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Abstract: This paper proposes an identification method of an input-nonlinear system with saturation 

and dead-zone nonlinearity using the asynchronous input-output data spaced by non-uniform 

intervals. The piecewise expression of the nonlinear part is simplified as an analytic function with an 

available switching function. By extending the traditional continuous linear time-invariant processes 

to non-uniformly sampled input-nonlinear systems, a concise input-output representation model is 

derived.  Based on the key term separation principle and the auxiliary model identification idea, a 

gradient-based iterative identification algorithm is developed for simultaneously estimating all 

parameters of the derived model. Through a numerical example, the proposed algorithm shows its 

superior estimation accuracy compared to the auxiliary model-based forgetting factor stochastic 

gradient algorithm. Finally, the application to a mathematical model of a two-tank system indicates 

the effectiveness of the proposed method. 
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1. INTRODUCTION 

Due to nonlinear devices and complex mechanisms, non- 

linearities are commonly encountered in practical 

processes such as control systems (Ioanas et al., 2013; 

Amer et al., 2021), satellite dynamics and chemical and 

biological processes. Nonlinear systems can be described 

by block-oriented nonlinear models, including 

Hammerstein models, Wiener models, Wiener-

Hammerstein models and Hammerstein-Wiener models 

(Schoukens and Tiels, 2017). Hammerstein models refer to 

the systems composed of a static nonlinear part followed 

by a linear time-invariant part, which have been employed 

to describe a class of nonlinear systems with nonlinear 

input, such as quantization (Xing et al., 2015), hysteresis 

(Gao et al., 2015), and backlash (Giri et al., 2011). The 

saturation    and dead-zone characteristic is a typical input 

nonlinearity in engineering practice and widely exists in 

actuators (Hu et al., 2008), for example, in piezoelectric 

translators, elec- tric servo motors (Tahoun, 2017), and 

surface ships (Xia et al., 2013). The existence of the 

nonlinearity can worsen system performance and even 

threaten system instability, which tends to bring about 

severe damage in industry application. Consequently, the 

research on its analysis, stability and controlling has 

received extensive attention (Oh and Park, 2000; Dong, 

2015). The identification of saturation and dead-zone is of 

significant interest for further research on it. 

Parameter estimation of Hammerstein systems is essential 

for in-depth analysis and study of linear systems (Pan et 

al., 2018) and nonlinear systems (Avila et al., 2017). There 

have been many identification methods proposed for 

Hammerstein systems with single rate (Pu et al., 2021; 

Zhang et al., 2017). Liu and Bai presented three iterative 

algorithms to estimate Hammerstein systems with three 

kinds of nonlinear blocks, infinite impulse response, the 

saturation and preload (Liu and Bai, 2007). To handle 

Hammerstein systems with colored noise, a stochastic 

algorithm was proposed by combining the maximum 

likelihood estimate with the key-term separation principle 

in (Li and Ding, 2011). Chen et al. used a gradient 

algorithm to identify the Hammerstein systems with 

continuous non-linearity (Chen et al., 2012), which only 

considered the single rate sampling. 

There have been factors like data acquisition and 

transmission, frequency characteristics and hardware 

constraints, which can cause that the inputs and outputs 

are asynchronously measured with non-uniform sampling 

intervals. 

There exists some work on the non-uniformly sampled-data 

systems, e.g., the related problems including modeling and 

estimation have been suggested in (Ding et al., 2009). The 

work analyzed the controllability and observability of the 

non-uniformly sampled systems and discussed the method for 

reconstructing continuous systems from non-uniformly 

sampled discrete-time data. With a high dimensional 

parameter vector, the decomposition was used to obtain a set 

of sub-models to be identified and a hierarchical 

identification algorithm with low computation was proposed 

(Liu et al., 2012). (Xu, 2017) estimated the parameters of 

transfer functions and (Xu et al., 2018) studied the parameter 

estimation problem of signal modeling. The widely employed 

approach to identifying non-uniformly sampled Hammerstein 

systems is the lifting technique (Ding and Lin, 2014), which 

uses the non-uniform sampling input-output data to build the 

lifted transfer function models or the lifted state-space 
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models. Many estimation algorithms have been presented for 

the lifted models, e.g., a lifted transfer function model was 

obtained for asynchronous non-uniformly sampled-data 

systems in (Xie et al., 2017). (Zhou et al., 2017) presented a 

hierarchical recursive algorithm for asynchronous sampling 

Hammerstein systems by the least squares principle. 

However, for Hammerstein systems with irregular updating 

and sampling intervals, the traditional lifted state-space 

models involve the problem of causality constraints, and 

lifted transfer function models include a larger number of 

parameters, resulting in increased computation complexity in 

the identification procedure. An input-output representation, 

as a novel identification model, was originally proposed for 

linear time-invariant processes with periodic non-uniform 

sampling by introducing a time-varying backward shift 

operator in (Xie et al., 2016). The presented model involves 

fewer parameters and has a more concise structure than lifted 

models. (Xie and Yang, 2017) applied this model to non-

uniformly sampled Hammerstein systems with synchronised 

input and output data. Following the work in (Xie et al., 

2016), this paper extends the novel model to a non-uniformly 

sampled Hammerstein system with saturation and dead-zone, 

and builds an input-output identification model for 

asynchronous input and output data. Moreover, decreasing 

the number of estimated parameters by the key-term 

separation principle (Li and Ding, 2011) and replacing 

unmeasurable internal variables with their corresponding 

estimates by the auxiliary model idea (Xie and Yang, 2017), 

the gradient-based iterative identification algorithm is further 

suggested to identify the model parameters. 

This paper is organized as follows. A new identification 

model is derived for non-uniformly sampled Hammerstein 

systems with saturation and dead-zone in Section 2. Section 3 

provides a forgetting factor stochastic gradient algorithm and 

a gradient-based iterative (GI) algorithm to identify the 

model parameters. Section 4 offers a simulation example and 

a two-tank system to confirm that the GI algorithm proposed 

works effectively and performs better than the forgetting 

factor stochastic gradient algorithm. Last but not least, some 

conclusions are made in Section 5. 

