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Abstract: This paper discusses optimal solutions for implementing arbitrary Boolean functions
using perceptrons. It starts by presenting neural structures and their biological inspirations, while
mentioning the simplifications leading to artificial neural networks. The state-of-the-art when
using neural networks as universal approximators, as well as size optimal perceptron solutions
are shortly overviewed. Afterwards we detail a result of Horne and Hush (1994), showing that a
neural network of perceptrons restricted to fan-in 2 can implement arbitrary Boolean functions,
but requires O(2n/n) perceptrons in O(n) layers. This result is generalised to arbitrary fan-ins, and
used to prove that all the relative minimums of size are obtained for sub-linear (‘small’) fan-in
values. On one side, this result shows a limitation of using perceptrons to implement arbitrary
Boolean functions. On the other side, the result is in good agreement with hardware (i.e. VLSI
implementations), where the area and the delay are directly related to fan-ins (and to the precision
of the synaptic weights). The main conclusion is that discrete VLSI-efficient solutions are
connectivity (fan-in) limited even when using perceptrons
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1. INTRODUCTION

The model we shall discuss wants to duplicate
the activity of the human brain. This is made of
living neurons composed of a cell body and
many outgrowths. One of these is the axon
which may branch into several collaterals. The
axon is the ‘output’ of the neuron. The other
outgrowths are the dendrites. The ends of the
axons from other neurons are connecting to the
dendrites through ‘spines’. Active pumps in the
nerve cell walls push sodium ions outside, while

keeping fewer potassium ions inside. Therefore,
their tendency is to keep the cell body at a small
negative electric potential (−60mV). The
electrical balance varies at the exit point of the
axon. If the electrical potential of the cell
becomes too positive (+10÷15mV), the potential
suddenly jumps to about +60mV. After a short
delay (2÷3ms) the potential returns to the
normal negative value (−60mV). This change of
potentials is sequential, and is called an action
potential. The action potential travels down the
axon and its branches (with a speed in the range
1÷10m/s). This variation of potential represents
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the signal sent by one neuron to its neighbours.

The generation of the signal is achieved by
summing the signals coming from the dendrites.
The strength of the action potentials traveling
along an axon are identical, nevertheless, the
effects to the neighbouring cells are different.
This is due to the rescaling effect that takes
place at the synapse. Although over-simplified,
this description of the living nerve cells is a
correct representation of the system.

Formally, a network is an acyclic graph having
several input nodes, and some (at least one)
output nodes. If a synaptic weight is associated
with each edge, and each node computes the
weighted sum of its inputs to which a nonlinear
activation function is then applied:

)(Xf )( 1 θσ ∑ ∆
= += i iixw (1)

the network is a neural network (NN), with
wi∈IR  the synaptic weights, θ∈IR  known as the
threshold, ∆ being the fan-in, and σ a non-linear
activation function. Because the underlying
graph is acyclic, the network does not have
feedback, and can be layered. That is why such a
network is also known as a multilayer
feedforward neural network. The connecting
weights are quite important, as it is their
modification that allows the NN to ‘learn’. The
basic idea is to present the examples to the NN
and change the weights in such a way as to
improve the results (i.e., the outputs of the NN
will be ‘closer’ to the desired values).

The cost functions used to characterise NNs are:

• depth (i.e., number of edges on the
longest input-to-output path, or number of
layers); and

• size (i.e., number of neurons).

In the last decade, the tremendous impetus of
VLSI technology has made neurocomputer
design a lively research topic. Hundreds of
designs have been already build, while a few are
available as commercial products. Still, we are
far from the main objective, as can be clearly
seen from Fig. 1, where the horizontal axis
represents the number of synapses (i.e., the
connectivity), while the vertical axis represents
the ‘power of computation’ in connections per
second (CPS). It becomes clear that biological
NNs are far ahead of digital, analog and even
future optical implementations.

For VLSI implementations the area of the
connections counts, and the area of one neuron

can be related to its associated weights, thus
“comparing the number of nodes is inadequate
for comparing the complexity of NNs as the
nodes themselves could implement quite
complex functions” (Williamson, 1990). That is
why several authors have taken into account
other cost functions, which can be linked to
VLSI implementations by the assumptions one
makes on how the area of a chip scales with the
weights and the thresholds (Beiu, 1996b, 1996c,
1998).

