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MODELLING SOME OF THE EARLY VISUAL PROCESSES
INVOLVED IN SPACE PERCEPTION
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Abstract: This paper presents a computational approach in studying vision and models proposed
for two of the early vision mechanisms: one for obtaining the disparity map in stereo vision, and
the other for edges enhancement in contour integration. A computational perspective in modelling
early visual processes is important for understanding the biological mechanisms, as well as for
integrating the known cortical architecture of primary visual area (V1) and the physiological
functions (some already proved in the experiments, some only presumed). Therefore, our approach
is based on the neuro-physiological findings about the functional columns in V1. We also
developed computer applications for implementing and testing the proposed models and the
results of the simulation were consistent with the biological data.
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1. INTRODUCTION

Every waking moment we are bombarded with
sights from the outside world. The brain is vital
for processing the information that floods in
through the senses. However, it is still unclear
why the world looks as it does and, especially,
how the perception is achieved, what are the
precise mechanisms involved in visual
information processing. Therefore, theoretical
models and computer simulations trying to
imitate the behavior of biological systems have
an important role in understanding some of these
mechanisms and phenomena [1-3].

We chose to approach vision modelling from a
computational standpoint, focusing on the
information processing mechanisms needed to

extract the visual information embodied in the
energy states or changes flooding in through the
eyes. This implies to understand what it is in the
external world, where the objects are located,
their changes in time, etc. [1-5]. Combining
computational perspective with experimental
studies in psychology, psychophysics, or
neurosciences, a functional understanding of
vision can be achieved.

The scientists know now that the brain states
represent states of some other systems (the
outside world or the body itself) and that the
transitions between the states are equivalent to
computational operations on these
representations [1]. However, there are many
unknowns about these representations and
processing chains; therefore, the theoretical
models are expected to play an important role in
understanding them.
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In spite of these, until quite recently, most of the
computer scientists’ approaches were top-down
(as those in AI), while the neurobiological
scientists preferred the bottom-up research
strategies (reflecting the biological constraints
and the connectionist approaches). As a result,
most of the important results were obtained
mainly during the last decades, by inter-
disciplinary research, involving scientists from
different fields. A turning-point in vision
research was the defining of the three levels
approaching in nervous systems, by David Marr
[4]: the computational level of the abstract
problem analysis, the level of the algorithm,
which specifies the procedure to be followed in
order to perform the task, and the physical
implementation level. Marr claimed the
independence of the levels, but the models of
stereo vision he developed did not ignore the
implementation aspects. Further research in
vision proved that the levels are highly inter-
dependent and, consequently, the
implementation and computation cannot be
addressed separately [1, 4, 5].

For that reason, we based our models on the
neuro-physiological findings about the cortical
organization in functional columns and also on
some other existing models [6-20]. Moreover,
we emphasized the importance of the
parallelism in processing and also the important
role of the interactions between these parallel-
processing chains.

2. SPACE PERCEPTION IN EARLY
VISION

The space perception implies a hierarchy of
parallel processes [21]. It also implies
combining information from different channels
in order to obtain coherent and meaningful
figures – Figure 1. The computational studies

suggested three primary types of representation:
early representations (location, contrast,
sharpness of edges, direction and speed of
motion, etc.), corresponding to physical
features; intermediate representations (about 3-
D shape and orientation of small surface
regions), which are viewer-centered; and higher-
level representations, which are object-centered
[2, 4].

The recovering of the 3-D structure of the world
from 2-D images needs some constraints to be
imposed, concerning the properties of the world
we live in [4, 6]. In addition to these, among the
most powerful cues for 3-D space perception
are: binocular disparities, motion, illumination
differences, texture, continuous contours, non-
visual information.

We have tried to model the stereo-vision and the
contour integration mechanisms as parallel
processes in early vision. We chose to begin
with these aspects in modelling the space
perception, as they are strong cues in 3-D
perception and play an important role in object
discriminating and locating.