2. THE SYSTEM DESCRIPTION AND MODEL 

DERIVATION 

Consider the input-nonlinear systems (i.e., Hammerstein 

systems) with non-uniform sampling as shown in Fig. 1. The 

nonlinear part 𝑓(⋅)  is followed by the linear SISO 

continuous-time process P. The zero-order hold 𝐻𝜏  and the 

non-uniform sampler 𝑆τ+Δ  generate non-uniformly sampled 

input-output data. The zero-order hold  𝐻𝜏  has the non-

uniform updating intervals 𝜏𝑖(𝑖 = 1,2, … , 𝑟. ), producing the 

continuous-time input 𝑢(𝑡) of  𝑓(⋅). The input data is updated 

𝑟 times in each acquisition period 𝑇, i.e., 𝑡0 = 0, 𝑡𝑖 = 𝜏1 +
𝜏2 +⋯+ 𝜏𝑖  for 𝑖 = 1,2,   … ,  𝑟 , 𝑇 = 𝜏1 + 𝜏2 +⋯+ 𝜏𝑟 . The 

output y(𝑡)   of 𝑃  is sampled by the non-uniform sampler 

𝑆τ+Δ , generating a discrete-time output sequence  y(𝑘𝑇 +
𝑡𝑖 + 𝑑𝑖)(0 ≤ 𝑑𝑖 < τ𝑖+1 for  𝑖 = 0, 1, 2, … , 𝑟 − 1. )  where 𝑑𝑖 
denotes the time lag compared with the input sampling 

instants. When 𝑑𝑖 = 0 , the systems turn into synchronous 

ones.  

 

Fig. 1. The schematic of non-uniformly sampled 

Hammerstein systems. 

Fig. 2 shows the updating and sampling pattern of the non-

uniform zero-order hold and sampler. During acquisition 

period T, the input is non-uniformly updated r times with 

intervals {𝜏1, 𝜏2, … , 𝜏𝑟}  at time instants {𝑡0, 𝑡1, … 𝑡𝑟} , where 

𝑡𝑟 = 𝑇; the output is sampled at time instants 𝑡0 + 𝑑0, 𝑡1 +
𝑑1, … 𝑡𝑟−1 + 𝑑𝑟−1 , where 𝑑0, 𝑑1, … 𝑑𝑟−1  denote time-lag 

between the output and the input. Assuming that the sampling 

intervals {𝜏1, 𝜏2, ⋯ , 𝜏𝑟; 𝑑0, 𝑑1, ⋯ , 𝑑𝑟−1}  are known, the 

corresponding input and output data can be known. To 

simplify expression, use the subscript Δ to indicate the time-

lag and introduce the following notations: 𝑢𝑖(𝑘) ≔
𝑢(𝑘𝑇 + 𝑡𝑖), 𝑢𝑖(𝑘) ≔ 𝑢(𝑘𝑇 + 𝑡𝑖),   𝑦𝑖+Δ(𝑘) ≔  𝑦(𝑘𝑇 + 𝑡𝑖 +
𝑑𝑖), where the symbol "𝐴 ≔ 𝐵" denotes that "𝐵" is marked 

as "𝐴". With the non-uniform zero-order hold 𝐻τ,   𝑢(𝑡) and  

𝑢(𝑡) can be described as 𝑢(𝑡) = 𝑢(𝑘𝑇 + 𝑡𝑖) = 𝑢𝑖(𝑘),
𝑢(𝑡) = 𝑢(𝑘𝑇 + 𝑡𝑖) = 𝑢𝑖(𝑘), 𝑡 ∈ (𝑘𝑇 + 𝑡𝑖 , 𝑘𝑇 + 𝑡𝑖+1) . 

  

Fig. 2. The asynchronous non-uniform updating and 

sampling pattern. 

The nonlinear block 𝑓(⋅) in Fig. 3 includes a saturation and 

dead-zone, which have the following expression, 

𝑢(𝑡) =

{
 
 

 
 
𝑚2(𝑙2 − 𝑙1), 𝑢(𝑡) ≤ 𝑙2,

𝑚2[𝑢(𝑡) − 𝑙1], 𝑙2 < 𝑢(𝑡) < 𝑙1,

0, 𝑙1 ≤ 𝑢(𝑡) ≤ 𝑟1,

𝑚1[𝑢(𝑡) − 𝑟1], 𝑟1 < 𝑢(𝑡) < 𝑟2,

𝑚1(𝑟2 − 𝑟1), 𝑟2 ≤ 𝑢(𝑡),

                            (1) 

where 𝑚1  and 𝑚2  (𝑚1,  𝑚2 > 0) , 𝑟1  and  𝑙1 , 𝑟2 and 𝑙2 

(𝑟2 > 𝑟1,   𝑙2 < 𝑙1) denote the corresponding segment slopes, 

dead-zone points and saturation points, respectively. 

 

Fig. 3. The saturation and dead-zone nonlinearities. 
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To transform the piecewise expression into an analytic 

function, define a switching function (Chen et al., 2012), 

ℎ[𝑢(𝑡)] = {
1, if 𝑢(𝑡) ≤ 0,

0, if 𝑢(𝑡) > 0.
 

Substituting it into (1), 𝑢̅(𝑡) at the sampling instant 𝑘𝑇 + 𝑡𝑖 
can be rewritten as 

𝑢‾ 𝑖(𝑘) =𝑚1(𝑟2 − 𝑟1)ℎ[𝑟2 − 𝑢𝑖(𝑘)] + 𝑚2(𝑙2 − 𝑙1)ℎ[𝑢𝑖(𝑘) − 𝑙2]

    +𝑚1ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2]𝑢𝑖(𝑘)       

−𝑚1𝑟1ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2]

+𝑚2ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1]𝑢𝑖(𝑘)

−𝑚2𝑙1ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1].                            (2)

 

Suppose that the linear part 𝑃  can be depicted by the 

following state space representation: 

{
𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝒃𝑢(𝑡),

𝑦(𝑡) = 𝒄𝑻𝒙(𝑡) + 𝑑𝑢(𝑡), 
                                                          (3) 

where 𝑨 is a constant matrix with appropriate dimensions, 𝒃 

and 𝒄 are constant vectors with appropriate dimensions, and 

𝑑 is a constant scalar,  𝒙(𝑡) ∈ ℝ𝑛  is the state vector,  𝑢‾(𝑡)  
and 𝑦(𝑡) are the continuous-time process input and output, 

respectively. 