It is worth emphasizing here that it is highly
desirable (if not required) to drastically limit the
range of parameter values for VLSI
implementations (Wray and Green, 1995), be
they digital or analog, because:

• the maximum value of the fan-in
(Hammerstrom, 1988; Walker et al.,
1989), andthe maximal ratio between the
largest and the smallest weight,

• cannot grow over a certain (technological)
limit (Bruck and Goodmann, 1988;
Drăghici and Sethi, 1997).

The paper will start by overviewing many
results about the approximation capabilities of
NNs, and details upper and lower bounds on the
size of NNs of perceptrons (i.e., threshold
gates). We will show that both Boolean and
threshold gate (TG) circuits (TGCs) require
exponential size for implementing arbitrary
Boolean functions (BFs), while there are optimal
TGCs having sub-linear (‘small’) fan-ins and
low precision. Such results are in agreement
with silicon implementations (which lack the
third dimension of the biological nets) having
limited fan-in and reduced precision. Several
conclusions are ending the paper.

2. PREVIOUS RESULTS

NNs have been experimentally shown to be
quite effective in many applications (see
Applications of Neural Networks in (Arbib,
1995), together with Part F: Applications of
Neural Computation and Part G: Neural
Networks in Practice: Case Studies from (Fiesler
and Beale, 1996)). This success has led
researchers to undertake a rigorous analysis of
their mathematical properties and has generated
two directions of research for finding:
existence/constructive proofs for the ‘universal
approximation problem’;
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tight bounds on the size of the NNs solving the
approximation problem.

Both aspects will be shortly discussed further.

2.1. Neural Networks as Universal
Approximators

One line of research has concentrated on the
approximation capabilities of NNs (Blum and
Li, 1991; Ito, 1991). It was started in 1987 by
Hecht-Nielsen (1987) and Lippmann (1987)
who, together with LeCun (1987), were
probably the first to recognise that the specific
format from (Sprecher, 1965, 1966) of the form:
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= Φ  (Kolmogorov, 1957) can be

interpreted as a NN with one hidden layer. This
gave an existence proof of the approximation
properties of NNs. The first nonconstructive
proof was given in 1988 by Cybenko (1988,
1989) using a continuous activation function,
and was independently presented by Irie and
Miyake (1988). Similar results for radial basis
functions were shortly reported (Hartman et al.,
1989; Poggio and Girosi, 1989). Thus, the fact
that NNs are computationally universal - with
more or less restrictive conditions when
modifiable connections are allowed - was
established. Different enhancements have been
presented later (see also (Scarselli and Tsoi,
1998)):

• Funahashi (1989) proved the same result
in a more constructive way, and refined
the use of Kolmogorov’s theorem in
(Hecht-Nielsen, 1987), giving an
approximation result for two-hidden-layer
NNs;

• Hornik et al. (1989) showed that the
continuity requirement for the output
function can partly be removed;

• Hornik et al. (1990) also proved that a NN
can approximate simultaneously a
function and its derivative;

• Park and Sandberg (1991, 1993) used
radial basis functions in the hidden layer,
and gave an almost constructive proof;

• Hornik (1991) showed that the continuity
requirement can be completely removed,
the activation function having to be

‘bounded and non-constant’;

• Geva and Sitte (1992) proved that four-
layered NNs with sigmoid activation
function are universal approximators;

• Kůrková (1992), and Kůrková et al.
(1997), have demonstrated the existence
of approximate superposition
representations within the constraints of
NNs, i.e. ψ and Φq can be approximated
by Σar σ(br x + cr), where σ is an
arbitrary activation sigmoidal function;
depending on approximation, the size of
the resulting NNs is between nm (m+1)
and m 2(m+1) n;

• Mhaskar and Micchelli (1992, 1994)
approach was based on the Fourier series
of the function, by truncating the infinite
sum to a finite set, and rewriting eikx in
terms of the activation function (which
now has to be periodic);

• Koiran (1993) presented a new proof on
the line of Funahashi’s (1989), but more
general in that it allows the use of units
with ‘piecewise continuous’ activation
functions;

• Leshno et al. (1993) relaxed the condition
for the activation function to ‘locally
bounded piecewise continuous’ (i.e., if
and only if the activation function is not a
polynomial), thus embedding as special
cases almost all the activation functions
that have been previously reported in the
literature;

• Hornik (1993) later proved that: (i) if the
activation function is locally Riemann
integrable and nonpolynomial, the
weights and the thresholds can be
constrained to arbitrarily small sets; and
(ii) if the activation function is locally
analytic, a single universal threshold will
do;

• Funahashi and Nakamura (1993) showed
that the universal approximation theorem
also holds for trajectories;

• Sprecher (1993) has demonstrated that
there are universal hidden layers that are
independent of n;

• Barron (1993) described spaces of
functions that can be approximated by the
relaxed algorithm of Jones (1992), using
functions computed by single-hidden-
layer NNs;
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• Ito (1994) gave an elementary
constructive method improving on the
estimates of Kůrková (1992), the size of
the resulting NNs being now between nm
and m  n.

