑡), the action reward 𝑟𝑎(𝑡) will

decrease quickly. The action reward is big when |∆| is small.

The image of (30) is shown in Fig. 6 and can help to understand

the action reward 𝑟𝑎(𝑡).

Fig. 6. The image of 𝑦 = −1 + 2 ∙ 𝑒−𝑥
2
.

The terminal reward 𝑟𝑡(𝑡) is used for penalizing the quadrotor

crash. The quadrotor crashes when |𝑒𝑐𝑡| is too big to eliminate.

𝑟𝑡(𝑡) makes the quadrotor easier and faster to learn to avoid

the crash. The terminal reward 𝑟𝑡(𝑡) can be calculated as

follow:

𝑟𝑡(𝑡) = {
𝑟𝑡 , 𝑖𝑓 𝑐𝑟𝑎𝑠ℎ
0, 𝑒𝑙𝑠𝑒

 (31)

Where 𝑟𝑡 < 0. Combining (25), (26), (29) and (31) gives the

reward function as follow:

𝑟(𝑡) = 𝑎1𝑟𝑝(𝑡) + 𝑎2𝑟𝑒(𝑡) + 𝑎3𝑟𝑎(𝑡) + 𝑟𝑡(𝑡) (32)

𝑎1 , 𝑎2 , 𝑎3 are hyperparameters that balance the order of

magnitude of different rewards.

5. SIMULATION AND DISCUSSIONS

The quadrotor model is built in the Simulink environment

according to the formulas in Section 2 and Section 3, and the

DDPG algorithm is implemented by PyTorch. The interaction

between Simulink and Python is achieved with the MATLAB

Engine API for Python.

A time metric and position error metrics are set in order to

describe the control performance.

The time metric 𝑡𝑓 is the time it takes for the quadrotor to pass

all waypoints in sequence, which is the main goal of the task.

The position error metrics are used to describe the extent to

CONTROL ENGINEERING AND APPLIED INFORMATICS 96

which the quadrotor deviates from the path. During flight, the

largest position errors occur when switching waypoints and the

quadrotor has the biggest possibility to get out of control. In

this paper, the maximum position error when switching

waypoint 𝑑𝑚 and the cumulative position error during the

whole flight 𝑑𝑐 are used to describe the local and overall

position errors of the quadrotor. A smaller 𝑑𝑚 means the

quadrotor will be less likely to get out of control. A smaller 𝑑𝑐
means the quadrotor will fly more accurately along the path.

The cumulative position error 𝑑𝑐 is given by:

𝑑𝑐 = ∫ ‖𝑒𝑐𝑡‖
𝑡𝑓

𝑡=0

𝑑𝑡(m ∙ s) (33)

The starting point of the quadrotor is set to [0,0,0](m). The

randomly generated set of waypoints is shown in Table 5.

Table 5. The set of waypoints.

No. Position(m)

1 [244.42,83.55,19.82]

2 [271.74,164.06,19.51]

3 [38.10,287.25,32.68]

4 [274.01,289.47,88.03]

5 [189.71,47.28,47.11]

5.1 Policy Training

The main challenge during training is that the experiences

stored in the replay buffer have an uneven distribution, as there

are more experiences when the quadrotor is away from

waypoints than close to waypoints. Therefore, the RL agent

has less chance to learn how to pass a waypoint as the

experiences in the replay buffer have equal importance. (Hou

et al., 2017) proposed a prioritized replay buffer method using

prioritized sampling. In this paper, the replay buffer is divided

into two parts, respectively storing the experiences when the

quadrotor is far from the waypoints and close to the waypoints.

This helps the quadrotor learn to pass waypoints and reduces

the training time.

The policy training process with the DDPG algorithm in this

paper is shown below.

Algorithm 1 Policy Training with the DDPG algorithm

1: Randomly initialize Actor network and Critic network

2: Initialize target networks with the same weights

3: Initialize two replay buffers to store experiences when

the quadrotor is far from waypoints and close to

waypoints respectively

4: for episode ← 1 to M do

5: Initialize the quadrotor

6: for t ← 1 to T do

7: Compute 𝑎𝑡 according to the current actor network

and exploration noise

8: Execute 𝑎𝑡 in the Simulink environment and

compute 𝑠𝑡+1 and 𝑟𝑡

9: Store tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in one of two replay

buffers according to the distance between the quadrotor

and waypoints

10: Sample a random minibatch of
𝑁

2
 in each replay

buffer

11: Update the Actor network using (20)

12: Update the Critic network using (21) and (22)

13: Update target networks according to the soft

update strategy

14: end for

15: end for

(Song et al., 2021) used a parallelized implementation

simulating hundreds of quadrotors in parallel to collect up to

25000 environment interactions per second, which was even

larger than the memory capacity of the replay buffers in this

paper. With the help of the Inner-Outer loop control method,

the control instability at the beginning of learning is reduced,

and thus reducing the time consumptions and the cost of

computation needed for training. It takes 3 hours for training

50 episodes.

