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Abstract: Trajectory following and obstacle avoidance are the main issues for autonomous navigation for mobile 

robots. This article describes the virtual navigation of a Pioneer P3-DX differential drive mobile robot with two 

left and right wheels driven by DC motors and a freewheel to ensure its stability in two environments designed on 

the Virtual Robot Experimental Platform (V-REP). At first, we realized navigation in an environment without 

obstacle by tracking a target, first using the Adaptive Neuro Fuzzy Inference System (ANFIS) algorithm, then using 

the hybrid algorithm ANFIS-Particle Swarm Optimization (ANFIS-PSO) written in MATLAB code, and then we 

realized navigation in a cluttered environment that allows searching a target by avoiding obstacles with the ANFIS 

algorithm then with ANFIS-PSO. The objective of PSO algorithm is the minimization of the objective function 

which is the root mean square error between the actual and the predicted values of the ANFIS controller 

commands which are the left and right velocity of the mobile robot, to give optimum velocity values that will be 

applied to the robot for better trajectory tracking and obstacle avoiding. The Virtual Robot Experimentation 

Platform software V-REP was used to design our study and simulate the virtual reality of navigation and to work 

in synchronous mode with the codes created in MATLAB. A comparative study between navigation with ANFIS 

and navigation with ANFIS-PSO clearly shows the effectiveness of the PSO which ensures a good response to the 

system within these physical limitations (velocities, torques) and ensures optimal tracking for the virtual 

navigation of the mobile robot. Looking at the experimental results, it is observed that the proposed method 

provides a more efficient and optimal solution to the problem of target search and obstacle avoidance. 
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1. INTRODUCTION 

Advanced robots are still too expensive and can be exposed to 

damage during experimentation in laboratories. To avoid this, 

robotics researchers use the techniques of virtual reality, which 

is a combination of technologies that allow human interaction 

with the simulation created with a computer (Saiful et al., 

2017). Recently, these virtual reality techniques have been 

developed by researchers in virtual laboratories using 

simulators for virtual environment design, in order to test their 

experiments, theories, ideas before real implementation 

(Ernesto et al., 2016; Faris et al., 2017). Several simulators are 

used in the field of robotics such as ARGoS (Pinciroli et al., 

2011), Webots (Guyot et al., 2011) and V-REP (Coppelia 

Robotics, 2016). 

Currently, mobile robots are widely used in security, industry, 

cleaning, medicine and many other fields (Shikha et al., 2021). 

Recently, the navigation of an autonomous mobile robot uses 

intelligent controllers that allow the robot to search for the 

target and follow the shortest path, avoiding static or dynamic 

obstacles (Gharajeh et al., 2022). Therefore, navigation in the 

robotics field is divided into two main categories: local and 

global. Local areas are previously recognized by robots, while 

global areas represent areas that robots encounter for the first 

time. Because obstacles in global zones are unknown to robots, 

navigation in global zones remains one of the main problems 

in the robotics industry (Nursena et al., 2018). 

These global and local navigation problems have been solved 

using several algorithms that can be classified into three 

categories: deterministic (e.g., fuzzy, neural network, neuro-

fuzzy), non-deterministic or stochastic (e.g., Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), etc.) 

and evolutionary algorithms. The latter is the hybridization of 

deterministic and non-deterministic methods (Gharajeh et al., 

2020). 

Currently, neuro-fuzzy techniques are most widely used in 

mobile robot navigation because neuro-fuzzy algorithms are 

intelligent, knowledge-based deterministic techniques widely 

used for mobile robot navigation. These techniques can easily 

model the reasoning, uncertainty, and nonlinearity of complex 

environments. Autonomous collision-free navigation is 

defined as a set of abstract behaviors, including target finding, 

obstacle avoidance, etc.. (Gharajeh et al., 2020; Faris et al., 

2017). 

Recent studies have shown that different types of algorithms 

have been developed to solve the navigation problems of 

mobile robots. A paper (Batti et al., 2020) aims to carefully 

study two kinds of advanced approaches to guide a non-

holonomic mobile robot to navigate in an environment 

cluttered with static obstacles, firstly a fuzzy logic controller 

(FLC) was designed, secondly a controller of adaptive neuro 

fuzzy inference system (ANFIS) was used to optimize the 

results obtained from the fuzzy controller, to validate the 

feasibility and efficiency of the proposed models. The V-REP 

and MATLAB software are used, a comparative evaluation is 

then made and simulation results showed that the mobile robot 

could successfully navigate in the environment by using two 

proposed approaches, but the ANFIS controller provided 
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better results compared to the fuzzy controller (Batti et al., 

2020). 