All these resultswith the exception of (Barron,
1993; Koiran, 1993; Park and Sandberg, 1991,
1993) - were obtained “provided that
sufficiently many hidden units are available”
(i.e., with no claims of size minimality). Later,
more constructive solutions have been obtained
for NN having very small depth (Kůrková,
1992; Ito, 1994; Katsuura and Sprecher, 1994;
Nees, 1994, 1996), but their sizeor the
required precision - grows fast with respect to
the number of dimensions n.

Two important results are those of:

• Attali and Pagès (1997), who have given
an elementary proof based on the Taylor
expansion and the Vandermonde
determinant, yielding bounds for the
design of the hidden layer, and
convergence results for the derivatives;

• Sprecher (1996a, 1996b, 1997), who gave
an explicit numerical algorithm for
superpositions.

2.2. Threshold Gate Circuits

The other line of research was to find the
smallest size NN that can realise an arbitrary
function given a set of m vectors from IRn.
Many results have been obtained for TGs
(Myhill and Kautz, 1961). The first lower bound
on the size of a TGC for “almost all” n-ary BFs
(f: IBn

 →  IBn) was given by Neciporuk (1964):

size 2/1)/2(2 nn⋅≥ (3)

Later a very tight upper bound was proven in
depth = 4 (Lupanov, 1973):

size ]}[{ 2/12/1 )/2(1)/2(2 nn nn Ω+×⋅≤ (4)

A similar existence exponential lower bound of
Ω (2n/3) for arbitrary BFs can be found in (Siu et
al., 1991), which also gives bounds for many
particular but important BFs (see also
(Roychowdhury et al., 1994)).

For classification problems (f : IRn
 →  IBk), the

first result was that a NN of depth = 3 and size =
m−1 (here m is the number of examples which
have to be classified) could compute an arbitrary
dichotomy, i.e. a classification into one class
(k = 1). The main improvements have been:

• Baum (1988) presented a TGC with one
hidden layer having m/n neurons
capable of realising an arbitrary
dichotomy on a set of m points in general
position in IRn; if the points are on the
corners of the n-dimensional hypercube,
m−1 nodes are still needed;

• a slightly tighter bound of only
1+(m−2)/n neurons in the hidden layer
for realising an arbitrary dichotomy on a
set of m points (which satisfy a more
relaxed topological assumption) was
proven in (Huang and Huang, 1991); the
m−1 nodes condition was shown to be the
least upper bound needed;

• Arai (1993) showed that m−1 hidden
neurons are necessary for arbitrary
separability, but improved the bound for
the dichotomy problem to m/3 (without
any condition);

• Beiu (1996a) has detailed the following
existence lower and upper bounds:
2mlogm/n 2 < size < 2mlogm/(n 2logn),
by estimating the entropy of the data-set;

• Beiu and De Pauw (1997) have presented
several improvements on the results of
Beiu (1996a), by proving two new bounds
2m/(nlogn) < size < 1.44m/n (see also
(Beiu and Drăghici, 1997; Beiu et al.,
1998)).

Other existence lower bounds for the arbitrary
dichotomy problem (Hassoun, 1995; Paugam-
Moisy, 1992) are:

• a depth-2 TGC requires m/[nlog(m/n)]
TGs;

• a depth-3 TGC requires 2(m/logm)1/2
TGs in each of the two hidden layer (if m
>> n 2);

• an arbitrarily interconnected TGC without
feedback needs (2m/logm)1/2 TGs (if m >>
n 

2).

One study (Bulsari, 1993) has tried to unify
these two lines of research by first presenting
analytical solutions for the general NN problem
in one dimension (having infinite size), and then
giving practical solutions for the one-
dimensional cases (i.e., including an upper
bound on the size). Extensions to the n-
dimensional case using three- and four-layers
solutions were derived under piecewise constant
approximations, and under piecewise linear
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approximations (using ramps instead of
sigmoids).

