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Abstract: In this study intelligent biomedical information processing techniques are used in
tracking epileptic activity propagation in patients with epilepsy. Although identification and
detection of epileptic signatures from epileptic signals is also important and well managed by such
techniques, reasons are given herein, that discuss why the above is not the most important issue in
this field, but rather is the study of the propagation and development of epileptic activity itself. In
this context, Independent Component Analysis (ICA) is utilised to study averaged epileptic signals
from temporal lobe epileptics. The results are compared to those previously obtained by Magnetic
Field Tomography (MFT) methodologies, and important findings are verified. Finally, the
prospect of obtaining such sets of findings in a more intelligent and automatic methodology, so
that they may, in future, become a blind procedure is discussed.
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1. INTRODUCTION

A key issue in biomedical information
processing (a subdomain of medical informatics)
is how to utilise the enormous content of the
various recordings in an efficient and robust
way. As technological/industrial advances

provide the opportunity to obtain more data
more frequently, the question is whether
methodologies capable of exploiting this rich
data content are becoming available as well, or
not. The field of epilepsy, and
neurophysiological recording and imaging of
epileptic activity in specific, is one of those
areas. Contemporary equipment facilitate the
availability of millisecond by millisecond data
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from an epileptic head for spatial grids of less
than a centimetre. Do modern epileptologists,
however, feel they are in an advantageous
position? The role of medical informatics in the
above game is to equip the medical experts with
robust methodologies capable of analysing the
data in an efficient, time saving, but also
intelligent way.

In the past, we have developed methodologies to
analyse data recordings from epileptic patients.
Those methodologies were based both signal
and image processing techniques, and utilised a
source modelling method, namely Magnetic
Field Tomography (MFT) [1], that enabled three
dimensional distributions of current rather than
electromagnetic point dipoles only. Although
information previously unavailable with other
techniques was revealed, the whole procedure
suffered from efficiency in time, and
automation. In other words, it was a very time
consuming process, and relevantly user
unfriendly, in the sense that only non medical
experts (mostly scientists) could make use of
them. The aim of the current work, was,
therefore, to exploit the vast potential of new
intelligent techniques and methodologies, that
would enable a more blind study of epileptic
data, while at the same time maintaining the
robustness of the procedures. To achieve the
latter, data analysis was powered with newly
developed intelligent techniques, namely, those
incorporating independent component analysis
(ICA), and a few of the previously obtained
results were verified again from another
perspective.

In the following, the area of neurophysiological
studies in epilepsy is introduced and the
contribution of intelligent techniques up to date
is highlighted. An account of the most important
findings with the MFT methodologies is then
given, together with the justification of the shift
of interest to the study of propagation rather
than feature detection. The notion of ICA is then
introduced, and the algorithms involved are
presented in short. The latter are finally applied
in the case of patients with epilepsy, and the
results obtained are discussed in the light of the
previous findings with MFT alone.

2. METHODS

2.1. MEG/EEG Epilepsy studies

Two of the basic techniques used in the study of
epileptic activity, are Electroencephalography

(EEG) and Magnetoencephalography (MEG). In
this section, some general definitions regarding
epilepsy and its study with EEG and MEG are
given, followed by a short report on the
contribution that neural networks have offered
in this field, and more specifically on the
problems of detecting and classifying
epileptiform events. Then, the method of
Magnetic Field Tomography (MFT) is
introduced, and past findings are summarised.
Finally, the role that new information processing
techniques may play is challenged.

2.1.1. General definitions

Epilepsy is a syndrome of episodic brain
dysfunction characterised by recurrent
unpredictable spontaneous seizures [2]. In
epilepsy studies, the time interval of a seizure is
referred to as ictal, while that between seizures
as interictal. During the latter intervals, epileptic
discharges are also continued, but they may only
be very short lasting (e.g. a few milliseconds
long) and, therefore, not lead to any symptoms.
Such discharges make themselves evident
through the appearance of certain signal
waveforms with various characteristics.
Examples of such waveforms are the so-called
spikes, or sharp waves, or spike and wave
complexes. Therefore, tracking interictal
epileptic signatures, necessitates the
involvement of techniques that maintain in
general a very good temporal resolution, and
more specifically  at the millisecond level.