In some studies, it is suggested that navigation algorithms and 

other optimization algorithms are combined to solve problems; 

a literature study proposes a hybrid GPS-ANFIS method for 

collision-free navigation of autonomous mobile robots. The 

GPS-based controller maintains the robot's navigation 

direction to the static or dynamic target. It uses the coordinates 

received from the two GPS modules on the edges of the 

longitudinal axis of the robot as well as the coordinates of the 

target to divert it from the current trajectory by making a 

certain angle towards the target (Gharajeh et al., 2020). 

In another study, a control architecture for trajectory following 

while avoiding obstacles and PID controller tuning is proposed 

for a differential drive mobile robot (DMR). They propose a 

metaheuristic optimization algorithm to solve the problems 

path planning and controller tuning by choosing appropriate 

objective functions (Mubashir et al., 2020). 

In another literature study, they described the navigation of a 

Pioneer P3-DX automated wheeled robot between obstacles 

using a network-tuned particle swarm optimization (PSO) 

algorithm. Predictive neural (FNN). From a comparative study 

it was found that a PSO-tuned FNN more efficient than FNN 

without tuning for the automated navigation of the Pioneer P3-

DX wheeled robot. Additionally, they compared the PSO-

optimized FNN with the previously developed PSO-optimized 

Fuzzy Logic Controller navigation technique to show the 

authenticity and real-time implementation of the PSO-

optimized FNN (Anish et al., 2020). 

Another literature study proposes an intelligent system for the 

navigation of mobile robots in different environments, using 

ANFIS and ACOr, at first, they used the ANFIS (Adaptive 

network-based fuzzy inference system) controller, in the 

second step , the ant colony method in a continuous 

environment ACOr (Ant Colony Optimization for Continuous 

Domains) is grafted into the second layer of the ANFIS 

network for hybridization, simulations of robot movements 

and graphical interfaces are performed under C++ language 

(Lazreg et al., 2019). 

Our work consists in carrying out a virtual navigation of a 

mobile robot by using the techniques of virtual reality 

simulated in the virtual platform V-REP (Virtual Robot 

Experimentation Platform) which takes into consideration the 

parameters of the real environment, the commands are carried 

out on the MATLAB software by two methods. The first uses 

the neuro_fuzzy (ANFIS) algorithm (adaptive neuro-fuzzy 

inference system) of the Sugeno type the functions and the 

rules of membership are generated automatically by the 

adaptive techniques; the second method proposes a hybrid 

ANFIS-PSO algorithm to produce the best result. In the second 

we introduced the PSO optimization algorithm to ensure that 

our system (robot) remains within these physical limitations 

(limitation of wheels motor velocities) which are done over a 

velocity range so that they are limited between 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 . 

Then we establish a comparative study between navigation 

with ANFIS and ANFIS-PSO. V-REP and MATLAB 

communicate in synchronous mode such that V-REP receives  

commands from MATLAB for the navigation of the mobile 

robot in the virtual environment designed in order to seek the 

target and follow a shortest trajectory and avoid obstacles and 

it measures data (velocity, positions, orientation, distances to 

obstacles) which will be transmitted to MATLAB to realize a 

control loop. 

2. MODELING  

 

Fig. 1. Differential Drive Wheeled Mobile Robot (DDWMR) 

(Borenstein, 1998). 

The mobile robot used in our study is of the differential drive 

type (unicycle) operated by two independent drive wheels (by 

DC motor) and has an idler wheel to ensure its stability. 

For the modeling of the mobile robot in the first place it is 

necessary to define the coordinate systems such that [𝑋𝐼 , 𝑌𝐼] 

the fixed initial frame and [𝑋𝑟 , 𝑌𝑟] is a linked mobile frame to 

the robot, the position of t he robot is defined by a generalized 

coordinate vector q = (x;  y;  θ) (Saidi et al., 2019). 

A: the origin of the mobile frame which is the center of the two 

wheels on the axis of the wheels. 

C: robot center of gravity. 

L: distance between A and the center of the wheel. 

d: Distance between C and A. 

θ : The angle between 𝑋𝐼 and 𝑋𝑟 

R: radius of each wheel. 

φ̇R  andφ̇L : rotational velocities of the right and left wheels 

respectively. 

ICC: Instant center of rotation 

𝜌: Radius of curvature of the robot trajectory (distance from 

ICC to center A). 

L: distance between A and the center of the wheel. 

ω: angular velocity around the ICC. 

{
vR = −rφ̇R = (ρ + L)ω                                                            (1)

vL = rφ̇L = (ρ − L)ω                                                                (2)
 

And (2) give:  ρ = L
φ̇R−φ̇L

φ̇R+φ̇L
  which allows to locate the ICC on 

the axis of the wheels. 

