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Abstract: The crane is a typical underactuated plant, which makes the trajectory planning
and control to be challenging. To solve this problem, efficient trajectory planning and tracking
control methods should be sought. The plant can be reduced in dimension by using reasonable
linearization and the differential flatness (DF) method, wherein the state and control variables
are represented directly through the flat output (FO). Combined with the pseudospectral
method (PSM) wherein multiple constraints are taken into account, the FO reference can be
parameterized by using a polynomial. By doing so, it can reduce the degree of freedom to be
optimized. To eliminate the adverse effects from the high-order terms ignored in the linearization,
the extended state observer is used for deviation estimation and compensation. The closed-
loop stability can be ensured by using the Lyapunov method. Both numerical simulations and
hardware experiments are performed to demonstrate the feasibility and efficiency of the proposed
method.

Keywords: differential flatness (DF); pseudospectral method (PSM); reduced-dimension;
trajectory planning; extended state observer.

1. INTRODUCTION

Cranes are typical underactuated plants, and the system
state variables are highly nonlinearly coupled Lu et al.
(2018); Maghsoudi et al. (2017). Therefore, in order to en-
sure the safety and efficiency of the crane, both trajectory
planning and appropriate control strategy are necessary.
In most cases, the crane can be reduced to a single pen-
dulum model, wherein the coupling behavior between the
translational movement and the payload swing is included.
The objective is to achieve accurate orientation when
transporting a payload. In Sun et al. (2012), a trajectory
planning by using the phase plane method was proposed,
and in Sun et al. (2018), the trajectory planning was
carried out with the minimum energy consumption. The
above approaches can achieve swing suppression. In addi-
tion to the trajectory planning, many control strategies for
crane systems were also proposed, including linearization
method Da and Leonardi (2013); Sorensen and Singhose
(2008), nonlinear control Gerasimos et al. (2017); Sun
and Fang (2012); Sun et al. (2013) and intelligent control
Chang and Lie (2012). For the crane system with complex
structural characteristics, the proper dimensional reduc-
tion can be carried out before trajectory planning and
control. By doing so, the degree of difficulty can be greatly
lowered.

⋆ This work was supported by the National Natural Science Foun-
dation of China [grant number 62073177, 61973175, 52175038.

In recent years, the pseudospectral method (PSM) has
become a popular trajectory planning approach. In the
PSM, the trajectory planning can be described as a non-
linear optimal control problem subject to multiple con-
straints. The state values at a series of discrete sam-
pling points are selected as the collocation coefficients,
and interpolation polynomials are used for fitting these
states. Furthermore, the derivatives of state variables at
the collocation points can be directly obtained by using
the differential matrix Elnagar et al. (1995); Yan et al.
(2007). Then, the parameterized optimal trajectory can
be obtained. Compared with the traditional parameteriza-
tion, the PSM can achieve higher approximation accuracy
with fewer nodes. However, there is a critical problem
that all the state and control variables are independent
and they must be simultaneously optimized such that the
computational complexity is extensive. This problem can
be somewhat alleviated if the unique characteristics of
the investigated dynamics can be sufficiently utilized, and
Differential Flatness (DF) is such a powerful tool Fliess
(1995). The essential concept of DF is the existence of flat
output (FO), which implies that all the states and inputs
can be explicitly represented by the FO and its multiple
derivatives, respectively Chamseddine et al. (2012). Then,
the corresponding nonlinear plant can be decomposed into
nonlinear static equations and linear dynamic equations.
Compared with the dynamic feedback linearization, the
DF has obvious geometric characteristics and does not
rely on the coordinate selection, therefore it can reduce
the degree of difficulty for design. In recent years, the
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application of DF has developed rapidly in the realms
of robot Agrawal et al. (2009), aircrafts Deittert et al.
(2009); Morio et al. (2008), and power system Thounthong
et al. (2010). By combining the DF, the PSM can map the
high-dimensional trajectory planning problem into a lower
dimension one, which can effectively reduce computational
complexity Ross and Fahroo (2004). In the meantime,
there still are some problems existing in the DF. The
derivation of DF depends on the model information, and
necessary model approximation must be performed, which
must generate unknown model mismatch that affects the
FO implementation accuracy. In order to deal with this
problem, the extended state observer (ESO) can be used
to estimate and compensate the high order approxima-
tion error terms in the FO Han (2009). Gao (2003) pro-
posed a linear ESO based Active Disturbance Rejection
Control (ADRC) tuning method to substantially simplify
the original nonlinear controller in Han (2009) for practi-
tioners, then this philosophy tremendously promotes the
widespread application of ADRC Madonski et al. (2019);
Li et al. (2020); Long et al. (2017); Qiu et al. (2014);
Sun et al. (2020); Piao et al. (2020); Huang and Xue
(2014); Zuo et al. (2021). The linear ADRC is a linear
control but its design concept is totally different from
that of classical linear controllers and it can be applied to
nonlinear, time-varying, and uncertain processes with very
little model information. This is because the conventional
linear controllers are generally based on linearized models
of nonlinear dynamics. By contrast, linear ADRC can be
derived straightforwardly from nonlinear dynamics, and it
treats nonlinear dynamics as a signal rather than a model.