2.3. Boolean Functions

The particular case of BFs has been intensively
studied (Parberry, 1994). A general solution for
synthesising one BF with fan-in = 2 AND-OR
gates is based on the classical construction
developed by Shannon (1949). It was later
extended to the multioutput case, and modified
to apply to NN by Horne and Hush (1994):

Proposition 1. Arbitrary Boolean functions of
the form f : {0, 1}n → {0, 1}µ can be
implemented in a neural network of
perceptrons restricted to fan-in 2 with a node
complexity of  Θ{µ 2n/(n + logµ)} and
requiring O (n) layers.

Proof  Decompose each output BF into two
subfunctions using Shannon’s decomposition
(Shannon, 1949):

),,,( 21 nxxxf
),,(),,( 211201 nn xxfxxxfx +=

By doing this recursively, the output BFs will be
implemented by binary trees. To eliminate most
of the lower level nodes, replace them with a
subnetwork that computes all the possible BFs
needed by the higher-level nodes. Each
subcircuit eliminates one variable and has three
nodes (one OR and two ANDs). Thus, the upper
tree has:
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The subfunctions now depend on q variables,
and the lower subnetwork that computes all the
possible BFs of q variables has:

lowersize ∑ =⋅= q
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i
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lowerdepth q2=

(see Fig. 2 from (Horne and Hush, 1994)).

That q which minimises the size of the two
subnetworks:

BFssize lowerupper sizesize += (7)

is determined by solving ∂ (sizeBFs) / ∂ q = 0:

q μ)}loglog(2μloglog{ +−+≈ nn (8)

By substituting (8) in (5) and (6):

μ),(* nsizeBFs
qn−⋅≈ 23μ

μ)log/(23μ +⋅= nn
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is determined.

The depth is depthupper + depthlower = 2(n–q) + 2q
= 2n = O (n).

3. OPTIMAL PERCEPTRON SOLUTIONS

It is well known that implementing arbitrary BFs
using classical Boolean gates (i.e., AND, OR, and
NOT gates) requires exponential size circuits (of
logarithmic depth). As has been shown in the
previous section, the known bounds for size are
also exponential if TGCs are used to solve
arbitrary BFs in constant depth. These bounds
reveal exponential gaps (between the two
implementations of arbitrary BFs: using Boolean
gates, and respectively TGs). These also suggest
that TGCs with more layers might have a
smaller size (depth ≠ small const. (Beiu, 1997a,
1997b; Beiu and Makaruk, 1998)).

We start from the classical construction
developed by Shannon (1949) for synthesising
one BF with fan-in = 2 AND-OR gates, and
generalise Proposition 1 to arbitrary fan-in.

Proposition 2. Arbitrary Boolean functions of
the form f : {0, 1}n → {0, 1}µ can be
implemented in a neural network of
perceptrons restricted to fan-in = ∆ in
O (n/log∆) layers.

Proof  We use the approach of Horne and Hush
(1994) and limit the fan-in to ∆. Each output BF
can be decomposed in 2∆−1 subfunctions (i.e.,
2∆−1 AND gates). The OR gate would have 2∆−1

inputs. Thus, we have to decompose it in a ∆-ary
tree of fan-in = ∆ OR gates. This first
decomposition step eliminates ∆−1 variables and
generates a tree of:

depth  ∆−∆+= log/)1(  1  */,

                                                     
*/  In this paper x is the ceiling of x (i.e., the smallest
integer greater than or equal to x), and x is the floor of x
(i.e., the largest integer less than or equal to x); all the
logarithms are taken to base 2 (except explicitly mentioned
otherwise).
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size  −∆−+= −∆−∆ )1/()12(2 11 .

Repeating this procedure recursively k times, we
have:

upperdepth }{ log/)1(1  ∆−∆+⋅= k , (10)
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where the subfunctions depend only on
q = n − k∆ variables.

We now generate all the possible subfunctions
of q variables with a subnetwork of:
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The inequality (13) can be proved by induction.
Clearly:

022⋅size
022)1( ⋅+< size .

Let us consider the statement true for α; we
shall prove it for α+1:

∆+∆
⋅+++⋅

)1α(α0 222 222 }{ sizesize

∆+∆+
+⋅<

)1α()1α( 22 22size

}{ α0 22 22
∆

++⋅size
∆

⋅+<
α22)1(size

(due to hypothesis), thus:
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and computing the logarithm of the left side:
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From (10) and (12) we can estimate depthBFs as:

BFsdepth
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and from (11) and (13) we estimate sizeBFs as:
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concluding the proof.

Proposition3  Arbitrary Boolean functions of
the form f : {0, 1}n → {0, 1}µ can be
implemented by neural networks of
perceptrons, where all the critical points of
sizeBFs (µ, n, k, ∆), are relative minimum
situated in the (close) vicinity of the parabola
k∆ ≈ n − log(n + logµ).