The architecture of the striate cortex is function-
dependent, having columns and hypercolumns
of cells performing the same function for the
same location in the visual field (for different
aspects, as resolution, angles, orientations,
disparities, angular velocities, etc.). These
columns are subdivisions at the sub-millimetre
scale, going deeply into the cortex structure
(through all the six layers) and they can be seen
as an outcome of the self-organising tendency
during development [1]. There are also cortical
modules, seen at an intermediate scale, between
the maps and the columns, with similar internal
wiring. We respected this functional
organisation in the models we developed –
Figure 2.

Fig.1. Space perception implies combining information from different sources.
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Fig.2. Stylized image of the hierarchical series of processing stages in stereo-vision and contour integration, seen
as an architecture- function inter-relation.

3. DISPARITY MAP IN BINOCULAR
VISION

The Proposed Model

The stereo-vision model uses families of
complex cells sensitive to different disparities
for every spatial location in the visual field.
Each complex cell computes its response as a
combination of inputs from pairs of simple cells
in quadrature phase. We used Gabor wavelets to
model the receptive fields of such pairs of
simple cells (describing the “left” and the
“right” receptive fields) – Equation 1.
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Within each family of complex cells, the cell
tuned on the actual disparity will have the
highest response and, therefore, they constitute a
distributed representation of the binocular
disparity. As the Figure 2 (left) shows, these
complex cells families are organized in
functional columns.

During all the simulations, we assumed that the
epipolar constraint was satisfied and we covered
a disparity range between –4 and +4.

Results and Discussion

We developed a computer application
(STEREO-VISION 2) as a tool for
implementing, developing, and testing models of
stereopsis. We have implemented two models
for obtaining disparity map: the proposed
“biological model” and the classical model of
Marr and Poggio [4, 7] in order to have a
comparison term for our simulations.
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Fig.3. Disparity maps obtained on RDSs of black and white 200x200 pixels uniformly and normally distributed.
(a) The “ideal” disparity map for a RDS with uniform distribution. (b) Result obtained with the Marr and Poggio
algorithm. (c) Result obtained with the “biological” algorithm (u=1/8, v=0) and no subsequent filtering applied.

(d) and (e) The same as (c), but with filtering applied. (f) The “ideal” disparity map for a RDS with normal
distribution. (g) and (h) Results obtained on the RDS with normal distribution.

Computational models of stereopsis are based,
to a large extent, on research with random-dot
stereograms (RDS); the use of RDSs as
benchmarks for stereo algorithms is a standard
practice. Therefore, STEREO-VISION 2 offers
tools for creating RDSs with various
dimensions, densities, and distributions (the
uniform, Gaussian, and inverse-Gaussian
distribution); moreover, it offers the possibility

of adding noise to one or to both images of a
stereogram (noise with different distributions
and densities). The application works with
*.BMP files, which can be RDSs or other pairs
of images, too.

The results of the simulation (the disparity
maps) are obtained in an internal format (values
of disparity), but they are also presented as
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wireframe images and as two-dimensional
images using grey levels (the nearer the surface,
the lighter the grey of the corresponding zone in
the disparity map). In addition, the coarse
disparity map can be smoothed using a filtering

method: Gaussian weighting filtering, most
frequent value filtering, median value filtering,
and an adaptive smoothing (as a general tool for
early vision [22]).

Fig.4. Results obtained on “real-world” coloured stereograms. (a) and (b) The left and right images. (c) Disparity
map obtained with the biological algorithm (one-dimensional Gabor wavelets). (d) Result obtained with the Marr
and Poggio algorithm. (e) and (f) The noisy stereogram. (g) and (h) Results obtained on the noisy stereogram for

one- and two-dimensional Gabor wavelets.
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We tested the two models on RDSs with
uniform and Gaussian distributions; we also
used accurate stereograms and noisy ones, as
well as one-dimensional and two-dimensional
Gabor functions; moreover, we tested the effects
of the different filtering methods. We presented
the detailed results in previous papers [22].
Figure 3 presents some of the results obtained
on RDSs without any additional noise added.
We can see that the “biological” algorithm is
better in preserving the shapes and edges, while
the algorithm of Marr and Poggio tends to round
the corners (the cohesiveness constraint is too
strong for this model). Unfortunately, the
disparity map generated by the “biological”
model was noisy; even though, successive
filtering applied can lead to a significant
improvement.