Motivated by these previous investigations, both the DF
and PSM are used for trajectory planning of the underac-
tuated cranes. By using the DF, the underactuated crane
system can be reformulated with respect to the FO, which
can lower the dimension of the variables to be optimized
by using the PSM to effectively reduce computational
complexity. Then, a single-input-single-output (SISO) dy-
namic model approximating the underactuated crane can
be established. Thereafter, the ESO is used to estimate and
compensate the DF approximation error in the trajectory
control. Theoretical investigation is provided to validate
the closed-loop stability. In the subsequent mathematical
simulation and hardware experiment, the effectiveness of
the proposed methods is validated. The main contribu-
tions of the paper are: (1) The ESO is applied in the
optimal trajectory tracking based on an approximate FO
representation to reject the model mismatch produced in
the approximation process, which offers a useful way to
implement FO based trajectory optimization accurately
in practice. This is important for the crane and operator
safety when large and heavy payloads are employed. (2)
The closed-loop stability is validated in an explicit manner.

The rest of this paper is organized as follows. Section 2
provides the problem formulation. Section 3 presents the
model flattening, parameterized trajectory planning and
tracking control design. The closed-loop stability analysis
is yielded in Section 4. In Section 5, both numerical simu-
lations and hardware experiments are offered to illustrate
the effectiveness of the proposed approach. The concluding
remarks are given in Section 6.

2. PROBLEM FORMULATION

The underactuated crane system can be represented as{
(M +m) ẍc +mlθ̈ cos θ −mlθ̇2 sin θ = F − fr
ml2θ̈ +mlẍc cos θ +mgl sin θ = 0

(1)

where the definitions of the variables are shown in Table
1 in details.

6in
Table 1. Characteristic parameters and state

variables

Parameters Physical meaning Units

M Trolley mass kg
m Payload mass kg
xc Crane displacement m
l Cable length m
θ Swing angle rad
F Driving force N
fr Frictional force N
g Gravitational acceleration m/s2

Due to the small variation range of θ, the following
approximations can be made: sin θ ≈ θ, cos θ ≈ 1, θ̇2 ≈ 0.
Then, the crane model can be rewritten as

{
(M +m) ẍc +mlθ̈ = F − fr,

ml2θ̈ +mlẍc +mglθ = 0.
(2)

Let m′ = M +m, l′ = ml, and wn =
√
g/l , equation (2)

can be reformulated as

{
m′ẍc + l′θ̈ = F − fr

θ̈ +
w2

n

g ẍc = −w2
nθ

(3)

The state variables can be expressed as:

xo = [xo,1, xo,2, xo,3, xo,4, xo,5, xo,6, xo,7, xo,8]
T

=
[
xc, ẋc, ẍc, x

(3)
c , θ, θ̇, θ̈, θ(3)

]T (4)

and the control signal is

uo = F. (5)

The trajectory planning should meet the following require-
ments:

a) the trolley should carry the payload to the reference
position accurately within a specific time;

b) the cable swing angle must be maintained in a reason-
able range throughout the motion;

c) there should be no residual swing when the trolley stops.

Within the time interval [t0, tf ], the control signal uo(t)
and the state variable xo(t) are determined by minimizing
the cost function of J , that is
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min J =
∫ tf
t0

[
xT
o (t)Qo(t)xo(t) + uT

o (t)Ro(t)uo(t)
]
dt,

s.t.