Recent study showed that for the class of non-uniformly 

sampled linear systems described above using the state space 

representation, the output 𝑦𝑖+𝛥(𝑘)  at the non-uniform 

sampling time 𝑘𝑇 + 𝑡𝑖 + 𝑑𝑖  can be fully described with its 

previous 𝑛 + 1   non-uniformly  updated  inputs 

𝑢𝑖(𝑘), 𝑢𝑖−1(𝑘 − 1), … , 𝑢𝑖−𝑛(𝑘 − 𝑛)  and  𝑛   non-uniform  

sampling  outputs 𝑦𝑖−1+𝛥(𝑘 − 1), 𝑦𝑖−2+𝛥(𝑘 − 2), … ,
𝑦𝑖−𝑛+𝛥(𝑘 − 𝑛) (Xie et al., 2016). Extending this novel idea to 

deal with the Hammerstein system with non-uniform 

sampling intervals in Fig. 1, the linear block represented by 

the state space model can be converted to the following 

input-output representation, 

𝑦𝑖+𝛥(𝑘) =−𝑎𝑖,1𝑦𝑖−1+𝛥(𝑘) − 𝑎𝑖,2𝑦𝑖−2+𝛥(𝑘) − ⋯−

𝑎𝑖,𝑛𝑦𝑖−𝑛+𝛥(𝑘) + 𝑏𝑖,0𝑢‾ 𝑖(𝑘) + 𝑏𝑖,1𝑢‾ 𝑖−1(𝑘) + ⋯+   

𝑏𝑖,𝑛𝑢‾ 𝑖−𝑛(𝑘),                                                               (4)

 

where  𝑎𝑖,𝑗 and 𝑏𝑖,𝑗(𝑖 = 0,1,2, … , 𝑟 − 1; 𝑗 = 1,2, … , 𝑛)  only 

depend on the coefficient matrices of the state space model, 

i.e.,  𝑨 , 𝒃 , 𝒄 and 𝑑. 

Notably, all the parameters 𝑏𝑖,𝑗  are combined with 𝑢‾ 𝑖−𝑗(𝑘), 

so any pair of 𝛼𝑢‾ 𝑖−𝑗(𝑘)  and 𝑏𝑖,𝑗/𝛼  will produce the same 

output for the model in (4) if α is a nonzero constant. In order 

to normalize system parameters for identification, let the first 

coefficient of the key-term 𝑢‾ 𝑖(𝑘) be 1, i.e., 𝑏𝑖,0 = 1. Then, 

substituting 𝑢‾ 𝑖(𝑘)  in (2) into (4) yields, 

𝑦𝑖+𝛥(𝑘) =𝑚1(𝑟2 − 𝑟1)ℎ[𝑟2 − 𝑢𝑖(𝑘)] +

𝑚2(𝑙2 − 𝑙1)ℎ[𝑢𝑖(𝑘) − 𝑙2] +

𝑚1ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2]𝑢𝑖(𝑘) −

𝑚1𝑟1ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2] +

𝑚2ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1]𝑢𝑖(𝑘) −

𝑚2𝑙1ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1] − 𝑎𝑖,1𝑦𝑖−1+𝛥(𝑘) −

𝑎𝑖,2𝑦𝑖−2+𝛥(𝑘) − ⋯− 𝑎𝑖,𝑛𝑦𝑖−𝑛+𝛥(𝑘) +

𝑏𝑖,1𝑢‾ 𝑖−1(𝑘) + ⋯+ 𝑏𝑖,𝑛𝑢‾ 𝑖−𝑛(𝑘).                              (5)

 

The information vector 𝝋𝑖(𝑘) and parameter vector 𝜽𝑖(𝑘) are 

defined as 

𝝋𝑖(𝑘) : = [ℎ[𝑟2 − 𝑢𝑖(𝑘)], ℎ[𝑢𝑖(𝑘) − 𝑙2],

ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2]𝑢𝑖(𝑘),

−ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2],

ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1]𝑢𝑖(𝑘),

−ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1], −𝑦𝑖−1+𝛥(𝑘),

−𝑦𝑖−2+𝛥(𝑘), … , −𝑦𝑖−𝑛+𝛥(𝑘), 𝑢‾ 𝑖−1(𝑘),

𝑢‾ 𝑖−2(𝑘),  … ,  𝑢‾ 𝑖−𝑛(𝑘)]
T ∈ ℝ2𝑛+6,                          (6)

𝜽𝑖 : = [𝑚1(𝑟2 − 𝑟1),  𝑚2(𝑙2 − 𝑙1),  𝑚1,  𝑚1𝑟1,  𝑚2,  𝑚2𝑙1,

𝑎𝑖,1,  𝑎𝑖,2,  … ,  𝑎𝑖,𝑛,  𝑏𝑖,1,  𝑏𝑖,2,  … ,  𝑏𝑖,𝑛]
T ∈ ℝ2𝑛+6. (7)

 

Therefore, the system model can be derived as 

𝑦𝑖+Δ(𝑘) = 𝝋𝑖
T(𝑘)𝜽𝑖(𝑘). 

From (5), the system with the white noise 𝑣𝑖+𝛥(𝑘) can be 

denoted in matrix form 

𝑦𝑖+Δ(𝑘) = 𝝋𝑖
T(𝑘)𝜽𝑖(𝑘) + 𝑣𝑖+Δ(𝑘). (8) 

3. THE IDENTIFICATION ALGORITHMS 

In the first subsection, a forgetting factor stochastic gradient 

algorithm is presented for above model. To make better use 

of system data and achieve higher estimation accuracy, the 

second subsection will develop a GI identification algorithm 

to identify the considered system. 

3.1 The auxiliary model-based forgetting factor stochastic 

gradient identification algorithm 

A criterion function is defined as 

𝐽1(𝜽𝑖) ≔ [𝑦𝑖+Δ(𝑘) − 𝝋𝑖
T(𝑘)𝜽𝑖(𝑘)]

2, 

minimizing it and a stochastic gradient (SG) algorithm is 

derived: 

𝜽̂𝑖(𝑘) = 𝜽̂𝑖(𝑘 − 1) +
𝝋𝑖(𝑘)

𝑅(𝑘)
[𝑦𝑖+Δ(𝑘) − 𝝋𝑖

T(𝑘)𝜽̂𝑖(𝑘 − 1)],  (9) 

𝑅(𝑘) = 𝑅(𝑘 − 1) + ‖𝝋𝑖(𝑘)‖
2,  𝑅(0) = 1.                         (10) 

Because of the unknown items 𝑢‾ 𝑖−𝑗(𝑘) and 𝑚1, 𝑚2, 𝑟1, 𝑟2, 𝑙1, 

𝑙2 in the information vector 𝝋𝑖(𝑘), the SG algorithm in (9)-

(10) fails to identify the parameter vector  𝜽𝑖. To solve this 

problem, replacing the immeasurable items with their 

previous estimates based on the auxiliary model identification 

idea, yields 

𝝋̂𝑖(𝑘) = [ℎ[𝑟̂2(𝑘 − 1) − 𝑢𝑖(𝑘)],  ℎ[𝑢𝑖(𝑘) − 𝑙2(𝑘 − 1)], 

ℎ[𝑟̂1(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘 − 1)]𝑢𝑖(𝑘),

−ℎ[𝑟̂1(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘 − 1)],

ℎ[𝑙2(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘 − 1)]𝑢𝑖(𝑘),

ℎ[𝑙2(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘 − 1)],

−𝑦𝑖−1+𝛥(𝑘),  −𝑦𝑖−2+𝛥(𝑘),  … ,  −𝑦𝑖−𝑛+𝛥(𝑘),

𝑢‾̂ 𝑖−1(𝑘 − 1), 𝑢‾̂ 𝑖−2(𝑘 − 1),  … , 𝑢‾̂ 𝑖−𝑛(𝑘 − 1)]
T ∈ ℝ2𝑛+6.