ω =
−rφ̇R

ρ+L
= −

r(φ̇R+φ̇L)

2L
 which is the angular velocity of the 

robot around the ICC 

If  φ̇R = −φ̇L the robot moves in a straight line. 

If φ̇R = φ̇L the robot performs a rotation on itself. 
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Mathematical modeling is a very important step for robot 

control; two types of models are generally used when ordering, 

namely: the kinematic model and the dynamic model.  

2.1. Kinematic modeling 

In the study of the kinematics, only the velocities are taken into 

account. The motion of a mobile robot is characterized by two 

non-holonomic kinematic constraints, namely: No lateral slip, 

rolling without slip (Dhaouadi et al., 2013). 

Assumption no lateral slip: −�̇�𝑠𝑖𝑛𝜃 + �̇�𝑐𝑜𝑠𝜃 = 0 

Non-slip rolling assumption for each wheel: 

 �̇�𝑐𝑜𝑠𝜃 + �̇�𝑠𝑖𝑛𝜃 = 𝑟�̇�. 

The kinematic behavior of the Differential Drive Wheeled 

Mobile Robot (DDWMR) is described by the combination of 

rolling constraints without wheel’s slip and constraint no 

lateral slip. 

A full derivation of the kinematic model is presented in 

(Dhaouadi et al., 2013; Saidi et al., 2019), such as: 

{
𝑣 =

𝑣𝑅+𝑣𝐿

2
=

𝑅(�̇�𝑅+�̇�𝐿)

2

𝑤 =
𝑣𝑅−𝑣𝐿

2𝐿
=

𝑅(�̇�𝑅−�̇�𝐿)

2𝐿

             (3) 

And the kinematic model is given by following system (4): 

(

�̇�𝐴
𝐼

�̇�𝐴
𝐼

�̇�𝐴
𝐼

) = (
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0

0 1
) (

𝑣
𝑤

)               (4) 

In kinematic modeling, the command vector is composed of 

the linear velocity 𝑣 and the angular velocity𝑤. Due to non-

holonomic limitation, the linear velocity 𝑣 is in the direction 

of the robot's 𝑋𝑟 axis. The theta angle is measured relative to 

the vertical 𝑍  axis, which is defined as positive pointing 

upward. The theta angle is zero when the forward direction of 

the robot chassis is aligned with the 𝑋𝑟axis of the robot; the 

angular velocity 𝑤 angular velocity around the Instant center 

of rotation (ICC). 

2.2. Dynamic modeling 

Using the formalism of Euler Lagrange: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) − (

𝜕𝐿

𝜕𝑞𝑖
) = 𝐹 + 𝐴𝑇(𝑞). 𝜆𝑘           (5) 

L(q,�̇�)= T-V is the Lagrangian 

T: The kinetic energy of the system. 

V: The potential energy of the system. 

F: The generalized force vector. 

𝐴𝑇 : The vector of Lagrange multipliers. 

𝑞𝑖: The generalized coordinate and q = [𝑥𝐴; 𝑦𝐴; 𝜃𝐴; 𝜑𝑅; 𝜑𝐿] of 

size n =5. 

A: Center of the wheels origin of the moving frame 

The dynamic model is represented by the linear velocity and 

the angular velocity ,full derivation of this model is shown in  

(Dhaouadi et al., 2013; Saidi et al., 2019). 

Moreover, it is given by system (6): 

[
𝑚 +

2𝐼𝑤

𝑅2 0

0 𝐼 +
2𝐿2

𝑅2 𝐼𝑤

] (
�̇�
�̇�

) + [
0 −𝑚𝑐𝑑𝑤

𝑚𝑐𝑑𝑤 0
] (

𝑣
𝑤

) =

(

1

𝑅
0

0
𝐿

𝑅

) (
𝑢1

𝑢2
)             (6) 

With  𝑢 = {
𝑢1 = 𝜏𝑅 + 𝜏𝐿

𝑢2 = 𝜏𝑅 − 𝜏𝐿
 

𝑚𝑐 : Platform mass. 

𝐼𝑤: Moment of inertia of each wheel with the motor relative to 

the axis of the wheel. 

m: robot mass. 

3. VIRTUAL ENVIRONMENT 

V-REP (Virtual Robot Experimentation Platform) is a virtual 

platform for designing virtual robot simulation environments. 

It has a remote API that facilitates data retrieval from V-REP 

and control command from MATLAB (Sharma et al., 2020). 

V-REP contains a large number of examples, models of robots, 

sensors, and actuators. New models can also be designed and 

added to VREP to implement custom simulation experiences 

which guarantee a design of virtual environments very close to 

reality. 