χo (t0) =

[
xc0, ẋc0, ẍc0, x

(3)
c0 , θ0, θ̇0, θ̈0, θ0

(3)
]T

,

χo (tf ) =
[
xcf , ẋcf , ẍcf , x

(3)
cf , θf , θ̇f , θ̈f , θf

(3)
]T

,

xo,min ≤ xo ≤ xo,max,
uo,min ≤ uo ≤ uo,max,

(6)

where χo (t0) and χo (tf ) are the initial and final boundary
conditions, Qo(t) is a positive definite matrix and Ro(t) is
a positive scalar. With the above multiple constraints, the
optimal trajectory can be obtained, which is then provided
for the control system to realize.

3. TRAJECTORY PLANNING AND TRACKING
CONTROL

In order to reduce the complexity, the crane model can be
flattened such that the PSM can be used in an economical
manner to optimize the trajectory. Then, a disturbance ob-
server is employed to attenuate the model approximation
error generated in the flattened model in order to obtain
a practically comprehensive design.

3.1 Model Flattening

The core of trajectory planning is the FO selection, which
can be a combination of physical variables. In fact, the
FO is not unique, which should be determined from
the perspective of the crane model characteristics and
practical requirements.

According to the unique characteristics of the crane,
the combination of the displacement and swing angle is
selected. The FO can be designed as

Fδ = θ +
w2

n

g
xc, (7)

then

F̈δ = θ̈ +
w2

n

g
ẍc = −w2

nθ. (8)

Therefore, the state variables and control signal can be
depicted in terms of FO as follows

xc =
g
w2

n

(
Fδ +

F̈δ

w2
n

)
, ẋc =

g
w2

n

(
Ḟδ +

F
(3)

δ

w2
n

)
,

ẍc =
g
w2

n

(
F̈δ +

F
(4)

δ

w2
n

)
,

θ = −F̈δ

w2
n
, θ̇ =

−F
(3)

δ

w2
n

,

F = m′g
w2

n
F̈δ +

(
m′g−l′w2

n

w4
n

)
F

(4)
δ + fr.

(9)

The relationship between the FO and the control signal is

F
(4)
δ = − w4

n

m′g−l′w2
n
fr +

(
w2

nm
′g

l′w2
n−m′g

)
F̈δ

+
w4

n

m′g−l′w2
n
F.

(10)

whose state space model can be written as

 ẋ1

ẋ2

ẋ3

ẋ4

 = A1

 x1

x2

x3

x4

+A2u+A3fr, (11)

and

A1 =


0 1 0 0
0 0 1 0
0 0 0 1

0 0
w2

nm
′g

l′w2
n−m′g 0



A2 =


0
0
0

w4
n

m′g−l′w2
n



A3 =


0
0
0

− w4
n

m′g−l′w2
n


where

x = [ x1 x2 x3 x4 ]
T

=
[
Fδ Ḟδ F̈δ F

(3)
δ

]T
,

(12)

and

u = F. (13)

The FO is established according to the coupling rela-
tionship between the displacement and the swing angle,
and the state variables are composed of different order
derivatives of the FO. The FO is the minimum description
of the DF system, and its dimension is equal to the control
dimension. Therefore, the crane can be fully described with
only half the original dimension.

3.2 Trajectory Planning by Using the PSM

Consider the cost function as

min J =

∫ tf

t0

[
xT (t)Q(t)x(t) + uT (t)Ro(t)u(t)

]
dt, (14)

where Q(t) = QT (t) ≥ 0 is a weight matrix. Since

x =

[
ω2
n

g
I4, I4

]
xo

where I4 is a 4th-order identity matrix, then there is a
relationship as

Q (t) =

[
ω2
n

g
I4, I4

]T
Qo(t)

[
ω2
n

g
I4, I4

]
(15)

The FO states and control constraints are
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

x1 ∈
[
−θmax, θmax +

g
w2

n
xc,f

]
,

x2 ∈
[
−w2

n

g ẋc,max − θ̇max,
w2

n

g ẋc,max + θ̇max

]
,

x3 ∈
[
−w2

nθmax, w
2
nθmax

]
,

x4 ∈
[
−w2

nθ̇max, w
2
nθ̇max

]
,

u ∈ [Fmin, Fmax] ,

(16)

The initial and final boundary conditions are

χ (t0) = [ 0 0 0 0 ]
T
, (17)

and

χ (tf ) = [ xf 0 0 0 ]
T
. (18)

The PSM optimization directly acts on the FO, then the
optimization result of the original system can be explicitly
obtained from the optimized FO.