 

Replacing unknown 𝑚1 , 𝑚2 , 𝑟1 , 𝑟2 , 𝑙1  and 𝑙2   with their 

estimates in (2), the estimate of   𝑢‾ 𝑖(𝑘)  can be calculated by 
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𝑢‾̂ 𝑖(𝑘) = 𝑚̂1(𝑘)[𝑟̂2(𝑘) − 𝑟̂1(𝑘)]ℎ[𝑟̂2(𝑘) − 𝑢𝑖(𝑘)] +

𝑚̂2(𝑘)[𝑙2(𝑘) − 𝑙1(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙2(𝑘)] +

𝑚̂1(𝑘)ℎ[𝑟̂1(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘)]𝑢𝑖(𝑘) −

𝑚̂1(𝑘)𝑟̂1(𝑘)ℎ[𝑟̂1(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘)] +

𝑚̂2(𝑘)ℎ[𝑙2(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘)]𝑢𝑖(𝑘) −

𝑚̂2(𝑘)𝑙1(𝑘)ℎ[𝑙2(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘)].

 

To increase the convergence rate, a parameter λ called the 

forgetting factor is introduced into the SG algorithm. 

Therefore, the auxiliary model based forgetting factor 

stochastic gradient (AM-FSG) algorithm for estimating the 

parameters 𝜽𝑖 is deduced as: 

𝝋̂𝑖(𝑘) = [ℎ[𝑟̂2(𝑘 − 1) − 𝑢𝑖(𝑘)],  ℎ[𝑢𝑖(𝑘) − 𝑙2(𝑘 − 1)],        

             ℎ[𝑟̂1(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘 − 1)]𝑢𝑖(𝑘), 

     −ℎ[𝑟̂1(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘 − 1)], 

            ℎ[𝑙2(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘 − 1)]𝑢𝑖(𝑘), 

ℎ[𝑙2(𝑘 − 1) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘 − 1)], 

−𝑦𝑖−1+𝛥(𝑘),  −𝑦𝑖−2+𝛥(𝑘),  … ,  −𝑦𝑖−𝑛+𝛥(𝑘),    

               𝑢‾̂ 𝑖−1(𝑘 − 1), 𝑢‾̂ 𝑖−2(𝑘 − 1),  … , 𝑢‾̂ 𝑖−𝑛(𝑘 − 1)]
T,   (11) 

𝑅(𝑘) = 𝜆𝑅(𝑘 − 1) + ‖𝝋̂𝑖(𝑘)‖
2, 0 ≤ 𝜆 ≤ 1, 𝑅(0) = 1, (12)    

𝜽̂𝑖(𝑘) = 𝜽̂𝑖(𝑘 − 1) +
𝝋̂𝑖(𝑘)

𝑅(𝑘)
[𝑦𝑖+𝛥(𝑘) − 𝝋̂𝑖

T(𝑘)𝜽̂i(𝑘 − 1)], (13)  

𝜽̂𝑖(𝑘) =[𝑚̂1(𝑘)[𝑟̂2(𝑘) − 𝑟̂1(𝑘)], 𝑚̂2(𝑘)[𝑙2(𝑘) − 𝑙1(𝑘)],  

              𝑚̂1(𝑘), 𝑚̂1(𝑘)𝑟̂1(𝑘), 𝑚̂2(𝑘), 𝑚̂2(𝑘)𝑙1(𝑘), 𝑎̂𝑖,1(𝑘),    

𝑎̂𝑖,2(𝑘), … , 𝑎̂𝑖,𝑛(𝑘), 𝑏̂𝑖,1(𝑘), 𝑏̂𝑖,2(𝑘), … , 𝑏̂𝑖,𝑛(𝑘)]
T,   (14)      

𝑚̂1(𝑘) = 𝜽̂𝑖,3(𝑘), 𝑚̂2(𝑘) = 𝜽̂𝑖,5(𝑘),                                      (15) 

𝑟̂1(𝑘) =
𝜽̂𝑖,4(𝑘)

𝑚̂1(𝑘)
,  𝑟̂2(𝑘) =

𝜽̂𝑖,1(𝑘)

𝑚̂1(𝑘)
+ 𝑟̂1(𝑘),                          (16) 

𝑙1(𝑘) =
𝜽̂𝑖(𝑘)(6)

𝑚̂2(𝑘)
, 𝑙2(𝑘) =

𝜽̂𝑖(𝑘)(2)

𝑚̂2(𝑘)
+ 𝑙1(𝑘),                   (17) 

𝑢‾̂ 𝑖(𝑘) = 𝑚̂1(𝑘)[𝑟̂2(𝑘) − 𝑟̂1(𝑘)]ℎ[𝑟̂2(𝑘) − 𝑢𝑖(𝑘)] + 

𝑚̂2(𝑘)[𝑙2(𝑘) − 𝑙1(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙2(𝑘)] +        

      𝑚̂1(𝑘)ℎ[𝑟̂1(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘)]𝑢𝑖(𝑘) − 

     𝑚̂1(𝑘)𝑟̂1(𝑘)ℎ[𝑟̂1(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2(𝑘)] + 

     𝑚̂2(𝑘)ℎ[𝑙2(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘)]𝑢𝑖(𝑘) − 

           𝑚̂2(𝑘)𝑙1(𝑘)ℎ[𝑙2(𝑘) − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1(𝑘)].    (18) 

where 𝜽̂𝑖,𝑗(𝑘)  denotes the 𝑗th  element of parameter vector 

𝜽̂𝑖(𝑘). 

Then the identification steps of the AM-FSG algorithm in 

(11) -(18) are summarized as shown in Fig. 4. 

In Fig. 4, the initial values: 𝜽𝑖(0) = 𝟏2𝑛+6/𝑝0 (𝟏2𝑛+6 stands 

for an 2𝑛 + 6-dimensional column vector whose elements are 

1.), 𝑝0 = 106, 𝑢‾̂ 𝑖(0) = 1/𝑝0, 𝑅(0) = 1. 

 

 

Fig. 4. The flowchart of the AM-FSG algorithm. 

3.2 The gradient based iterative identification algorithm 

This section gives a GI algorithm for identifying the model in 

(8) by introducing the negative gradient search principle. The 

unknown 𝑢‾ 𝑖−𝑗(𝑘)  and  𝑚1 , 𝑚2 , 𝑟1 , 𝑟2 , 𝑙1 , 𝑙2  in the 

information vector 𝝋𝑖(𝑘)  are replaced with their estimates 

according to the auxiliary model identification idea. 