Multichannel EEG and MEG are the only
neurophysiological, non-invasive techniques
that can follow the temporal sequences of such
events. The former one, EEG, allows the study
of brain activity by measuring the resulting
electric potentials on the scalp by means of
multiple electrodes, while the latter one, MEG,
is concerned with the measurement of minute
magnetic fields of a region of neurons outside
the human skull by using multiple non-contact
sensors.

2.1.2. The use of artificial Neural Networks in
epilepsy

Although work in the field of neurophysiology
drove the design of artificial neural networks
early enough [3], it is only in the last decade or
so that different types of neural networks (NNs)
have been designed and shown to have practical
applications with improved performances over
more conventional approaches. As neural
networks are capable of generalising consistent



46 CONTROL ENGINEERING AND APPLIED INFORMATICS

features of patterns in the training sets, a
methodology similar to that usually followed by
neurophysiology experts in everyday practice,
makes the use of computer simulations with
neural networks an attractive tool for automated
pattern recognition of epileptiform EEG/MEG
activity [4]. Moreover, the latter case is made
even more attractive by the fact that it is not
necessary to devise a trained network generally
appropriate for all cases, but only specific ones
capable of representing features of the specific
epileptogenic disorder for each patient
examined.

2.1.3. Epileptiform detection and Classification
of epileptiform events

Although to date, pattern recognition has
remained one of the most difficult problems in
EEG analysis, several reports about automatic
detection in epilepsy have appeared in the past
few years [5, 6, 7]. In most of these reports
present methods of EEG analysis using neural
nets for the recognition and quantification of
various EEG epileptic patterns. For instance,
Rummelhart and McClelland [8] developed a 3-
layer neural net that permitted the discovery of
non-linear relationships between complex input
and output data. Their inputs propagated through
their network in a feed-forward fashion, while
back-propagation was used to minimise the
output error by altering the weights between the
layers by a non-linear least square algorithm.
More recently, Jando et al [9] and Gabor and
Seyal [4] designed and trained a back-
propagation networks for recognising spike-and-
wave patterns of inbred rat strains and interictal
human recordings respectively.

It may also be possible to construct a set of
neural networks, each of which may be trained
to recognise only one type of epileptiform event,
as well as, “normal” events, i.e. events with
epileptic morphology (spiky, sharp and fast) but
not epileptogenic (associated with epileptic
discharges). In this way one may construct a
system receiving the exits from N such kinds of
neural networks, each one regarding the
possibility of occurrence of a particular event,
and correlate them subsequently with other
important aspects of each epilepsy type (e.g.
which channels presented the events), as well as,
details of the patient’s clinical history (patient
age, symptoms etc). Data and information
relating to certain types of epilepsy may be
coded and presented in a rule based structure
(IF-THEN-ELSE), and use fuzzy variables to

quantify the data [10]. This may facilitate
decisions taken by the rules to be processed and
decoded, and finally suggested by the system to
the responsible physician (e.g.
“possible_paroxism”, “possible_fit”) in order to
aid diagnosis.

2.1.4. Studying the epileptic activity
propagation

What is even more interesting than epileptic
signal (spikes, sharp waves etc) detection itself,
is the tracking of epileptic activity propagation,
as well as, the study of its properties and
patterns. This is so because, most of the
currently available treatment strategies for
epileptic patients, depend upon details, such as,
the degree of expansion of the epileptic region,
the exact location of the area that initiates the
“firing”, thereby irritating and exciting the rest
of the brain regions as well, and of course, the
“route” that the epileptic activity follows inside
the brain.

Fig.1. Left: superficial integrals of brain intensity
over some 100 ms, (results from back-averaging 18

single event solutions of strong hippocampal
activation, cf [14]. Two main ROIs are revealed in

the sagittal view: one fronto-infero-temporal and one
more posterior in the temporo-parietal region.

Middle: graph of activations of the cortical and
hippocampal ROIs. Note the pre- and post-

hippocampal activation of the cortex. Right: sagittal
view of deep intensity integrals.