3.3 Trajectory Tracking Control

In the trajectory optimization, the FO transformation
depends on the exact model information, which is not
possible in practice. The model mismatch is unavoidable
from linearization, friction and parametric uncertainties.
This problem can result in difficulties for the model
based control methods to achieve sufficiently high tracking
precision such that the objective of the crane cannot
be ideally realized. Therefore, a highly accurate however
weakly model dependent tracking scheme is necessary to
ensure the comprehensive performance.

In this section, the extended state observer, which is
used to estimate and compensate the environmental dis-
turbances and unknown model mismatches, is presented
to formulate a control scheme. When the underactuated
crane has model uncertainties and external disturbances,
equation (10) can be rewritten as

F
(4)
δ =

w4
n

m′g−l′w2
n
F − w4

n

m′g−l′w2
n
fr

+
(

w2
nm

′g
l′w2

n−m′g

)
F̈δ + d,

(19)

where d refers to a combination of model uncertainties and
external disturbances. Let the total disturbance

f = − w4
n

m′g − l′w2
n

fr +

(
w2

nm
′g

l′w2
n −m′g

)
F̈δ + d. (20)

Therefore, the underactuated crane model can be reformu-
lated as

F
(4)
δ = f + bu, (21)

which can be represented as



ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x5 + bu

ẋ5 = ḟ
y = x1

(22)

where

b =
w4

n

m′g − l′w2
n

is the control gain; the state x5 is added as an extended
state because it is not the original state of the dynamics.
f includes the major dynamic uncertainties, which should
be attenuated to enhance robustness. It should be noted
that f has no explicit physical meaning, and it is just the
total dynamics except the direct control term. The entire
dynamics can then be written by using the state space
model as

{
ẋ = Ax+Bu+ Eh
y = Cx

, (23)

with

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 ,

B =


0
0
0
b
0

 ,

C = [ 1 0 0 0 0 ] ,

E = [ 0 0 0 0 1 ]
T
,

h = ḟ .

To estimate this extended state, an observer (ESO) can be
established as


ż1
ż2
ż3
ż4
ż5

 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



z1
z2
z3
z4
z5

+


0
0
0
b
0

u

+


l1
l2
l3
l4
l5

 (y − z1) ,

(24)

where

L = [ l1 l2 l3 l4 l5 ]
T

=
[
5ωo 10ω2

o 10ω3
o 5ω4

o ω5
o

]T (25)

which is the observer gain vector; and the observer band-
width, ωo, is the unique tunable parameter.

The control signal can be designed as

u =
−z5 + u0

b
, (26)

where u0 is a virtual control variable. When the observer
is convergent, z5 can approximately be equal to x5. Com-
bining this fact, (21) can be transformed into an integrator
chain as

F
(4)
δ ≈ u0. (27)
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This is a fourth-order integrator, wherein the following
controller can achieve satisfactory performance without
steady error as

u0 = k1 (r − Fδ)− k2z2 − k3z3 − k4z4 (28)

where r is the reference of Fδ. In summary, the control law
is

u =
k1 (r − Fδ)− k2z2 − k3z3 − k4z4 − z5

b
(29)

It can be seen that the above control law is a PID-type
controller with an approximate form, and the integral
action is replaced with z5. The high-order terms and
environmental disturbances in the underactuated crane
can be estimated and compensated by the above method,
and the precise tracking of the trajectory can be realized.

4. CLOSED-LOOP STABILITY ANALYSIS

In this section, the nominal closed-loop stability will be
investigated. Here for simplicity, we assume that all the
characteristic parameters of (2), M , m, and l, are known
constants, which is an available fact for such a mechanical
system.