Firstly, the stacked output vector 𝒀(𝐿), stacked information 

matrix 𝚽(𝐿)  and white noise vector 𝑽(𝐿)  are defined as 

follows: 

𝒀𝑖+𝛥(𝐿) = [

𝑦𝑖+𝛥(𝐿)

𝑦𝑖+𝛥(𝐿 − 1)
⋮

𝑦𝑖+𝛥(1)

] ∈ ℝ𝐿 , 

𝚽𝑖(𝐿) =

[
 
 
 
𝝋𝑖
T(𝐿)

𝝋𝑖
T(𝐿 − 1)
⋮

𝝋𝑖
T(1) ]

 
 
 

∈ ℝ𝐿×(2𝑛+6),                               (19)

𝑽𝑖+𝛥(𝐿) = [

𝑣𝑖+𝛥(𝐿)

𝑣𝑖+𝛥(𝐿 − 1)
⋮

𝑣𝑖+𝛥(1)

] ∈ ℝ𝐿 ,
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where 𝐿  means the data length. From (8) and (19), the 

Hammerstein system equation can be described by the matrix 

form: 

𝒀𝑖+𝛥(𝐿) = 𝚽𝑖(𝐿)𝜽𝑖 + 𝑽𝑖+𝛥(𝐿). 

Define the criterion function: 

𝐽2(𝜽𝑖) : =
1

2
‖𝒀𝑖+𝛥(𝐿) − 𝚽𝑖(𝐿)𝜽𝑖‖

2                                    (20) 

Taking the gradient of 𝐽2(𝛉𝑖) with respect to 𝛉𝑖  yields 

grad[𝐽2(𝜽𝑖)] =
∂𝐽2(𝜽𝑖)

∂𝜽𝑖
= −[𝚽𝑖(𝐿)]

T[𝒀𝑖+Δ(𝐿) − 𝚽𝑖(𝐿)𝜽𝑖]. 

Minimizing the criterion function in (20) by the negative 

gradient search principle (Ding et al., 2019), the GI algorithm 

is derived: 

𝜽̂𝑖
𝑝
= 𝜽̂𝑖

𝑝−1
− 𝜇𝑝grad[𝐽2(𝜽̂𝑖

𝑝−1
)]

= 𝜽̂𝑖
𝑝−1

+ 𝜇𝑝[𝚽𝑖
𝑝(𝐿)]

T
[𝒀𝑖+𝛥(𝐿) − 𝚽𝑖

𝑝(𝐿)𝜽̂𝑖
𝑝−1

], (21)
 

where 𝑝 = 1,2,3,⋯ and 𝜇𝑝  denote the iteration variable and 

the iterative step-size, respectively, 𝜽̂𝑖
𝑝
 is the estimate of 𝜽𝑖 at 

iteration 𝑝. 

Due to the unknown item 𝑢‾ 𝑖−𝑗(𝑘) and unknown parameters 

𝑚1, 𝑚2, 𝑟1, 𝑟2, 𝑙1, 𝑙2 in 𝝋𝑖(𝑘), the iterative algorithm fails to 

identify system parameters. Using the previous iterative 

estimates to replace the unknown item and unknown 

parameters, respectively, a GI identification algorithm can be 

deduced as 

𝜽̂𝑖
𝑝
= 𝜽̂𝑖

𝑝−1
+ 𝜇𝑝[𝚽̂𝑖

𝑃(𝐿)]
T
[𝒀𝑖+𝛥(𝐿) − 𝚽̂𝑖

𝑝(𝐿)𝜽̂i
p−1

],         (22) 

𝒀𝑖+𝛥(𝐿) = [𝑦𝑖+𝛥(𝐿), 𝑦𝑖+𝛥(𝐿 − 1),⋯ ,  𝑦𝑖+𝛥(1)]
T,              (23) 

𝚽̂𝑖
𝑝(𝐿) = [𝝋̂𝑖

𝑝(𝐿), 𝝋̂𝑖
𝑝(𝐿 − 1),⋯ , 𝝋̂𝑖

𝑝(1)]
T
,                         (24) 

𝝋̂𝑖
𝑝(𝑘) ≔ [ℎ[𝑟̂2

𝑝−1
− 𝑢𝑖(𝑘)], ℎ[𝑢𝑖(𝑘) − 𝑙2

𝑝−1
],                             

                  ℎ[𝑟̂1
𝑝−1

− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2
𝑝−1

]𝑢𝑖(𝑘), 

                  −ℎ[𝑟̂1
𝑝−1

− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2
𝑝−1

], 

                  ℎ[𝑙2
𝑝−1

− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1
𝑝−1

]𝑢𝑖(𝑘), 

                  −ℎ[𝑙2
𝑝−1

− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1
𝑝−1

], −𝑦𝑖−1+𝛥(𝑘), 

                  −𝑦𝑖−2+𝛥(𝑘),⋯ ,−𝑦𝑖−𝑛+𝛥(𝑘),  𝑢‾̂ 𝑖−1
𝑝−1(𝑘),  𝑢‾̂ 𝑖−2

𝑝−1(𝑘), 

                  ⋯ ,  𝑢‾̂ 𝑖−𝑛
𝑝−1(𝑘)]

T
∈ ℝ2𝑛+6,                                      (25) 

𝑢‾̂ 𝑖
𝑝(𝑘) = 𝑚̂1

𝑝
(𝑟̂2

𝑝
− 𝑟̂1

𝑝
)ℎ[𝑟̂2

𝑝
− 𝑢𝑖(𝑘)] +                   

               𝑚̂2
𝑝
(𝑙2
𝑝
− 𝑙1

𝑝
)ℎ[𝑢𝑖(𝑘) − 𝑙2

𝑝
] +     

               𝑚̂1
𝑝
ℎ[𝑟̂1

𝑝
− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2

𝑝
]𝑢𝑖(𝑘) − 

               𝑚̂1
𝑝
𝑟̂1
𝑝
ℎ[𝑟̂1

𝑝
− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟̂2

𝑝
] + 

               𝑚̂2
𝑝
ℎ[𝑙2

𝑝
− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1

𝑝
]𝑢𝑖(𝑘) − 

               𝑚̂2
𝑝
𝑙1
𝑝
ℎ[𝑙2

𝑝
− 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1

𝑝
],                         (26) 

 

𝜽̂𝑖
𝑝
= [𝑚̂1

𝑝
[𝑟̂2
𝑝
− 𝑟̂1

𝑝
],  𝑚̂2

𝑝
[𝑙2
𝑝
− 𝑙1

𝑝
],  𝑚̂1

𝑝
,  𝑚̂1

𝑝
𝑟̂1
𝑝
,  𝑚̂2

𝑝
, 𝑚̂2

𝑝
𝑙1
𝑝
,    

          𝑎̂𝑖,1
𝑝
, 𝑎̂𝑖,2

𝑝
, … ,  𝑎̂𝑖,𝑛

𝑝
,  𝑏̂𝑖,1

𝑝
,  𝑏̂𝑖,2

𝑝
, … ,  𝑏̂𝑖,𝑛

𝑝
]
T
,                    (27) 