In this work we chose Pionner_P3DX which is a non-

holonomic robot that has two driving wheels and a free wheel, 

it contains six ultrasound sensors in the front and six in the rear 

in order to ensure good measurement precession. 

 

 

 

 

 

 

 

 

 

Fig. 2. Virtual environment without obstacles. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Virtual environment with obstacles. 



28                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS      

The navigation environments of our work are shown in below 

figures (2) and (3). The first contains a mobile differential 

drive robot (Pioneer_p3dx) and a target. The second one 

contains a mobile robot, static obstacles, target and walls. 

4. MATLAB V-REP CONNEXION 

V-REP has a remote API that allows you to control a 

simulation or the simulator itself remotely (for example from 

a real robot or another PC). Control programs can be written 

in C/C++, Python, Java, Lua, MATLAB, or Octave (Coppelia 

Robotics, 2014). 

There are two possible communication modes between V-Rep 

and MATLAB: synchronous mode and asynchronous mode, in 

our case the connection in synchronous mode was chosen. 

In our system, MATLAB  and V-REP are used a remote API 

to realize virtual navigation of a mobile robot in a cluttered 

environment, MATLAB is used as a client and V-REP is used 

as a server, where MATLAB sends commands to V-REP and 

receives data from V-REP. 

Fig. 4. Diagram of the connection between MATLAB and V-

REP. 

To ensure the connection between MATLAB and V-REP, the 

remote API must be in the same directory that we created to 

save all of our MATLAB codes (PSO function, ANFIS 

function, the main program...etc), the connection between 

MATALB and V-REP is ensured by command lines added to 

the main program as shown in the flowchart below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. MATLAB and V-REP connection flowchart. 

5. NEURO FUZZY INFERENCE SYSTEM 

CONTROLLER (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) 

belongs to hybrid neuro-fuzzy systems that combine the 

advantages of fuzzy logic with that of neural networks in a 

single network. It was proposed by Jang in 1993 (Batti et al., 

2020); this technique brings the learning capabilities of neural 

networks to the Takagi-Sugeno type fuzzy inference system. 

The role of back-propagation learning based on the gradient 

descent method is the adjustment and optimization of the 

parameters of this fuzzy inference system (premise part and 

conclusion part of the rules).  

The ANFIS system has five layers, where the adaptive nodes 

containing parameters are in the first and fourth layer, while 

the other nodes without parameters are fixed.  

The structure of the ANFIS neuro-fuzzy network is composed 

of two parts: A premise part and a consequence part, connected 

to each other by a base of fuzzy rules in the form of a network. 

This structure consists in adapting these fuzzy rules to 

changing conditions. Therefore, ANFIS systems can 

automatically optimize and adjust membership functions using 

a learning algorithm (Auday et al., 2014; Pothal et al., 2015; 

Khati et al., 2019). 

In order to minimize tracking errors, kinematic control by two 

ANFIS controllers was used. This yields the command vector 

composed of the linear velocity 𝑣 and the angular velocity 𝑤. 

In our work, the inputs of the first controller are the position 

error 𝑒𝑥  corresponds to  𝑥1  and its derivative �̇�𝑥  corresponds 

to  𝑥2, to calculate the command 𝑣 corresponds to output 𝑢1 as 

shown in the architecture below Figure 7  and the inputs of the 

second controller are the position error 𝑒𝑦  corresponds to 

 𝑥1 and its derivative �̇�𝑦  corresponds to  𝑥2  to calculate the 

command 𝑤  corresponds to output 𝑢2  as shown in the 

architecture below Figure 7, the choice of these inputs and 

outputs is made because the kinematic command makes allows 

to calculate the command vector [𝑣, 𝑤] such that 𝑣 depends on 

𝑒𝑥 and 𝑤 depends on 𝑒𝑦 as demonstrated in (Kanayama et al., 

1990; Dhaouadi et al.,2013). 

In our work the robot is controlled either by ANFIS tracking 

or ANFIS avoidance, the selection of one of the controllers is 

made according to the distance obtained between the robot's 

ultrasonic sensors and the obstacles, if the distance is less than 

20 cm the robot is controlled by ANFIS avoidance if not by 

ANFIS tracking as shown in flowchart in Figure 11. 