Consider the FO based plant (10) or its state space rep-
resentation (11) together with its extended state observer
of (24). To investigate the closed-loop stability, define the
following state error ei = ri − xi(i = 1, 2, 3, 4) where ri
is the reference for xi and the estimation error εj = xj −
zj(j = 1, 2, 3, 4, 5). Note that the derivatives of reference
are constantly specified at zero in (28) to facilitate imple-
mentation. Combining (24) with (28) has


ė1 = ṙ1 − ẋ1 = e2
ė2 = ṙ2 − ẋ2 = e3
ė3 = ṙ3 − ẋ3 = e4
ė4 = ṙ4 − ẋ4 = −K4e−K5ε

(30)

where K4 = [k1, k2, k3, k4], e = [e1, e2, e3, e4]
T
, K5 =

[k1, k2, k3, k4, 1]
T
, and ε = [ε1, ε2, ε3, ε4, ε5]

T
. Defining

E =
[
eT εT

]T
gives

Ė =

[
EA EB

0 ED

]
E+

[
0
h

]
(31)

where



EA =

 0 1 0 0
0 0 1 0
0 0 0 1
−k1 −k2 −k3 −k4


EB =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−k1 −k2 −k3 −k4 −1



ED =


−l1 1 0 0 0
−l2 0 1 0 0
−l3 0 0 1 0
−l4 0 0 0 1
−l5 0 0 0 0



Define

AE =

[
EA EB

0 ED

]
(32)

We can select K4 such that s4 + k1s
3 + k2s

2 + k3s+ k4 is
Hurwitz. Since both EA and ED are Hurwitz, AE is also
Hurwitz.

To investigate the closed-loop stability, the following two
assumptions on the reference and the total disturbance are
needed.

Assumption 1 The reference r and its any-order deriva-
tive are bounded with a constant r0 such that

∥∥ r, ṙ, r̈, r(3)
∥∥ ≤ r0 (33)

Assumption 2 The total disturbance f is continuously
differentiable with two positive constants L and L0 such
that ∣∣∣ḟ ∣∣∣ ≤ L

∥∥∥[x, ẋ, ẍ, x(3)
]∥∥∥+ L0 (34)

Combining Assumption 1 and Assumption 2 yields

∣∣∣ḟ ∣∣∣ ≤ L ∥xe − re + re∥+ L0 ≤ L(∥e∥+ r0) + L0

≤ L(∥E∥+ r0) + L0

(35)

where xe = [x1, x2, x3, x4]
T
and re =

[
r, ṙ, r̈, r(3)

]T
.

The following lemma is also necessary. Lemma (Com-
parison Lemma)Khalil (2002) Consider a scalar differ-
ential equation

ẇ = g(t, w), w(t0) = w0 (36)

For any t ≥ 0 and w ∈ J ⊂ R, g(t, w) is continuously
differentiable with respect to t and local Lipschitz in terms
of w. Assume that [t0, T ) (T might be infinity) is the
largest interval containing a solution w(t), and w(t) ∈ J
for any t ∈ [t0, T ). v(t) is a continuous function and its
upper-right derivative D+v(t) (when v(t) is differentiable
in terms of t, then D+v(t) = v̇(t)) satisfies the differential
inequality of

D+v(t) ≤ g(t, v(t)), v(t0) ≤ w0 (37)

for any t ∈ [t0, T ), v(t) ∈ J . Then, we have v(t) ≤ w(t)
for any t ∈ [t0, T ).

Then, we can give the main result relating to the closed-
loop stability.

Theorem When both Assumption 1 and Assumption 2
hold true, if there is a positive definite matrix P such that
1−2λmax(P)L > 0, then the closed-loop system generated
from the plant of (1), the ESO of (24), and the controller
of (28) is bounded stable for a step reference, and the state
error and estimation error vector E satisfies

∥E∥ ≤ max


2λ2

max(P)(Lr0+L0)
λmin(P)(1−2λmax(P)L) ,√

λmax(P)
λmin(P) ∥E(t0)∥

 (38)

In addition, when t → ∞, both errors are uniformly stable
with
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∥E∥ ≤ 2λ2
max(P)(Lr0 + L0)

λmin(P)(1− 2λmax(P)L)
(39)

where ∥·∥ is the Euclidean norm, λmax(P) and λmin(P) are
the maximum and minimum eigenvalues of P.