In the past seven years, the feasibility of
analysing unaveraged interictal MEG data with
a robust method of MEG data analysis, namely,
Magnetic Field Tomography (MFT) [1] was
exploited [11]. During these studies, we were
able to report unique observations concerning
the spatio-temporal evolution of such activity
[12]. During the development of a spike for
instance, we identified that activity at the brain
region called hippocampus both preceded and
followed by a well-defined activity at the
superficial brain structures (cortical activity), as
shown in Figure 1 [13]. For the patients
examined, the MFT analysis concluded that
three regions were playing the most important
role in the development of the interictal activity
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per se. As it was unclear, however, whether
these cortical to deep temporal interactions were
noise artefacts or reflected true epileptic events,
further processing was employed to verify the
observations [14].

Most of the above work, however, was by no
means automated, and therefore, required a
substantial amount of time to be spent on just
looking at the data (both signals and images).

2.1.5. The role of ICA

What is made obvious from the previous
paragraph, is the need to utilise more automatic
and if possible “blind” methodologies in the
analysis of such data. Would it be possible,
however, to exploit the aforementioned
intelligent techniques in the study of epileptic
activity propagation? In other words, could one
make use of tools like the Independent
Component Analysis in order to realise how
many brain sources are contributing to the
initiation and development of an interictal
epileptic signal, and what is their relevant
topographic arrangement? In the following
sections, we shall demonstrate that it is actually
feasible to use ICA for such a task.

2.2. Blind Source Separation (BSS) and
Independent Component Analysis (ICA)

The field of Blind Source Separation (BSS) has
recently been established as a basic research
field not only within statistical signal
processing, but within unsupervised neural
learning as well. In this section, some general
principles regarding BSS and ICA are given,
followed by a short report on the main
differences of ICA and PCA. Then, various ICA
algorithms are described in brief, with special
focus on those associated with the JADE
technique and factor analysis, which are the
ones used to obtain the results of this paper.

2.2.1. BSS in general

The main objective of BSS is to extract
statistically independent sources from their
(linear) mixtures with unknown mixing
coefficients. As the exact number of
independent components is usually unknown
one may assume that this number is equal to the
number of input channels. This is, however, an
unstable assumption in the case of biosignals,
since the number of independent components is

usually much less than the total number of
recording channels. Thus, certain mathematical
techniques of independent component
estimation have recently been developed based
on multivariant statistical analysis, or neural
networks.technique and factor analysis, which
are the ones used to obtain the results of this
paper.

So, consider a vector x=[x1(t),...xn(t)]T with n
mixtures of m independent sources s=[s1(t),
...sm(t)]T , where  n≠m, in general. The only
initially available information that exists is
vector x(t), which may be given in matrix form
as:

n   +⋅= sAx  (1)

Matrix A is called the mixing matrix, while n
denotes the noisy component. So, the solution to
the problem of blind separation lies with the
estimation of the elements of A, which are the
mixing coefficients. As a consequence, A
contains all the information associated with the
mixing process. It should be noted at this point
that:

1. The independent sources si(t) are
considered a stationary, zero mean,
stochastic process {si(t)}.

2. The independent sources are mutually
independent

3. Matrix A consists a linear transformation
Α = x→s.

One of the most widespread techniques to
implement BSS stems from Principal
Component Analysis and is frequently used as a
data decorrelation method in multivariate
analysis, namely Independent Component
Analysis (ICA). ICA assumes that a multivariate
timeseries (or a stochastic process, in general)
may be decomposed into some statistically
independent timeseries called independent
components. The goal is to extract from the
original timeseries the independent timeseries,
as well as, their mixing process.

The observed or recorded and generally mixed
signals x form the input to the ICA technique,
while the estimate, y=ŝ, of the independent
components consists the ICA output. The
demixing matrix W (the inverse or
pseudoinverse of A) may also be considered as
an output, since y=Wx (see Fig. 2 below).
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2.2.2. ICA versus PCA

Both ICA and PCA consist linear
transformations of two spaces, the space of
signals and the space of components. PCA aims
to extract the principal components, which are
not correlated with each other. So PCA provides
those data projections along which the variance
is maximised. The principal components are
orthogonal to each other and are sorted along the
descend of the variance (the first PC is the one
with the largest variance, and, therefore, the
most uncorrelated component).

Fig.2. The general principle of ICA.

On the other hand, the independent components
are not necessarily orthogonal (see Fig. 3). It
may also be said that PCA uses second order
statistics, while ICA uses higher order statistical
correlations.