Proof  To determine the critical points, we
equate the partial derivatives to zero. Starting
from the approximation of sizeBFs given by (16)
we compute ∂sizeBF  / ∂k = 0:

)1()2(ln2μ Δ −∆⋅ − kk

)()2(ln222 22 ∆−⋅⋅+ ∆−∆−∆ ∆−∆− knkn
0=

nkk −−∆⋅∆−∆ 22(ln2)}//1)({μ  
∆−∆−

=
kn22 .

Using the notations k∆ = γ, β = µ(∆ − 1)/(∆ln2),
and taking logarithms of both sides:

nk −−+ γ2βlog Δγ2 −−= n , (17)

which has γ ≈ n − log(n + logµ) as an
approximate solution.

We can verify this result (obtained by
approximating the partial derivative) by
computing with finite differences:
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)μ(Δ)1μ( ∆−+ k,n,,size,kn,,size BFsBFs 0=
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and after taking twice the logarithm of both
sides, and using the same notations, we have:

)}1/(1γμlog{log ∆−+ ∆−−= γn

γ }{}{ μlog1)/(ΔΔγlog)1/log(1Δ ⋅−+−∆−+−= n

   μ)logγlog( +−∆−≈ n , (18)

which has the same approximate solution:

γ μ)loglog( +−= nn

Starting again from (16), we compute
∂sizeBFs /∂∆= 0:

∆−∆−
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Which by neglecting 2γ + ∆/{k(ln2) ⋅ 2n} gives:

nk −+ 2γβlog ∆−−= kn2

i.e., an equation similar to (17).

All of these show quite clearly that the critical
points are situated somewhere in the (close)
vicinity of the parabola k∆ ≈ n − log(n + logµ).
It follows that size-optimal TGCs can be
obtained for sub-linear (‘small’) fan-ins, i.e. fan-
ins ranging from small constants to at most n −
log n. The exact size:

BFssize upperlower sizesize ⋅+= μ

has been computed for many different values of
n, µ, ∆, and k. The results of those simulations
can be seen in Fig. 1. From Fig. 1(a), (b), and
(c), it seems that k and ∆ have roughly the same
influence on sizeBFs. The parabola-like discrete
curves are approximations of k∆ ≈ n − log(n +
logµ), and can be seen in Fig. 1(d), (e), and (f).

Remark  It is to be mentioned that the other
relative minima (on, or in the vicinity of the
parabola k∆ = n − logn) might be of more
practical interest, as leading to shallower
networks, i.e., having fewer layers: n / log∆
(instead of n).

Fig. 1. The size (log scale) of neural networks implementing arbitrary Boolean functions.
Size versus fan in and the k parameter: (a) n=16; (b) n=64; (c) n=256 (clipped at 21000).

The contour plots for the same cases: (d) n=16; (e) n=64; (f) n=256.
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Fig. 2. Biological neural networks and different hardware alternatives for implementing artificial neural
networks.

(a) An updated and enhanced version inspired from Glesner and Pochmuller (1994).
(b) Detail showing digital neurochips as circles and classical computers as crosses (for detail see (Beiu, 1996c)).

4. CONCLUSIONS

The main conclusion of this paper is that size
optimal solutions for implementing arbitrary
Boolean functions using TGs (perceptrons) are
obtained for TGs having sub-linear fan-ins. In
general, arbitrary BFs can be implemented using
either classical Boolean gates, or TGs
(perceptrons). In both cases, the size is
exponential, but there is an exponential gap in
between the optimal sizes given by these two
implementations. All of these show that in the
space of all possible solutions, there are very
interesting fan-in dependent depth-size (or area-
delay for VLSI implementations) tradeoffs, as
well as size optimal TGCs having relatively
‘small’ fan-in values. Still, finding these size
optimal solutions is not at all obvious, and
requires a lot of effort.

These results also suggest that removing the
analog beaviour of the neurons by substituting
the sigmoid (non-linear) activation function σ
with a hard limiter reduces significantly their
computation abilities. When compared to
biological neural networks, perceptron based
hardware implementations (being connectivity
and precision limited) will not able to
compensate by their higher computing speeds
(see Fig. 2(a)). We claim that the brain does not
optimise energy and power - like engineers do
when designing integrated circuitsand
probably trades the slower individual speeds
(thus, reducing power!) of its elementary analog
computing elements, for their higher
connectivity (larger fan-ins).
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