Proof Because AE is Hurwitz, there is a positive definite
matrix P such that PAE + AT

EP = −I. Establish the
following Lyapunov functional

V = ETPE (40)

Differentiating (39) along (30) has

V̇ = ∂V
∂EAEE+ ∂V

∂ε5
ḟ

≤ −∥E∥2 + 2λmax(P) ∥E∥ (L(∥E∥+ r0) + L0)

= −(1− 2λmax(P)L)∥E∥2
+2λmax(P)(Lr0 + L0) ∥E∥

(41)

It is clear that 1 − 2λmax(P)L > 0 is necessary when
utilizing the Lyapunov functional to ensure stability. Since

V

λmax(P)
≤ ∥E∥2 ≤ V

λmin(P)
(42)

Substituting (41) into (40) yields

V̇ ≤ −1− 2λmax(P)L

λmax(P)
V +

2λmax(P)(Lr0 + L0)√
λmin(P)

√
V (43)

Let W =
√
V , then

Ẇ =
V̇

2
√
V

(44)

and (42) can be reformulated as

Ẇ ≤ −1− 2λmax(P)L

2λmax(P)
W +

λmax(P)(Lr0 + L0)√
λmin(P)

(45)

According to the Lemma, one has

W ≤ W (t0)e
− 1−2λmax(P)L

2λmax(P)
(t−t0)

+
t∫

t0

λmax(P)(Lr0+L0)√
λmin(P)

e−
1−2λmax(P)L

2λmax(P)
(t−τ)dτ

(46)

that is

W ≤ W (t0)e
− 1−2λmax(P)L

2λmax(P)
(t−t0)

+
2λ2

max(P)(Lr0+L0)√
λmin(P)(1−2λmax(P)L)

(
1−
e

2λmax(P)L−1
2λmax(P)

(t−t0)

)
(47)

Since
∥E∥ ≤

√
V√

λmin(P)
= W√

λmin(P)
,

W (t0) ≤
√
λmax(P) ∥E(t0)∥ ,

(48)

(46) can be rewritten as

∥E∥ ≤
√

λmax(P)√
λmin(P)

∥E(t0)∥ e−
1−2λmax(P)L

2λmax(P)
(t−t0)

+
2λ2

max(P)(Lr0+L0)
λmin(P)(1−2λmax(P)L)

(
1− e

2λmax(P)L−1
2λmax(P)

(t−t0)
) (49)

which implies

∥E∥ ≤ max


2λ2

max(P)(Lr0+L0)
λmin(P)(1−2λmax(P)L) ,√

λmax(P)√
λmin(P)

∥E(t0)∥

 (50)

Consider

lim
t→∞

e−
1−2λmax(P)L

2λmax(P)
(t−t0) = 0

when t → ∞, we have

∥E∥ ≤ 2λ2
max(P)(Lr0 + L0)

λmin(P)(1− 2λmax(P)L)
(51)

and the uniform stability can be ensured. This completes
the proof.

Remark Assumption 2 is a preliminary assumption on
the total disturbance in terms of Lipschitz condition and
the boundedness, which implies that ADRC can effectively
cope with a kind of total disturbance which meets these
requirements. However, this is only a sufficient condition
with considerable conservativeness. In fact, ADRC can
deal with much more complicated disturbances. However,
it is quite difficult to establish an exact mathematical
model for a complex plant, which leads to a wide gap
between control theory and practice.

5. NUMERICAL SIMULATIONS AND HARDWARE
EXPERIMENTS

In this section, both numerical simulations and hardware
experiments are performed to illustrate the effectiveness of
the proposed method. The nominal characteristic param-
eters in the numerical simulation are consistent with the
hardware experiment. The system parameters are set as

M = 1.5kg, m = 0.43kg, l = 0.5m, g = 9.81m/s2 .

5.1 Trajectory Planning

The initial and final state variables are set as

x1 (t0) = x2 (t0) = x3 (t0) = x4 (t0) = 0,

x1 (tf ) =
(
w2

n/g
)
xf ,

x2 (tf ) = x3 (tf ) = x4 (tf ) = 0.

In addition, it is necessary to specify reasonable constraint
values, which are shown in Table 2.