Fig.3. The difference between the PCA and ICA data
projections.

2.2.3. Algorithms for ICA

The ICA idea may be implemented in various
ways. Some of the most well known approaches
found in the literature have to do with:

1. Minimisation of higher order moments –
kyrtosis [15].

2. Minimisation of higher order cumulants
[16].

3. Minimisation of the mutual information
of the input [17].

Minimisation of the Kullback/Leibler
divergence of the common pdf and the product
of isolated pdfs of the output [18].

ICA can typically be implemented by two kinds
of algorithms: off-line and on-line algorithms.
The former ones make use of linear algebra
methods and recursive expressions, while the
latter ones use neural networks.

The off-line approach uses two basic steps [19,
20]:

(i) decorrelation or whitening, where the
covariance matrix of the input signals is
made diagonal so as to decorrelate the
inputs as much as possible (PCA may also
be used here), and

(ii) rotation, where the effect of high order
statistics is minimised, so that input
signals become as independent as
possible. So we may say that, signal
processing with ICA follows a pre-
processing  step, that may often be
accomplished with PCA.

2.2.4. ICA implementation using NNs
As already mentioned in the neural networks
section, there is usually a cost function that is
optimised following a certain algorithm. Thus,
the ICA method is generally characterised by
relation [21]:

ICAMethod=CostFunct.+OptimiseAlgorithm (2)

The properties and the qualities of the ICA
depend upon the choice of the cost function (e.g.
one-unit cost function, multi-unit cost function,
log-likelihood, mutual information and others)
and the optimisation algorithm.

2.2.5. Kinds of on-line ICA with NNs

What remains once the cost function is chosen,
is the optimisation algorithm that is going to be
utilised. Some of the algorithms that have been
reported in literature are the following (details of
these may be found in [22, 23, 18].

1) Heuralt-Jutten Algorithm, based on the
zeroing of the non-diagonal elements of
the covariance matrix.

2) The EASI algorithm (similar to the
previous, but avoiding the inversion of W
(Figure 1).

3) Bell-Sejnowski algorithm (BS) and its
extension (ExtBS).

4) Natural Gradient algorithm (ACY,
WACY)

5) Fixed Point algorithms (FP, FastICA).



CONTROL ENGINEERING AND APPLIED INFORMATICS 49

It needs to be mentioned here that  all the above
algorithms neglect the effect of noise on data
modelling. Recently, however, some newly
developed algorithms have shed light on this
matter, by attempting to limit the noise effect
during the pre-processing/whitening step during
the application of PCA. Nonetheless, the
problem of dynamically dealing with noise
remains to be solved.

Finally, and according to Giannakopoulos et al
[24] one may develop criteria (indices/metrics)
that may be used to measure the efficiency of
each algorithm. By trying the above algorithms
on different sets of data (MEG data as well) it
was found that the FP/FastICA and the ExtBS
algorithms perform efficiently enough.

2.2.6. The JADE algorithm

One of the most well known off-line algorithms
is the so called JADE (Joint Approximate
Diagonalisation of Eigenmatrices, [16], which
consists of two basic stages. In the first stage,
the covariance matrix is calculated and then
from it the decorrelation/whitening matrix is
also calculated. By mutliplying the input data
with the decorrelation matrix the data become as
decorrelated as possible. This stage is usually
implemented using PCA or Factor Analysis (see
below).

The second stage consists of a search for a
rotation matrix, which jointly diagonalises the
eigenmatrices obtained from the fourth order
cumulants of the already decorrelated data. That
is, fourth order statistics are used in this stage
via the cumulants [19].

A brief list of the algorithmic steps of JADE is
as follows:

1) The covariance matrix, R, of the input
matrix is formed.

2) From R, we calculate the matrix W
(whitening), that diagonalises R.

3) The cumulants z(t)=Wx(t) are calculated,
and they are represented by their
equivalent eigenmatrices.

4) With the joint diagonalisation of the
above eigenmatrices, which satisfies a
certain criterion (maximises a certain
expression), the rotation matrix U is
obtained.

The demixing matrix is then B=UW, and the
independent components are obtained via
s(t)=Bx(t).