The ANFIS tracking regulator is composed of two regulators 

as shown in Figure (6). It allows calculating the 

commands 𝑢1and 𝑢2 , which are the linear velocity and the 

angular velocity which will be sent to the robot in order to seek 

the targets. Each ANFIS regulator receives two inputs  𝑥1, 𝑥2 

which are the position error and the velocity error and gives an 

output u as shown in the ANFIS network structure of Figure 

(7). Input 𝑥1 is associated with three fuzzy sets 𝐴1, 𝐴2, 𝐴3, and 

input  𝑥2  is associated with three fuzzy sets  𝐵1, 𝐵2, 𝐵3 . The 

output u is modeled by a fuzzy system of the Sugeno type, 

composed of the following nine rules:  
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Rule 1: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴1 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛  
 𝑢1 = 𝑓1(𝑥1, 𝑥2) = 𝑎1𝑥1 + 𝑏1𝑥2 + 𝑐1         (7) 

Rule 2:  𝑖𝑓 𝑥1 𝑖𝑠  𝐴1 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛  
 𝑢2 = 𝑓2(𝑥1, 𝑥2) = 𝑎2𝑥1 + 𝑏2𝑥2 + 𝑐2         (8) 

Rule 3: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴1 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵3 𝑡ℎ𝑒𝑛   
𝑢3 = 𝑓3(𝑥1, 𝑥2) = 𝑎3𝑥1 + 𝑏3𝑥2 + 𝑐3         (9)  

Rule 4: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴2 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛  
 𝑢4 = 𝑓4(𝑥1, 𝑥2) = 𝑎4𝑥1 + 𝑏4𝑥2 + 𝑐4        (10) 

Rule 5: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴2 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛  
 𝑢5 = 𝑓5(𝑥1, 𝑥2) = 𝑎5𝑥1 + 𝑏5𝑥2 + 𝑐5         (11) 

Rule 6: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴2 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵3 𝑡ℎ𝑒𝑛   
𝑢6 = 𝑓6(𝑥1, 𝑥2) = 𝑎6𝑥1 + 𝑏6𝑥2 + 𝑐6         (12) 

Rule 7: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴3 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛  
 𝑢7 = 𝑓7(𝑥1, 𝑥2) = 𝑎7𝑥1 + 𝑏7𝑥2 + 𝑐7         (13)  

Rule 8: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴3 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛   
𝑢8 = 𝑓8(𝑥1, 𝑥2) = 𝑎8𝑥1 + 𝑏8𝑥2 + 𝑐8        (14) 

Rule 9: 𝑖𝑓 𝑥1 𝑖𝑠  𝐴3 𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐵3 𝑡ℎ𝑒𝑛   
𝑢9 = 𝑓9(𝑥1, 𝑥2) = 𝑎9𝑥1 + 𝑏9𝑥2 + 𝑐9        (15) 

Such as 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑓𝑜𝑟 𝑖 = 1: 9 are the linear consequence 

parameters of the fuzzy inference system. 

 

 

 

 

Fig. 6 ANFIS tracking. 

Fig. 7. structure of ANFIS tracking network. 

The layers are described as follows: 

Layer 1: Fuzzification 

This layer contains six nodes that transform the digital inputs 

measured by the sensors into linguistic interpretations. Each 

node i of this layer is an adaptive node with a membership 

function with adjustable parameters: 

𝑂1,𝑖 = 𝜇𝐴𝑖
(𝑥1)for i = 1: 3  

𝑂1,𝑖 = 𝜇𝐵𝑖−3
(𝑥2)for i = 4: 6  

𝑂1,𝑖  Calculates its activations which are the membership 

degrees of the variables 𝑥1and 𝑥2 respectively to the fuzzy sets 

 𝐴𝑖 and  𝐵𝑖  represented by Gaussian functions described by: 

𝜇𝐴𝑖
(𝑥1) = exp (− (

𝑥1−𝑐𝑖

𝜎𝑖
)

2

)  𝑓𝑜𝑟 𝑖 = 1: 3        (16) 

𝜇𝐵𝑖−3
(𝑥2) = exp (− (

𝑥2−𝑐𝑖

𝜎𝑖
)

2

)  𝑓𝑜𝑟 𝑖 = 4: 6        (17) 

Where 𝑐𝑖  is the center of the Gaussian and 𝜎𝑖  the standard 

deviation. 

Layer 2: Degree of activation 

Generates the appropriate degree of activation for the rule. 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑗
(𝑥1). 𝜇𝐵𝑘

(𝑥2) for 𝑖 = 1: 9 𝑎𝑛𝑑 𝑗, 𝑘 = 1: 3   

                                                                                            (18) 

Layer 3: Normalization 

Each node of this layer is a fixed node called N. Its output 

represents the normalized degree of activation of the ith rule. 

 𝑂3.𝑖 = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

∑ 𝑤𝑘
9
𝑘=1

 𝑓𝑜𝑟 𝑖 = 1: 9         (19) 

Layer 4: Calculation of rule outputs 

Each node of this layer is an adaptive node whose function is: 

𝑂4,𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑎𝑖𝑥1 + 𝑏𝑖𝑥2 + 𝑐𝑖)         (20) 

Where 𝑤𝑖̅̅ ̅ is the Layer 3 output that represents the normalized 

activation degree of the rule and (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) are the adjustable 

output parameters of rule i. These parameters are called 

consequence parameters. 