Through simulation analysis, the optimal FO can be re-
alized with 166 Legendre-Gauss-Radau (LGR) sampling
points by using the GPOPS. Up to the 3rd-order deriva-
tives of the FO are shown in Fig. 1, and Fig. 2 illus-
trates the optimal state and control variables based on
the optimal FO. According to both Figures, the plan-
ning results are smooth. A variety of physical constraints
and performance indicators are considered, therefore the
change of the optimal control signal, trolley displacement
and payload swing angle are all within their reasonable
ranges, respectively. While the trolley reaches the specified
position, the payload swing angle can converge to 0.

 
Fig. 1. The FO optimization results by using the GPOPS.
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Table 2. Characteristic parameters and state variables.

Constraint condition Variables Ranges Variable definition Units

State constraints

xc [0, 0.8] Displacement m
ẋc [−0.3, 0.3] Velocity m/s
ẍc [−0.15, 0.15] Acceleration m/s2

θ [−2, 2] Swing angle deg

θ̇ [−5, 5] Swing angular rate deg/s
Control constraint F [−50, 50] Driving force N
Time constraint t [0, 6.4] Time s

 

Fig. 2. Swing angle, displacement and control signal opti-
mization results by using the GPOPS.

 

Fig. 3. Displacement tracking by using the ESO.

5.2 Trajectory Tracking

tory tracking is highly accurate, and meanwhile the model
mismatch can be estimated and compensated effectively
as shown in Fig. 5. To further verify the superiority of
the proposed method, the comparison simulation is also
carried out. Here, the control law of (28) is used in the
absence of z5 and other gains are completely identical
for a fair comparison. This additional scheme is a PD-
type controller and more derivatives are introduced to deal
with high-order dynamics. From another perspective, this
controller might be regarded as the original one with the
observer bandwidth ωo = 0. The comparative simulation
results are shown in Fig. 6. It is evident that the ESO
can enhance the tracking accuracy remarkably, which is
crucial for the crane and operator safety when large and
heavy payloads are employed.

5.3 Hardware Experiments

To better validate the proposed method, the hardware
experiments are implemented. The experimental platform
is mainly composed of electrical motor, trolley, cable

 

Fig. 4. Swing angle tracking by using the ESO.

 

Fig. 5. Realistic and estimated disturbances.

and payload (as shown in Fig. 7). The trolley is placed
on the synchronous conveyor belt which is actuated by
the electrical motor. The trolley moves the payload to
a certain displacement within a fixed time through a
cable, and the swing angle of the payload should be
as small as possible. The control algorithm is executed
by using MATLAB/Simulink 2015b RTWT (Real-Time
Windows Target). The sensor information (including the
displacement and swing angle) is collected by using a GTS-
800-PV-PCI eight-axis control board, which also sends the
control instruction to the motor drive.

The experimental results show that the displacement (Fig.
8 (a)) and the swing angle (Fig. 8 (b)) can track their
corresponding references precisely. Although the measure-
ment noise leads to certain errors, both are within their
acceptable ranges. The control signal variation (Fig. 9)
and disturbance estimation (Fig. 10) in the experiment
are also consistent with the simulation results.

6. CONCLUSIONS

For the underactuated crane, the trajectory planning by
using the DF and PSM was proposed in this paper. The
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(a) Comparative results for the displacement.

 

(b) Comparative results for the swing angle.

Fig. 6. Comparative simulation results without and with
an ESO.

Industrial control computer Motor 
drive

I /O interface 
board and 

power 
supply

Electrical motor

Synchronous belt
Trolley

Payload

Swing angle measurement

Displacement measurement

 

Fig. 7. Experimental platform.

displacement and swing angle were described through the
FO, which halves the dimension of the original states.
The FO was optimized with the help of PSM, while the
displacement and swing angle were expressed by using the
optimal FO. The underactuated control of the original
system was converted to a fully driven FO tracking, which
reduces the degree of difficulty in control. In addition,
the extended state observer was used to estimate and
compensate the model mismatch generated in the flat-
tening process such that high tracking accuracy could
be achieved. The closed-loop stability was guaranteed in
theory. The proposed method was verified in the numerical
simulations and hardware experiments. Our work provides

 

(a) Displacement.

 

(b) Swing angle.

Fig. 8. Experimental tracking results.

 

Fig. 9. Experimental control signal.

 

Fig. 10. Experimental disturbance.

a fast and reliable methodology for practitioners to use
crane to move large and heavy payloads, wherein both
efficiency and safety are crucial.
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