2.2.7. Factor Analysis

In many cases, like EEG and MEG, the
existence of noise in the data limits in a large
degree the ability of the PCA technique during
the pre-processing phase, that aims to render the
data as uncorrelated as possible. In addition, the
number of independent components is unknown.
It is because of these two reasons, that the PCA
phase is abandoned, and Factor Analysis (FA) is
used instead. In FA, the number of
components/sources is estimated according to a
certain statistical criterion, but the additive noise
is also considered and taken out of the
independent components [25].

By altering the notation in equation (1) slightly,
we obtain (3):

x=A⋅f + e (3)

where s (independent components) has now
been replaced by f (factors), with f ~ N(O,Im) (a
diagonal matrix with a normal distribution of
elements), and n has been replaced by e ~
N(O,Σ), where Σnxn a diagonal matrix of the
noise covariance. In (3), f and e are considered
to be mutually independent, and x has zero
mean.

There are generally two approaches in
implementing FA. One of them is called
principal factor analysis (based on PCA), while
the other is called maximum likelihood
estimation (MLE). In brief though, FA’s goal is
threefold:

 (i) estimate m, the number of parameters or
else independent components/sources.

 (ii) estimate A, the factor loading matrix
(factor mixing)

 (iii) estimate ΣΣΣΣ in (3).

The estimation of ΣΣΣΣ and A may be done (in the
case of MLE) using the expectation
maximisation algorithm [26] and in order to be
facilitated m must satisfy a certain condition.
The estimation of m in turn, is based on the
number of eigenvalues of the covariance matrix
(PCA like criteria). By sorting the eigenvalues
in descending order, a threshold is introduced
according to a condition, and m is chosen so that
it satisfies the threshold. Another technique is
the so called Minimum Descriptive Length
(MDL) criterion which uses MLE itself as an
estimator [25].
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In summary, A and ΣΣΣΣ are estimated for various
m values and the set (m, A, ΣΣΣΣ) that satisfies the
MDL estimator is chosen. The basic difference
of FA and PCA is that FA rejects noise through
the estimation of ΣΣΣΣ.

Finally, if Q is the pseudo-inverse of A
(AQA=A) as obtained by FA, then z=Qx. The
independent components are obtained by (4):

S=Bz=BQx (4)

where Q is obtained from FA, and B is obtained
from ICA. From a theoretical point of view, the
algorithm FA+JADE does not reject the additive
noise as such, but it rather projects the data from
a space of dimension n, to a space of dimension
m, with m<n, by using a linear transformation
BQ in such a way as to compress the noise e
into lower dimensions.

3. MATERIAL

3.1. Signal description and sensor topology
The MEG recordings were made with the 37-
channel SIEMENS KRENIKON system that
contained first-order axial gradiometers coupled
to DC-SQUIDs. All measurements were made
within a magnetically shielded room. The
patient lay comfortably on a couch, with her
head locked into a stereotactic frame. The plane
of sensors was centred over, and parallel to, the
left temporal area of the brain during the
recordings. The whole sensor/patient set up is
illustrated below in Fig. 4.

Fig.4. The MEG sensor set up over the patient's
head..

The data were band-pass filtered on-line through
0.5–70.0 Hz, digitised at 0.4 kHz. A spatio-
temporal cross-correlation matching technique
[27] was also applied on the digitally filtered
(1.5–47.5 Hz) and heart artifact corrected data
[28] to identify and align single epileptic events
(spikes and sharp waves) for averaging. The
length of the template events chosen varied from
142 ms to 217.5 ms, but pre- and post-template
data segments were included in the process
resulting in an average signal of 2000 ms. The
averaging process including the template

selection with some of the data details are
illustrated in Fig. 5.

3.2. Patient histories
Three patients (two males, one female) suffering
with pharmaco-resistant Complex Partial
Epilepsy (CPE), with ages from 18 to 42 years
old, were included in the study. CPE onset ages
varied from 14 to 20 years of age. Common
symptoms included daily seizures of dizziness,
impaired consciousness, acoustic sensations like
noise, dominating later on; and frequent seizure
generalisations.

Fig.5. The epileptic event averaging process.

4. RESULTS

Consider the signal illustrated in Fig. 6, that
represents an epileptic spike as identified by an
epilepsy expert. The epoch consists of 800
timeslices (covering a total period of 2.0 secs),
with the spike being centred around the 400th

timeslice.