𝑚̂1
𝑝
= 𝜽̂𝑖

𝑝(3), 𝑚̂2
𝑝
= 𝜽̂𝑖

𝑝(5),                                              (28) 

𝑟̂1
𝑝
=
𝜽̂𝑖
𝑝(4)

𝑚̂1
𝑝 ,   𝑟̂2

𝑝
=
𝜽̂i
p(1)

𝑚̂1
𝑝 + 𝑟̂1

𝑝
,                                            (29) 

𝑙1
𝑝
=
𝜽̂𝑖
𝑝(6)

𝑚̂2
𝑝 ,  𝑙2

𝑝
=
𝜽̂𝑖
𝑝(2)

𝑚̂2
𝑝 + 𝑙1

𝑝
,                                               (30) 

0 < 𝜇𝑝 ≤
2

𝜆max {[𝚽̂𝑖
𝑃(𝐿)]

T
𝚽̂𝑖
𝑝(𝐿)}

.                                      (31) 

where  𝜆𝑚𝑎𝑥{𝑋} represents the maximum eigenvalue of the 

nonnegative definite matrix X. The identification steps of the 

GI algorithm are shown in Fig. 5. 

 

Fig. 5. The flowchart of proposed method. 

In Fig.5, the initial values 𝑝 = 1, 𝜽𝑖
0 = 𝟏2𝑛+6/𝑝0, 𝑝0 = 10

6, 

𝑢‾̂ 𝑖
0(𝑘) = 1/𝑝0. The parameter 𝜇𝑝 only needs to be within the 

range expressed by (31), and the maximum value of 𝜇𝑝  is 

selected in this paper.  
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4. EXAMPLES 

In this section, a numerical Hammerstein system and a 

continuous two-tank system with saturation and dead-zone 

nonlinearity are used to show the effectiveness of the GI 

algorithm. 

4.1 Numerical example 

To demonstrate how the proposed algorithms work and make 

a comparison between them, this section gives a numerical 

example, which has a Hammerstein system in state-space 

form as following: 

{
𝒙̇(𝑡) = [

−0.35 −0.045
1 0

] 𝒙(𝑡) + [
0.03
0
] 𝑢‾(𝑡),

𝑦(𝑡) = [0, 0.035]𝒙(𝑡) + 0.035𝑢‾(𝑡).
 

Convert to the following input-output representation with 

non-uniform sampling times 𝑟 = 2: 

𝑦𝑖+𝛥(𝑘) =−𝑎𝑖,1𝑦𝑖−1+𝛥(𝑘) − 𝑎𝑖,2𝑦𝑖−2+𝛥(𝑘) +

𝑢‾ 𝑖(𝑘) + 𝑏𝑖,1𝑢‾ 𝑖−1(𝑘) + 𝑏𝑖,2𝑢‾ 𝑖−2(𝑘) +

v𝑖+Δ(𝑘), 𝑖 = 0, 1,

 

where  

𝒂0 = [𝑎0,1,  𝑎0,2]
T
= [−0.26456, 0.044]T,              

                𝒂1 = [𝑎1,1, 𝑎1,2]
T  = [−0.15513, 0.04564]T,  

                𝒃0 = [𝑏0,1,  𝑏0,2 ]
T = [0.03926, 0.00388]T,  

       𝒃1 = [𝑏1,1,  𝑏1,2]
T = [0.04229, 0.00642]T. 

The nonlinearity is shown in Fig.3, with  

𝛚 = [𝑚1, 𝑚2, 𝑟1,  𝑟2,  𝑙1, 𝑙2] 
T                                

= [0.44, 0.1, 0.04, 0.54, −0.15, −0.75]T 

Assume 𝑇 = 13𝑠, 𝜏1 = 6𝑠, 𝜏2 = 7𝑠 and 𝑑0 = 3.5𝑠, 𝑑1 = 4𝑠. 

The system is assumed to have a periodic non-uniform 

updating and sampling pattern as illustrated in Fig.6. The 

input {𝑢𝑖(𝑘), 𝑖 = 0,1} is a random signal sequence with zero 

 

Fig. 6. The sampling pattern with asynchronous input-output 

data.  

mean and unit variance, while the noise {𝑣𝑖+∆(𝑘), 𝑖 = 0, 1} is 

white Gaussian with zero mean and constant variance 𝜎2 =
0.22. The estimation error is defined as 

𝜀 ≔
∑ [‖𝒂̂𝑖 − 𝒂𝑖‖

2  + ‖𝒃̂𝑖 − 𝒃𝑖‖
2
 ]1

𝑖=0 + ‖𝝎̂ −𝝎‖2

∑ [‖𝒂𝑖‖
2 + ‖𝒃𝑖‖

2]1
𝑖=0 + ‖𝝎‖2

,                   (32) 

where ‖𝒙‖2 represents the sum of the squares of the elements 

in the vector  𝒙: ‖𝒙‖2 = ∑𝑥𝑖
2. The (32) only applied when 

the true parameters of the model are known. In practical 

system identification, when the parameters of the model are 

unknown, it is not possible to calculate the estimation error of 

the parameters, but only to observe how the output values of 

the model track the true output of the system. 

Apply the AM-FSG algorithm in (11)-(18) and the GI 

algorithm in (22)-(31) to identify the considered system. In 

experiments, different forgetting factor values are usually 

chosen to observe the estimation performance in order to 

obtain the optimal value. In this paper, the forgetting factor 

value 𝜆 is chosen as (0.99, 0.98, 0.97, 0.96). The parameter 

estimates and their errors of the AM-FSG algorithm with 𝜆 =
0.99,  0.98,  0.97,  0.96  are shown in Table 1, and the 

corresponding errors are plotted in Fig.7. With the data length 

𝐿 = 5000, the estimates and errors of the GI algorithm are 

shown in Table 2, and the corresponding estimation error 𝜀 

versus iteration variable 𝑝 is plotted in Fig.8. To study the 

identification performance of the proposed algorithm against 

the output noise, Monte-Carlo simulation is conducted for the 

numerical example by randomly changing the input 

sequences. Fig.9 shows simulation result which is the mean 

estimation error of the GI algorithm. 

Table 1. The numerical example: estimates and errors of 

the AM-FSG algorithm (L = 5000). 