Layer 5: Defuzzification 

This layer includes a single fixed node, which calculates the 

global output that is the sum of all the signals coming from 

layer 4: 𝑂5,𝑖 = 𝑢 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖
9
𝑖=1 =

∑ 𝑤𝑖𝑓𝑖
9
𝑖=1

∑ 𝑤𝑖
9
𝑖=1

        (21) 

In our case, we consider that the parameters of the premise are 

fixed, while those of the consequence are adjusted using a 

learning algorithm based on the gradient descent method by 

minimizing the objective function 𝐽 =
1

2
𝑒2 , where e is the 

error between the current position and the desired position to 

find the consequence parameters. 

The ANFIS avoidance regulator as shown in Figure (8) makes 

it possible to calculate the commands 𝑢1and 𝑢2 the linear 

velocity and the angular velocity respectively, which will be 

sent to the robot in order to avoid obstacles without collision, 

the ANFIS network that corresponds to this regulator shown 

in the structure of Figure (9). It receives three inputs 𝑥1, 𝑥2  
and 𝑥3 representing the distances between the obstacle and the 

robot which are measured by ultrasonic sensors (Front 

Distance (FD), Left distance (LD), and Right Distance (RD)) 

and gives two outputs 𝑢1and 𝑢2. 

Input 𝑥1  is associated with three fuzzy sets 𝐴1, 𝐴2, 𝐴3  and 

input 𝑥2 is associated with three fuzzy sets𝐵1, 𝐵2, 𝐵3, input 𝑥3 

is associated with three fuzzy sets𝐶1, 𝐶2, 𝐶3. Outputs 𝑢1𝑎𝑛𝑑 𝑢2 

is modeled by a fuzzy system of the Sugeno type, composed 
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of twenty-seven rules, and the following steps are carried out 

in the same way as the previous controller. 

Fig. 8. ANFIS Obstacles Avoidance. 

 

Fig. 9. Structure of ANFIS Obstacles Avoidance network. 

6. PSO (PARTICLE SWARM OPTIMIZATION) 

The PSO algorithm was developed imitating the behavior of 

birds searching for food in an unknown location, first 

developed in 1995 by electrical engineer Eberhard and social 

psychologist Kenn Q1A (Nursena et al., 2018; Allou et al., 

2018), The PSO algorithm is a non-deterministic population-

based optimization method (Anish et al., 2020). 

This algorithm is a metaheuristic optimization method applied 

in our case to minimize the root mean square error (RMSE) 

between the current value and the predicted value of the 

outputs of the ANFIS controller, which was chosen in our 

work as the objective function (fitness) as following: 

𝑓𝑜𝑏𝑗 = 𝑅𝑀𝑆𝐸(%) = [∑ (
𝑣𝑅−�̂�𝑅

𝑘
)

2

+ (
𝑣𝐿−�̂�𝐿

𝑘
)

2
𝑘
1 ] ∗ 100      (22) 

In order to improve the movements of our mobile robot after 

several simulations with the ANFIS controller in different 

navigation environments proposed in our work, we noticed 

that the wheels velocities 𝑣𝑅 and 𝑣𝐿 sent to the pioneer-P3DX 

exceed the limit velocities of these wheels. To solve this 

problem we introduced a meta-heuristic PSO optimization 

algorithm to optimize the outputs of the ANFIS controller such 

that the wheels velocities and the robot velocity are limited 

respectively as follows 𝑣𝑚𝑖𝑛 ≤ 𝑣𝑅 ≤ 𝑣𝑚𝑎𝑥  𝑒𝑡 𝑣𝑚𝑖𝑛 ≤ 𝑣𝐿 ≤
𝑣𝑚𝑎𝑥  and 𝑣𝑚𝑖𝑛−𝑟𝑜𝑏𝑜𝑡 ≤ 𝑣𝑟𝑜𝑏𝑜𝑡 ≤ 𝑣𝑚𝑎𝑥−𝑟𝑜𝑏𝑜𝑡  before sending 

them to the pionner-P3DX robot, from these conditions we 

brought out the following constraints (of type ≤0) used by PSO 

algorithm to minimize the objective function of equation (22): 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑅 ≤ 𝑣𝑚𝑎𝑥

⇒ {
𝑣𝑅 − 𝑣𝑚𝑎𝑥 ≤ 0                                                                      (23)
−𝑣𝑅 + 𝑣𝑚𝑖𝑛 ≤ 0                                                                   (24)