Fig.6. An identified epileptic spike (one channel
shown only, raw signal).
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Suppose the averaging procedure as outlined in
the previous section is performed on the above
signal, which results in the averaged signal
shown in fig: 7.

The question imposed is to identify the number
of components that contribute to the appearance
and the development of the spike, as well as, the
importance of each component at specific time
periods (like the ones marked by vertical lines in
Fig. 7 for example).

Fig.7. Signal obtained from averaging 10 “similar”
and aligned interictal epileptic events (spikes). Some

thirty channels are superimposed on top of each
other. Vertical lines are for demonstration purposes

only, see text.

If we execute the algorithm FA+MDL we get an
estimate on the possible number of the
components being present. By so doing, we
obtain the indication that there are five
independent components in the data. Doubling
this number (in order to avoid generality
limitations) and simply running the FA+JADE
algorithm for ten (10) independent components
we obtain the results shown in Fig. 8.

It may be easily noticed now that the first three
independent components of the above result
seem to be the most interesting ones, as the
provide information about the central part of the
signal, that is the spike (around timeslice 400 in
the figure), while most of the rest ones contain a
lot of information about processes occurring
away from the spike peak, as well as, a good
deal of background noise. Figure 8 also points
out that there is a certain order of activation for
the first three independent components: IC2
becomes activated first, IC1 follows, and finally
IC3 appears, always with respect to the
neighbourhood of timeslice 400.

This result supports in a certain extend verifies
the information previously obtained with the
MFT studies, that revealed ordered interactions
between the (deep) hippocampal area with
(superficial) cortical regions (see section 0). On
this basis, it would be interesting to see the
topographic appearance of each component or
else a rough localisation of them. This may be
done by first plotting the contribution of each

input channel to each independent component in
a column chart (see Fig. 9), by using the values
of each column of the mixing matrix A
(equations 1,3). Combining this information
then, with the sensor topology of the
experimental set up (Fig. 10), and after
performing a two dimensional interpolation,
gives a rough estimate of the localisation of the
independent components (Fig. 11).

Fig.8. Independent components obtained with the
FA+JADE algorithm.

Fig.9. Column chart of the mixing matrix
coefficients. Each column corresponds to an input

channel and consequently to an element of the
mixing matrix A. A convention is used for the sign of

each value/column, and therefore, only relevant
comparisons are valid.
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Fig.10. Sensor locations with respect to patient head.

Fig.11. A rough localisation of each independent
component.

5. CONCLUSION

In this study intelligent biomedical information
processing techniques were used in tracking
epileptic activity propagation in patients with
temporal lobe epilepsy. Although in the past, a
vast majority of researchers focused their studies
in identifying epileptic signatures from signals
of such patients, contemporary research and
everyday clinical practice have demanded extra
information. In this report, reasons were given to
justify why epilepsy detection itself is not the
most important issue in this field, but rather is
the study of the propagation and development of
epileptic activity itself.

In this context, newly developed methods and
algorithms described by the theory of ICA were
used to verify previously obtained results in a
more intelligent and automatic methodology.
More specifically, the JADE algorithm was used

(with FA and MDL) to verify results previously
obtained by MFT methodologies. Although this
paper presents results from one epileptic patient
the study has been conducted in data from
another two similar patients, and similar results
were obtained.

The above combination allowed for a generally
automated process like ICA to contribute to a
previously very time consuming procedure. The
results obtained with MFT were the product of
not only long calculations, but also intensive
observation, mostly done in a manual fashion,
with small glimpses of automation and
intelligence. ICA offers the possibility to fully
automate the above procedure, and facilitate the
“blind” usage of the technique by non-science
experts, especially when coupled with a user
friendly interface.

Although it is fairly early to judge the full
details of the methodology we have followed,
this study certainly shows the potential hidden in
the exploitation of these techniques. Further
work needs to be done, however, to allow for the
study of single epoch/event signals, and also
reveal the relationship between the average and
the raw signals as well. The importance of the
findings lies both within the general agreement
with clinical observations, as well as, the
agreement of two completely independent
techniques and/or methodologies, and, therefore,
cannot be underestimated.
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