𝑘 𝜆 = 0.99 𝜆 = 0.98 𝜆 = 0.97 𝜆 = 0.96 True values 

𝑎0,1 -0.23805 -0.27083 -0.26446 -0.24632 -0.26456 

𝑎0,2 0.03494 0.05586 0.03051 0.05072 0.04400 

𝑏0,1 0.04465 0.02712 0.00729 -0.02672 0.03926 

𝑏0,2 -0.05310 -0.12406 -0.00987 -0.04262 0.00388 

𝑎1,1 -0.13800 -0.16666 -0.14049 -0.14027 -0.15513 

𝑎1,2 0.04337 0.05758 0.04807 0.05501 0.04564 

𝑏1,1 0.04161 0.02526 0.00663 -0.02974 0.04229 

𝑏1,2 -0.06437 -0.13337 -0.03266 -0.04888 0.00642 

𝑚1 0.23007 0.25997 0.23385 0.23992 0.44000 

𝑚2 0.00034 0.00090 0.06945 0.05572 0.10000 

𝑟1 -0.01828 0.05859 0.07934 0.13975 0.04000 

𝑟2 0.94251 0.98636 1.09590 1.24970 0.54000 

𝑙1 -10.79600 -3.09350 -0.70776 -1.99450 -0.15000 

𝑙2 -7.24000 -7.89460 -1.61710 -2.84570 -0.75000 

𝜀(%) 6.77240 8.27360 4.93360 6.92360  

 

𝑡1 

𝑢(0) 

𝑢(𝑡1) 

… 

𝑇 

𝑢(𝑇) 

𝑇 + 𝑡1 2𝑇 

𝑢(𝑇 + 𝑡1) 

𝑢 

𝑡 0 

𝑦(𝑑0) 

𝑦(𝑡1 + 𝑑1) 

… 

𝑦(𝑇 + 𝑡1 + 𝑑1) 

𝑡 

𝑦 𝑦(𝑇 + 𝑑0) 

0 
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Fig. 7. The numerical example: parameter estimation error of 

the AM-FSG algorithm ε vs. 𝑘. 

Table 2. The numerical example: estimates and errors of 

the GI algorithm 

𝑝 50 100 200 400 600 800 
True 

values 

𝑎0,1 -0.25722 -0.25622 -0.25360 -0.25250 -0.25273 -0.25275 -0.26456 

𝑎0,2 0.02137 0.02765 0.02867 0.02981 0.03010 0.03009 0.04400 

𝑏0,1 0.02179 0.03433 0.04629 0.04301 0.04235 0.04226 0.03926 

𝑏0,2 -0.01425 -0.00577 0.00320 0.00326 0.00399 0.00395 0.00388 

𝑎1,1 -0.15359 -0.14860 -0.14459 -0.14317 -0.14338 -0.14342 -0.15513 

𝑎1,2 0.02544 0.02989 0.03098 0.03207 0.03237 0.03234 0.04564 

𝑏1,1 0.01568 0.03265 0.04838 0.04599 0.04539 0.04534 0.04229 

𝑏1,2 -0.01056 -0.00298 0.00530 0.00518 0.00597 0.00597 0.00642 

𝑚1 0.21961 0.25750 0.32139 0.41632 0.44026 0.44034 0.44000 

𝑚2 0.04157 0.04202 0.04561 0.08411 0.08400 0.08395 0.10000 

𝑟1 -0.25733 -0.16011 -0.04062 0.05526 0.06791 0.06833 0.04000 

𝑟2 0.73432 0.68232 0.63034 0.57481 0.55872 0.55911 0.54000 

𝑙1 0.57935 0.49485 0.37891 -0.09063 -0.09397 -0.09642 -0.15000 

𝑙2 -1.02560 -1.13220 -1.13200 -0.91626 -0.92013 -0.92316 -0.75000 

𝜀(%) 6.16620 4.24160 1.98760 0.17035 0.12281 0.12301  

 

Fig. 8. The numerical example: parameter estimation error of 

the GI algorithm ε vs. 𝑝. 

 

Fig. 9. The numerical example: mean estimation error of the 

GI algorithm ε vs. 𝑝. 

From Table 1 and Fig.7, it is apparent that for the AM-FSG 

algorithm, its estimation error decreases as the forgetting 

factor λ decreases. However, some parameter estimates 

deviate far from the true ones. And the parameter estimates 

also fluctuate a lot when λ is smaller than 0.97. The results 

illustrate that the effectiveness of the AM-FSG algorithm for 

this considered non-uniform sampling Hammerstein system 

needs to be further improved. 

For the GI algorithm, it’s evident that its estimation error 

becomes smaller and all estimates gradually approach to their 

true values with the increase of iterations 𝑝 , and its 

convergence rate is very speedy from Table 2 and Fig.8. 

Moreover, changing the random sequences by different 

random number seed (8:130), Fig.9 depicts that the mean 

estimation errors are fast and smooth close to the true values, 

which further illustrates that the GI algorithm has a smooth 

and good performance. 

To show the evolution of parameter estimates along with the 

iterations 𝑝 , the parameters 𝑎0, 𝑚1, 𝑟2  are randomly chosen 

for presentation in Fig.10, and Fig.11 compares the measured 

output 𝑦(𝑡)  with predicted output of the non-uniformly  

 

Fig. 10. The numerical example: the estimation value 

𝑎0, 𝑚1, 𝑟2 of the GI algorithm vs. 𝑝. 
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Fig. 11. The numerical example: measured output 𝑦(𝑡) and 

predicted output of the non-uniformly system. 

system. In Fig.11, the model obtained by the proposed 

method can accurately track the true output, and furthermore, 

the differences between the predicted values of the outputs 

and their true measured values at the beginning and the end 

of the process do not have a specific meaning. As shown in 

Fig.10 and Fig.11, all the parameter estimates gradually 

converge to the true parameters, demonstrating the 

effectiveness of the proposed identification algorithm.  

Comparing Table 1 with Table 2, the estimates of the GI 

algorithm are much closer to the true values than that of the 

AM-FSG algorithm, and have significantly smaller parameter 

estimation errors in the last rows in these Tables. The results 

validate that the proposed GI identification method has a 

more superior estimation accuracy. 

4.2 Two-tank system 

 

Fig. 12. Schematic diagram of two-tank system. 

Consider the two-tank system shown in Fig.12. The 

motorized valve M may include a saturation and dead-zone 

characteristic, which has translation relation with that of Fig. 