The average step reward gained by the RL agent is shown in

Fig. 7. In the first four episodes, 𝑎𝑡 increased very fast and

caused the quadrotor to crash, therefore, the average reward

reduced at the first 4 episodes. After that, the quadrotor didn’t

crash anymore with the training set of waypoints.

The loss curves of the Actor network and the Critic network

are shown in Fig. 8.

Fig. 7. Average step reward gained by the RL agent.

(a) Loss curve for the Actor network

97 CONTROL ENGINEERING AND APPLIED INFORMATICS

(b) Loss curve for the Critic network

Fig. 8(a), (b). The loss curves of the Actor network and the

Critic network.

The metrics during training are shown in Table 6. Fig. 9 shows

the outputs of the Actor network before and after training. Fig.

10 shows the quadrotor’s trajectories after different episodes.

This can give an intuitive view of the learning process of the

RL agent.

Table 6. The metrics during training.

 𝑡𝑓(s) 𝑑𝑚(m) 𝑑𝑐(m ∙ s)

1 episode 140.14 8.30 139.52

4 episodes Crash

30 episodes 76.26 14.36 219.53

50 episodes 74.78 14.06 206.89

(a) 𝑎𝑡 before training

(b) 𝑎𝑡 after training

Fig. 9(a), (b). The output of the Actor network.

5.2 Training Results

To evaluate the performance of the trained Actor network, this

paper introduces three methods as baselines.

Our method is the method proposed in this paper.

Method A is setting the desired flight rate 𝑣𝑑𝑒𝑠 = 13m ∙ s−1,

which is set as large as possible while finishing the training

route in this paper successfully.

Method B is gained from the shape of the output of the Actor

network, and is defined by 𝑠𝑅(𝑡) in (27):

𝑣𝑑𝑒𝑠 = {
20m ∙ s−1, 𝑠𝑅(𝑡) ≥ 100m

10m ∙ s−1, 𝑠𝑅(𝑡) < 100m
 (34)

Method C is the sliding mode control method based on the

backstepping approach (Bouadi et al., 2007).

The metrics of different control methods are shown in Table 7.

Table 7. The metrics of different control methods.

 𝑡𝑓(s) 𝑑𝑚(m) 𝑑𝑐(m ∙ s)

Ours 74.78 14.06 206.89

Method A 102.12 14.66 208.32

Method B 78.40 14.19 208.45

Method C 79.97 5.33 138.63

The quadrotor’s real trajectories using different control

methods are shown in Fig. 11.

Fig. 10. The quadrotor’s trajectories after different episodes.

Fig. 11. The quadrotor’s trajectories using different control

methods.

CONTROL ENGINEERING AND APPLIED INFORMATICS 98

To compare the performances directly, this paper uses the

length of the path completed by the quadrotor as the 𝑥 axis of

the figures, which is equal in different control methods.

For four control methods, the quadrotor’s motions along 𝑥, 𝑦

and 𝑧 axis are shown in Fig. 12.

(a) the quadrotor’s motions along 𝑥 axis

(b) the quadrotor’s motions along 𝑦 axis

(c) the quadrotor’s motions along 𝑧 axis

Fig. 12(a), (b) and (c). The quadrotor’s motions along 𝑥, 𝑦 and

𝑧 axis.

5.3 Discussions

Method A and method B are Inner-Outer loop PID control

methods that are the same as the method proposed in this

paper. According to Table 7, the method proposed in this paper

outperforms both Method A and method B in terms of all three

metrics. This demonstrates that the method proposed in this

paper is able to control the desired flight rate of the quadrotor

properly and improve the performance of the Inner-Outer loop

PID control system. The performance of the method B is

similar to the method proposed in this paper, and this is

because the output of the Actor network after training in this

paper is easy to imitate due to the upper bound on the desired

flight rate.

Method C is another common type of control method for

quadrotors. According to Table 7, the method proposed in this

paper does better in 𝑡𝑓 while is not as good as the method C in

terms of 𝑑𝑚 and 𝑑𝑐. As shown in Fig. 13, the trajectory of the

method C presents a permanent tracking error which also

occurs in the paper of the method C.

Fig. 13. The position errors of the quadrotor using different

control method.

As shown in Fig. 14, the velocity of the quadrotor using the

method C changes drastically compared with the quadrotor

using the method proposed in this paper, and this leads to

higher energy consumption which will reduce the quadrotor’s

endurance. Additionally, there is chatter when using the

method C based on the sliding mode control in Fig. 14 that

does damage to the quadrotor and increases the risk of

quadrotor crash if applied in reality (Lin et al., 2022). What’s

more, the proper parameters of the sliding mode control

(method C) are more difficult to find than those of the PID

control method (method proposed in this paper). Therefore, the

method proposed in this paper is more suitable for practical

application with less time consumption.