 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝐿 ≤ 𝑣𝑚𝑎𝑥

⇒ {
𝑣𝐿 − 𝑣𝑚𝑎𝑥 ≤ 0                                                                      (25)
−𝑣𝐿 + 𝑣𝑚𝑖𝑛 ≤ 0                                                                   (26)

 

𝑣𝑚𝑖𝑛−𝑟𝑜𝑏𝑜𝑡 ≤
𝑣𝑅 + 𝑣𝐿

2
≤ 𝑣𝑚𝑎𝑥−𝑟𝑜𝑏𝑜𝑡

⇒ {
𝑣𝑅 + 𝑣𝐿 − 2𝑣𝑚𝑎𝑥−𝑟𝑜𝑏𝑜𝑡 ≤ 0                                             (27)
−𝑣𝑅 − 𝑣𝐿 + 2𝑣𝑚𝑖𝑛−𝑟𝑜𝑏𝑜𝑡 ≤ 0                                           (28)

 

𝑤𝑚𝑖𝑛−𝑟𝑜𝑏𝑜𝑡 ≤
𝑣𝑅 − 𝑣𝐿

2𝐿
≤ 𝑤𝑚𝑎𝑥−𝑟𝑜𝑏𝑜𝑡

⇒ {
𝑣𝑅 − 𝑣𝐿 − 2𝐿𝑤𝑚𝑎𝑥−𝑟𝑜𝑏𝑜𝑡 ≤ 0                                          (29)
−𝑣𝑅 + 𝑣𝐿 + 2𝐿𝑤𝑚𝑖𝑛−𝑟𝑜𝑏𝑜𝑡 ≤ 0                                       (30)

 

As 𝑣𝑅   and 𝑣𝐿 are variables to be optimized that represent the 

particles, the set of these particles presents a population. The 

first four constraints are extracted from the real wheels 

velocities limits, while the following four constraints are 

extracted from Equation (3) which represents the kinematics 

of the robot in order to introduce its real behavior. The PSO 

algorithm is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Particle swarm optimization algorithm flowchart. 
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𝑣𝑖(𝑡 +  1) =  𝜔 𝑣𝑖(𝑡) +  𝑐1𝑟1[𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) −  𝑥𝑖(𝑡)] +
𝑐2𝑟2[𝑔𝑏𝑒𝑠𝑡𝑖(𝑡) −   𝑥𝑖(𝑡)]        (31) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)         (32) 

𝑣𝑖 (t)  the velocity of particle i at time t, 𝑥𝑖 (t)  the position of 

particle i at time t; 𝜔, 𝑐1 and 𝑐2 (0 ≤ 𝜔 ≤1.2 , 0 ≤ 𝑐1 ≤ 2, et 0 

≤ 𝑐2 ≤ 2)  are constants coefficients set by the user and 𝑟1 et 

𝑟2  are random numbers drawn at each iteration ; 𝑔𝑏𝑒𝑠𝑡𝑖(𝑡) is 

the best solution found up to time t and 𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) is the best 

solution found by particle i. 

In order to ensure a very fast response time of the PSO 

algorithm and after several simulations, we set a maximum 

number of iterations at 10 then select the best result, this 

maximum number of iterations is chosen to be sufficient for 

the algorithm to converge to the optimal results in a very short 

time. The convergence time of the PSO algorithm in our 

simulation is 0.09 s 

7. THE VIRTUAL NAVIGATION ALGORITHM 

PROPOSED 

The proposed navigation method that uses hybrid ANFIS-

PSO control is structured as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Virtual navigation flowchart using the ANFIS-PSO 

method. 

8. RESULTS AND DISCUSSION 

 

Fig. 12. Global virtual simulation diagram. 

 

Fig. 13. Behaviors errors tracking and errors velocity using 

ANFIS without obstacles. 

Fig. 14. Behaviors tracking and velocity using ANFIS 

without obstacles. 
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Fig. 15. Behaviors robot velocities using ANFIS without 

obstacles. 

 

 

 

 

 

 

 

 

 

Fig.16. Path traveled by the robot using ANFIS without 

obstacles. 

Fig. 17. Behaviors errors tracking and errors velocity using 

ANFIS-PSO without obstacles. 

 

 

 

 

 

 

 

 

Fig. 18. Behaviors tracking and velocity using ANFIS-PSO 

without obstacles. 

Fig. 19. Behaviors robot velocities using ANFIS-PSO 

without obstacles. 

Fig. 20.  Path traveled by the robot using ANFIS-PSO 

without obstacles. 
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Fig. 21. Behaviors errors tracking and errors velocity using 

ANFIS with obstacles. 