3. The output of the valve is zero when its input signal is not 

big enough to open the valve. The output of the valve may 

remain constant when its input changes in a small range. The 

insensitive phenomenon may be caused by some actuator 

arrearage faults and a PID control algorithm with insensitive 

region aimed at avoiding damage from frequent action of the 

actuator. Therefore, the two-tank system can be tailored as a 

non-uniform sampling process for system identification and 

algorithm testing. In Fig.12, the tanks are located on different

levels, unlike those on the same level in (Changela and 

Kumar, 2015), which means that they have different linear 

resistance to flow. Referring to the derivation of the 

mathematical model in (Changela and Kumar, 2015), the 

two-tank system is modeled as a simplified and linearized 

model 

𝐴1
𝑑ℎ1
𝑑𝑡

= 𝑄𝑖𝑛 − 𝑐1ℎ1,

𝐴2
𝑑ℎ2
𝑑𝑡

= 𝑐1ℎ1 − 𝑄𝑜𝑢𝑡 ,

 

𝑄𝑜𝑢𝑡 = 𝑐2ℎ2, 

where 𝑄𝑖𝑛 is the volumetric flow rate into Tank1, 𝑄𝑜𝑢𝑡  is the 

volumetric flow rate from Tank2; 𝐴1 = 1𝑚2  and 𝐴2 =
1.2𝑚2  are the cross-section areas of the two tanks 

respectively; 𝑐1 = 0.5  and 𝑐2 = 0.8  the coefficients after 

linearization and associated with the valves 𝑅1  and 𝑅2 

respectively; ℎ1 and ℎ2 the liquid levels in Tank1 and Tank2 

respectively. 

Using Equation (5), with the non-uniform sampling times 

𝑟 = 2, the identification model of two-tank system can be 

deduced as   

𝑦𝑖+𝛥(𝑘) =𝑚1(𝑟2 − 𝑟1)ℎ[𝑟2 − 𝑢𝑖(𝑘)] +

𝑚2(𝑙2 − 𝑙1)ℎ[𝑢𝑖(𝑘) − 𝑙2] +

𝑚1ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2]𝑢𝑖(𝑘) −

𝑚1𝑟1ℎ[𝑟1 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑟2] +

𝑚2ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1]𝑢𝑖(𝑘) −

𝑚2𝑙1ℎ[𝑙2 − 𝑢𝑖(𝑘)]ℎ[𝑢𝑖(𝑘) − 𝑙1] − 𝑎𝑖,1𝑦𝑖−1+𝛥(𝑘) −

𝑎𝑖,2𝑦𝑖−2+𝛥(𝑘) + 𝑏𝑖,1𝑢‾ 𝑖−1(𝑘) + 𝑏𝑖,2𝑢‾ 𝑖−𝑛(𝑘) +

 

                   v𝑖+Δ(𝑘), 𝑖 = 0,1,  

where the true values of the parameters 𝒂𝑖 and 𝒃𝑖 are as 

follows:  

𝒂0 = [𝑎0,1, 𝑎0,2]
T
= [−0.4451, 0.0816]T,      

                𝒃0 = [𝑏0,1, 𝑏0,2,]
T = [ 0.5258, 0.2648]T, 

                𝒂1 = [𝑎1,1,  𝑎1,2]
T  = [−0.7501, 0.0320]T,     

       𝒃1 = [𝑏1,1,  𝑏1,2]
T = [0.2677, 0.2476]T. 

The nonlinearity parameters are set as  

𝛚 = [𝑚1, 𝑚2,  𝑟1,  𝑟2,  𝑙1,  𝑙2] 
T  

                      = [0.38, 0.02, 0.8, 2.6, 0.65, 0.02]𝑇 . 

The acquisition period is selected as 𝑇 = 5𝑠, 𝜏1 = 3𝑠, 𝜏2 =
2𝑠 and 𝑑0 = 2.5𝑠, 𝑑1 = 1.5𝑠. The input {𝑢𝑖(𝑘), 𝑖 = 0,1} is a 

random signal sequence with zero mean and unit variance, 

while the noise {𝑣𝑖+∆(𝑘), 𝑖 = 0,1}  is white Gaussian with 

zero mean and constant variance 𝜎2 = 0.22 . Through the 

simulation of the above two algorithms, the estimation errors 

of the GI algorithm and AM-FSG algorithm are 0.21710% 

and 3.3532%, respectively. The estimated parameters of the 

AM-FSG algorithm ( 𝜆 =0.97, 𝐿 =5000) and GI algorithm 

(𝑝=800) are presented in Table 3.  
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Table 3. The two-tank system: estimates and errors of the 

AM-FSG algorithm (𝝀 =0.97, 𝑳 = 5000) and GI algorithm 

(𝒑=800) 

 AM-FSG GI True value 

𝑎0,1 -0.4553 -0.4418 -0.4451 

𝑎0,2 0.0925 0.0774 0.0816 

𝑏0,1 0.3802 0.5049 0.5258 

𝑏0,2 0.2073 0.2597 0.2648 

𝑎1,1 -0.6979 -0.7347 -0.7501 

𝑎1,2 -0.0134 0.0154 0.0320 

𝑏1,1 0.2873 0.2635 0.2677 

𝑏1,2 0.2651 0.2431 0.2476 

𝑚1 0.3621 0.3971 0.3800 

𝑚2 -0.0053 0.0219 0.0200 

𝑟1 0.7023 0.8373 0.8000 

𝑟2 2.6334 2.5165 2.6000 

𝑙1 -5.0582 0.6356 0.6500 

𝑙2 -3.9929 0.0168 0.0200 

𝜀(%) 3.3532 0.2171  

The estimation errors of the GI algorithm are plotted in 

Fig.13. It reveals that the estimation error converges quickly 

and smoothly.  

 

Fig. 13. The two-tank system: the estimation error of the GI 

algorithm ε vs. p. 

 

Fig. 14. The two-tank system: the estimation value  𝑎0, 𝑚1, 𝑟2 

of the GI algorithm vs. 𝑝. 

Fig.14 and Fig.15 show the convergence of estimated 

parameters and the comparison between predicted output and 

true output respectively. The results demonstrate that the 

proposed GI algorithm can be used to well identify all model 

parameters with high accuracy. 

 

Fig. 15. The two-tank system: measured output 𝑦(𝑡)and 

predicted output of the non-uniformly system. 

5. CONCLUSIONS 

We have discussed an identification method for non-

uniformly sampled Hammerstein system with saturation and 

dead zone. By introducing the input-output expression of the 

n-order difference equation, a concise identification model is 

first established. Then, an AM-FSG algorithm is used to 

identify the Hammerstein models. To further improve the 

identification performance, a GI algorithm are proposed to 

identify the Hammerstein models. The GI algorithm directly 

estimates the parameters of the Hammerstein system using 

gradient search. By applying the proposed method to a 

numerical example and a mathematical model of the two-tank 

system, we have proved that the proposed method can give 

more accurate parameter estimations than AM-FSG 

algorithm. The proposed approach is applicable to tackling 

Hammerstein systems with other types of nonlinear blocks. It 

also sheds light on further research on parameter 

identification of non-uniformly sampled systems with more 

complex nonlinearities. 
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