Fig. 14. The speed curves of the quadrotor.

6. CONCLUSIONS

This paper uses neural networks to control the input of the

Inner-Outer loop PID control method, the desired flight rate,

to accomplish the quadrotor waypoint tracking task. Firstly,

this paper presents the Inner-Outer loop PID control method to

complete the waypoint tracking task. In order to make the

quadrotor adjust its flight rate flexibly, the Actor network is

introduced to control the desired flight rate and is trained by

the DDPG algorithm. Simulation results prove that the

proposed method is able to adjust the desired flight rate

successfully and improve the performance of the Inner-Outer

loop PID control system.

99 CONTROL ENGINEERING AND APPLIED INFORMATICS

In future, there is room for improvements of the control system

in this paper. Using fractional order PID controllers can

improve the performance of PID control (Trivedi and Padhy,

2021). Using more advanced reinforcement algorithms like

twin delayed deep deterministic policy gradient algorithm

(Fujimoto et al., 2018) and changing the structures of the

networks like using multilinear map of state and action as a

new input (Long et al., 2018) are possible improvements from

a reinforcement learning perspective.

REFERENCES

Bo, G., Xin, L., Hui, Z., and Ling, W. (2016). Quadrotor

helicopter Attitude Control using cascade PID. 2016

Chinese Control and Decision Conference, 5158-5163.

Bouadi, H., Bouchoucha, M., Tadjine, M. (2007). Sliding

mode control based on backstepping approach for an

UAV type-quadrotor. World Academy of Science,

Engineering and Technology, 26(5): 22-27.

Cajo, R., Copot, C., Ionescu, C.M., De Keyser, R., and Plaza,

D. (2018). Fractional Order PD Path-Following Control

of an AR. Drone Quadrotor. 2018 IEEE 12th

International Symposium on Applied Computational

Intelligence and Informatics, 291-296.

Cao, N., and Lynch, A. F. (2016). Inner–Outer Loop Control

for Quadrotor UAVs With Input and State Constraints.

IEEE Transactions on Control Systems Technology, vol

(24), 5:797-1804.

Farid, G., Mo, H., Zahoor, M.I., and Liwei, Q. (2018).

Computationally efficient algorithm to generate a

waypoints-based trajectory for a quadrotor UAV. 2018

Chinese Control And Decision Conference, 4414-4419.

Fujimoto, S., Hoof, H., Meger, D. (2018). Addressing function

approximation error in actor-critic methods.

International conference on machine learning, 1587-

1596.

Julkananusart, A., and Nilkhamhang, I. (2015). Quadrotor

tuning for attitude control based on double-loop PID

controller using fictitious reference iterative tuning

(FRIT). IECON 2015 - 41st Annual Conference of the

IEEE Industrial Electronics Society, 4865-4870.

Hoffmann, G., Waslander, S., and Tomlin, C. (2008).

Quadrotor helicopter trajectory tracking control. AIAA

guidance, navigation and control conference and

exhibit, 7410.

Hou, Y., Liu, L., Wei, Q., Xu, X., and Chen, C. (2017). A novel

DDPG method with prioritized experience replay. 2017

IEEE International Conference on Systems, Man, and

Cybernetics, 316-321.

Hwangbo, J., Sa, I., Siegwart, R., and Hutter, M. (2017).

Control of a quadrotor with reinforcement learning.

IEEE Robotics and Automation Letters, 2(4), 2096-2103.

Kamar, D., Akyol, G., Mertan, a., and İnceoğlu, A. (2020).

Comparative Analysis of Reinforcement Learning

Algorithms on TORCS Environment. 2020 28th Signal

Processing and Communications Applications

Conference, 1-4.

Kumar, V. B., Sampath, D., Siva Praneeth, V. N., and Pavan

Kumar, Y. V. (2021). Error Performance Index Based

PID Tuning Methods for Temperature Control of Heat

Exchanger System. 2021 IEEE International IOT,

Electronics and Mechatronics Conference, 1-6.

L'Afflitto, A., Anderson, R. B., and Mohammadi, K. (2018).

An Introduction to Nonlinear Robust Control for

Unmanned Quadrotor Aircraft: How to Design Control

Algorithms for Quadrotors Using Sliding Mode Control

and Adaptive Control Techniques [Focus on Education].

IEEE Control Systems Magazine, 38(3), 102-121.

Lambert, N.O., Drew, D.S., Yaconelli, J., Levine, S.,

Calandra, R., and Pister, K.S.J. (2019). Low-Level

Control of a Quadrotor With Deep Model-Based

Reinforcement Learning. IEEE Robotics and

Automation Letters, 4(4), 4224-4230.