Fig. 22. Behaviors tracking and velocity using ANFIS with 

obstacles. 

Fig. 23. Behaviors robot velocities using ANFIS with 

obstacles. 

 

 

 

 

Fig. 24.  Path traveled by the robot using ANFIS with 

obstacles. 

Fig. 25. Behaviors errors tracking and errors velocity using 

ANFIS-POS with obstacles. 

Fig. 26. Behaviors tracking and velocity using ANFIS-PSO 

with obstacles. 
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Fig. 27. Behaviors robot velocities using ANFIS-PSO with 

obstacles. 

 

Fig. 28. Path traveled by the robot using ANFIS-PSO with 

obstacles. 

The control of the P3-DX differential drive mobile robot has 

been carried out by two methods. In the first we used two 

ANFIS controllers and in the second an ANFIS-PSO hybrid 

controller, written in MATLAB code in order to calculate the 

commands that will be sent to the robot on the designed V-

REP virtual platform which contains the target, obstacles and 

a robot. We have designed on V-REP two virtual simulation 

environments in order to test our algorithms by taking into 

account the real physical constraints of the robot. The first case 

is to navigate the robot from a starting point to a target without 

obstacles, while the second case is to navigate from a starting 

point to a target avoiding several obstacles. The parameters of 

the robot, regulators are declared in the MATLAB program.  

Our simulation results by the two methods ANFIS and ANFIS-

PSO are presented in the before figures, allowing us to develop 

a comparative study and to show the effectiveness of each 

method. 

The simulation carried out in the first environment without 

obstacles Figure (2) gives the results represented in Figures 

(13) (14) (15) (16) by the ANFIS method and Figures (17) (18) 

(19) (20) by the ANFIS-PSO method, it was found that the two 

methods ensure that the robot reaches the target. Nevertheless, 

the robot is faster by the ANFIS–PSO method where it crosses 

a short distance as shown by Figures (16) (20), and in a short 

time as shown by Figures (14) (18). The response time in 

Figures (13) (17) which presents the tracking error is better by 

the ANFIS-PSO method; Figures (15) (19) represent the 

velocities of the left and right wheels, clearly show the 

effectiveness of introducing the PSO algorithm which 

optimizes the velocities of the wheels while respecting all the 

physical constraints of the robot mentioned in Equations 

(30:37); according to this analysis we observe  that the ANFIS-

PSO algorithm gives good results compared to the ANFIS 

algorithm . 

For the simulation carried out in the second environment with 

obstacles, Figure (3) gives the results represented in Figures 

(21) (22) (23) (24) by the ANFIS method and Figures (25) (26) 

(27) (28) by the ANFIS-PSO method, in this step it is found 

that the two methods ensure that the robot tracks the target 

while avoiding obstacles, which shows the robustness of our 

algorithms. However, the robot is faster by the ANFIS-PSO 

method such that it reacts to obstacle avoidance in an optimal 

way by following a shortest path as shown in Figures (24) (28) 

in a short time as shown in Figures (22) (26). However, the 

response time in the Figures (21) (22) which presents the 

tracking error is better by the ANFIS-PSO method;  Figures 

(23) (27) represent the velocities of the left and right wheels, 

clearly show the effectiveness of introducing the PSO 

algorithm which optimizes the velocities of the wheels while 

respecting all the physical constraints of the robot mentioned 

in Equations (30:37) as well as the optimization of obstacle 

avoidance by choosing a shortest path which means that the 

algorithm ANFIS-PSO is more robust; according to this 

analysis, it can be seen that the ANFIS-PSO algorithm gives 

good results in terms of robustness, response time, distance 

traveled, efficiency compared to the ANFIS algorithm. 

9. CONCLUSION 

In this article we presented a virtual navigation of a mobile 

robot using the virtual environment design software V-REP. 

We applied intelligent controls based on neuro-fuzzy 

regulators written in MATLAB code. 

First, we designed the virtual environments on the V-REP 

platform in which we will perform our virtual navigation of 

the P-3DX mobile robot, then we developed a connection in 

synchronous mode between MATLAB and V-REP to ensure 

the data recovery from V-REP and information processing on 

MATLAB to calculate the commands that will send the 

commands to the robot in real time. 

The control tests are carried out using two methods, the first 

with two ANFIS controllers and the second with a hybrid 

ANFIS-PSO controller. The results of our work show the 

effectiveness of the two methods: they realize a good target 

tracking while avoiding static obstacles; and we observe also 

that the ANFIS-PSO hybrid controller gives better results 

compared to the ANFIS method. 

As additional work, we suggest doing other navigation in more 

complex environments, for example n presence of dynamic 

obstacles, in maze environment, and trajectory planning. 
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