The tests on noisy RDSs and on real-world pairs
of images led to the conclusion that the
performance of the “biological” model was
significantly better than that of the Marr and
Poggio model. Moreover, while for the RDSs
two-dimensional Gabor wavelets (used to model
the behaviour of the complex cells) worsened
the results, for the real-images they were the
solution to obtain reliable disparity maps –
Figure 4.

The explanation must rely on the fact that the
RDSs are artificial images created by the
horizontal displacement of sets of points in the
images and therefore they could be successfully
solved taking into account only the horizontal
disparity. On the other hand, when noise was
added or real images were tested, additional
information had to be used in order to solve the
matching problem. We have to emphasize that
we used only filtering techniques on the original
images (Gabor wavelets) and a distributed
representation of the disparity information, both
of them plausible from the biological point of
view and consistent with the data from neuro-
physiological experiences.

4. EDGE ENHANCEMENT IN CONTOUR
INTEGRATION

4.1. The Proposed Model

The model for contours integration consists of a
network based on a hexagonal grid of
orientation hypercolumns – Figure 5. We chose
such an organization for a better covering of the
visual space and a proper description of the

primitive features in the scene (preserving both
spatial distribution and orientation of the edges).
Each hypercolumn consists of a family of
oriented edge elements, in fact neural oscillators
that are pairs of excitatory-inhibitory neurons
(x–y), covering the whole range of possible
orientation.

(a)

(b)

Fig.5. The model uses hypercolumns of orientation.
(a) The hexagonal grid. (b) The elementary edges are

neural oscillators characterized by their spatial
location i and their orientation θ.

The behaviour is described by Equations 2:
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Where: i is the spatial location and θ is the
orientation of the edge element (composed of xiθ

and yiθ); Iiθ  is the input for the edge element;
Viθ(∆θ) models the inhibition within the same
hypercolumn, similar to short-distance
connections; G0 models the self-excitatory
connection; Giθ, jφ models the excitatory
influence of the neighbours with similar
orientation, a lateral connectivity aimed to
enhance the edges belonging to plausible
common contours; Wiθ, jφ  models the inhibitory
influence of the neighbours for different
orientation, similar to long-range connections
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within the same cortical layer; αx, αy are the
membrane constants for the two edge-neurons
and they are positive values; hx, hy are the
transfer functions for the two edge-neurons; Ic
allows the control from higher visual areas and
Ia models the influence of the general
background activity in the network.

4.2. Results and Discussion

We implemented the model and the resulted
application was called VISION. It was imagined
as a friendly tool: it accepts .BMP files as inputs
and initializes the hypercolumns matrix based
on the gradient filter, allowing the user to
choose the matrix dimension, the visual space
dimension, as well as the graphics options.
Moreover, the user can set and test the model's
parameters. The simulation can be performed
continuously, or step-by-step, at the user's
choice, who can also specify the intermediate

results (s)he wants to visualize. The intermediate
results can also be saved on disk, both as .BMP
files, and as text files, for allowing a numerical
checking of the performance.

We tested the model on different kinds of
images, from very simple ones (lines, circles), to
more complex images, and even on real world
scenes (detailed presentation of the application
in [23]). As the experimental studies have
proved, in order to have biologically plausible
models of the visual mechanisms, we cannot
ignore the parallel architecture of the brain
itself, which is highly function-dependent. On
the contrary, we have to base our reasoning
process on the experimental data and to assume
a similar organisation in the models we build.
Therefore, in our work, we used a similar
distributed representation of information for
both models.

Fig.6. Results obtained on a Mondrian image, where the second set obtained as output was superimposed on the
original image (the colour levels were shifted to higher values to allow the superposition).
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Fig.7. Image where details were enlarged in order to emphasize the elimination of the spurious edges.