Larsson, D.T., Nguyen, C. H., and Artemiadis, P. (2020).

Modeling and Control of Mid-flight Coupling of

Quadrotors: A new concept for Quadrotor cooperation.

2020 International Conference on Unmanned Aircraft

Systems, 310-315.

Li, X., Qi, G., Guo, X., and Ma, S. (2020). Trajectory Tracking

of a Quadrotor UAV based on High-Order Differential

Feedback Control. 2020 IEEE 9th Data Driven Control

and Learning Systems Conference, 201-206.

Li, Z., Ma, H., Ding, Y., Wang, C., and Jin, Y. (2020). Motion

Planning of Six-DOF Arm Robot Based on Improved

DDPG Algorithm. 2020 39th Chinese Control

Conference, 3954-3959.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al. (2015). Continuous

control with deep reinforcement learning. ArXiv,

1509.02971.

Lin, C.H., Ho, C.W., Hu, G.H., Sreeramaneni, B., Yan, J.J.

(2022). Robust chaos suppression of uncertain unified

chaotic systems based on chattering-free sliding mode

control. Measurement and Control. 55(5-6):321-329.

Long, M., Cao, Z., Wang, J., et al. (2018). Conditional

adversarial domain adaptation. Advances in neural

information processing systems, 31.

Mohamad Ali Tousi, S., Mostafanasab, A., and Teshnehlab,

M. (2020). Design of Self Tuning PID Controller Based

on Competitional PSO. 2020 4th Conference on Swarm

Intelligence and Evolutionary Computation, 22-26.

Mahmud, M., Motakabber, S.M.A., Zahirul Alam, A.H.M.,

and Nordin, A.N. (2020). Adaptive PID Controller Using

for Speed Control of the BLDC Motor. 2020 IEEE

International Conference on Semiconductor Electronics,

168-171.

Parivash, F., and Ghasemi, A. (2017). Trajectory tracking

control for a quadrotor using fuzzy PID control scheme.

2017 IEEE 4th International Conference on Knowledge-

Based Engineering and Innovation, 0553-0558.

Penicka, R., and Scaramuzza, D. (2022). Minimum-Time

Quadrotor Waypoint Flight in Cluttered Environments.

IEEE Robotics and Automation Letters, 7(2), 5719-5726.

Qian, G.M., Pebrianti, D., Chun, Y.W., Hao, Y.H., and

Bayuaji, L. (2017). Waypoint navigation of quad-rotor

MAV. 2017 7th IEEE International Conference on

System Engineering and Technology, 38-42.

Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Puente, P.,

and Campoy, P. (2019). A deep reinforcement learning

strategy for uav autonomous landing on a moving

CONTROL ENGINEERING AND APPLIED INFORMATICS 100

platform. Journal of Intelligent & Robotic Systems,

93(1), 351-366.

Rubí, B., Morcego, B., and Pérez, R. (2020). A Deep

Reinforcement Learning Approach for Path Following

on a Quadrotor. 2020 European Control Conference,

1092-1098.

Saraf, P., Gupta, M., and Parimi, a.m. (2020). A Comparative

Study Between a Classical and Optimal Controller for a

Quadrotor. 2020 IEEE 17th India Council International

Conference, 1-6.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. (2017). Proximal Policy Optimization

Algorithms. ArXiv, 1707.06347.

Song, W., Li, Z., Xu, B., Wang S., and Meng, X. (2022).

Research on Improved Control Algorithm of Quadrotor

UAV based on Fuzzy PID. 2022 IEEE International

Conference on Artificial Intelligence and Computer

Applications, 361-365.

Song, Y., Steinweg, M., Kaufmann, E., and Scaramuzza, D.

(2021). Autonomous Drone Racing with Deep

Reinforcement Learning. 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 1205-

1212.

Trivedi, R., and Padhy, P.K. (2021). Design of Indirect

Fractional Order IMC Controller for Fractional Order

Processes. IEEE Transactions on Circuits and Systems

II: Express Briefs, 68(3): 968-972.

Zhang, Q., Tang, R., Gou, S., and Zhang, W. (2020). A PID

Gain Adjustment Scheme Based on Reinforcement

Learning Algorithm for a Quadrotor. 2020 39th Chinese

Control Conference, 6756-6761.

Zhang, M., Zhang, Y., Gao, Z., and He, X. (2020). An

Improved DDPG and Its Application Based on the

Double-Layer BP Neural Network. IEEE Access, 8,

177734-177744.

Zhang, X., Li, X., Wang, K., et al. (2014). A survey of

modelling and identification of quadrotor robot. Abstract

and Applied Analysis, vol (2014).