Results in Figure 6 were obtained on a noise-
free image with 8 bits grey level resolution. We
have to mention that the contours are lightly
shifted to the right, due to the gradient filter
applied for the initial edge detection and to the
procedure used for visualising the contours as
.BMP files. However, the intrinsic information
in the image was not altered.

Figure 7 presents results on a different image,
where some details from the image were
emphasized.

As we expected, the simulations on different
kinds of images emphasised that the
performances depend not only on the model
parameters, but also on the processed image.
This is biologically plausible: at the cortical
level there is a high degree of redundancy and
parallelism in processing [1, 4, 17], which
suggests a finer adjustment of the biological
parameters. Miller and Zucker [17] emphasised
that it is unlikely to have (or to rely on)
individual responses for neurons at the cortical
level. On the contrary, the biological systems
should rely on a certain level of activity in large
groups of cortical neurons (the "cliques") in
order to be able to process the details in images.
Apart from this, we have to mention that some
of the apparent discontinuities in the contours
are due to the hexagonal grid we used for the
visual space representation, and therefore, most
often, no filling in is necessary.

The images presented show how highly
dependent is the model's behaviour on the

parameters used for the simulation.
Nevertheless, the model proved to be quite
robust in general and also to the noise.

5. CONCLUSIONS

As the experimental studies have proved, in
order to have biologically plausible models of
the visual mechanisms, we cannot ignore the
parallel architecture of the brain itself, which is
highly function-dependent. On the contrary, we
have to base our reasoning process on the
experimental data and to assume a similar
organisation in the models we build. Therefore,
in our work, we used a similar distributed
representation of information for both models.

Implementing the two models [22-24] and
testing them, the results obtained in the
computer simulations confirmed the biological
plausibility and the necessity of combining
different types of information for a sound 3-D
space perception. As Figure 8 shows, the
“quality” of the disparity map is highly
dependent on the Gabor filtering parameters: for
the same spatial frequency, using one-
dimensional Gabor function or two-dimensional
Gabor functions with different orientations may
lead to different results. Moreover, the two-
dimensional filtering seems to compensate for
the inherent noise and some slight vertical
displacements.



84 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig.8. Results obtained on real-world images. (a) and (b) Initial images. (c), (d), and (e) Disparity maps obtained
for different parameters, represented as gray-level images. (f) and (g) Input and output edges in the contour

integration model.

On the other hand, the recurrent network used
for edge enhancement is highly dependent on
the parameters, as well. Therefore, when we
used the same parameters (Viθ , Giθ, jφ , Wiθ, jφ )
and neighbourhood profile all over the image,
this spoiled the model’s performance – Figure 8
(g): false edges were eliminated, but other useful
contours were lost, too.

If we had used a non-uniform sampling and sets
of overlapping orientation-selective cells groups
(finely tuned, as it is the biological situation),
the results from different parallel processes
could have been combined. At this processing
level, also inputs from higher visual areas might
intervene. We have not implemented this type of
connection, yet – we have tried to see whether
only the orientation hypercolumns architecture
could lead to a contour enhancement at the
striate cortex level. Not surprisingly, the

apparent “shortcomings” of the models (noisy
disparity maps, noisy contours) confirmed the
need of inter-connections between parallel
processing chains for eliminating spurious
features and reciprocally complementing
missing information. The biological and
physiological data are consistent with these
conclusions, i.e. the necessity of combining
information from different sources (both visual
and non-visual) to obtain the 3-D perception [1,
20, 21]. Experiments showed that when the
visual system is provided with information from
only one source, it needs some
“accommodating” delay to reach the space
sensation.

The simulation results also accounted for the
necessity to investigate the synchrony in the
activity of large networks, as a must for
increasing the robustness of the visual system.
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We think our results are encouraging, as long as
we used only known properties of simple and
complex cells in V1 and the known columnar
organisation at the striate cortex level. Further
research is focused on effectively combining the
results from the two models.
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