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Abstract: The paper presents, on the one hand, the design of a robust control method using
H∞ tools applied to a nonlinear neural mass model of a cortical column using EEG recordings as
signal measurements. The objective of the control problem is to suppress the neuronal activity
of the cortical column by ensuring guaranteed performance specifications as well as robustness
against model uncertainties and measurement noise. On the other hand, to monitor the hidden,
unmeasured, activity of a cortical column an Extended Kalman Filter is designed based on the
neural mass model of the macrocolumn and EEG measurements of its activity. The capabilities
of these methods are tested, in simulation, using the neural mass model description of a cortical
column for an epileptic seizure. Both methods, the robust controller and the state observer,
show promising results in simulation.
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1. INTRODUCTION

Neural mass models have been extensively used to study
and understand the dynamics of the neuronal populations
of the cerebral cortex, also known as the gray matter of the
brain. Even though often the neural mass models, for some
parameters ranges, fail to fully grasp the dynamics of the
neural networks as detailed in Deschle et al. (2021), their
study can still be fruitful to advance the understanding of
the brain.

In particular, they can be useful to be considered as proxy
for the real neural networks dynamics, in simulation, if one
is interested to apply, test and analyze different techniques
often used in control system engineering such as state
observers or controller design. The insights gain conduct-
ing such studies can broaden the horizon of biomedical
engineering and research, especially nowadays when the
medical and engineering fields work together to study or
solve problems that were impossible to be tackled in the
past.

Traditionally, the neural mass models are built by using
one of the two methods: the convolution-based model
Jansen and Rit (1995) or conductance-based one Hodgkin
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and Huxley (1952). Both of them have the same goal,
that is to describe the mean activity of an otherwise
large neuronal population, by using a reduced number of
state variables. Applications based on these approaches
have been developed to demonstrate the capabilities of
these models. The former had been exploited in David and
Friston (2003) and David et al. (2006) to mimic narrow-
band brain oscillations and event-related activity, while in
Moran et al. (2007) and Moran et al. (2013) to reproduce
the steady-state responses of the brain. The latter had
been described in Pereira et al. (2021) how it can be used
in the context of dynamic causal modelling for cross-power
spectral densities.

Furthermore, the electrical brain activity can be measured
by using electroencephalogram (EEG) sensors. More de-
tailed, these electrodes placed on the scalp measure the
postsynaptic potential (PSP) of the pyramidal neurons as
it can be find in Glomb et al. (2022). Therefore, one can
built neural mass model so as to replicate the measured
electrical activity of a so-called cortical column.

The aim of this paper is twofold: firstly, an H∞ con-
troller is designed to suppress the activity of a cortical
column, in particular applied to an epileptic seizure neural
mass model of the macrocolumn. The solution is com-
puted based on the linearization model of the nonlinear
neural mass model and it takes into account the model
uncertainties as additive ones, as well as the measurement
noise. Secondly, to design a state observer for the same
application, in order to monitor the hidden, unmeasured
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state of the cortical column. To that end, an Extended
Kalman filter is put in place. Both of them represent also
the main contributions of the paper, since to the best of our
knowledge, there are no such solutions presented for the
neural mass model of the epileptic seizure. The proposed
methods are testes in simulation.

It is worth noticing that other attempts to suppress the
activity of a cortical column in an epileptic seizure have
been made by using, in one instance, a PI controller Wang
et al. (2016) and in another, an active disturbance rejection
control Wei et al. (2019). Both of them were tested in
simulation with promising results. As for the estimation
problem, one can find as well attempts to solve it, in
particular Hamid et al. (2015), Kuhlmann et al. (2016)
and Popescu and Buiu (2023), but none of them is applied
for the neural mass model of an epileptic seizure, or the
extended Kalman filter, for that matter.

The paper is organized as follows. In Section 2, the
detailed mathematical model of the cortical column of an
epileptic seizure is given, in terms of a convolution-based
neural mass model, which was introduced in Wendling
et al. (2000). In Section 3, the H∞ controller solution
is presented, particularized for the neural mass model
in discusion, while in Section 4, the extended Kalman
filter is described as a solution for the estimation problem
formulated in this paper. Furthermore, in Section 5, the
simulation results for both, the control and estimation
problems are shown. Finally, Section 6, concludes the
paper.

2. NEURAL MASS MODEL OF A CORTICAL
COLUMN

The goal of this section is to describe a cortical column
as a neural mass model. The main idea is to approximate
a large number of neurons as a representative population
and to use the behaviour of that neuronal population to
compute the average activity of the correspondent group.
The advantage of this representation is that it needs a
reduced number of state variables to approximate a fairly
sizeable number of neurons. The mathematical model of
a cortical column will be given in the general form of a
dynamical system as expressed by the following equations:

ẋ(t) = f(x(t), u(t), θ) + w(t)
y(t) = h(x(t)) + n(t)

(1)

where x(t) ∈ Rn represents the hidden state of the dynam-
ical system (the neuronal populations activity), ẋ(t) ∈ Rn

is the first time derivative of the state vector, u(t) ∈ Rm is
the external deterministic input to the neural populations
(i.e. particular stimuli presented to the cortical column
which can be in form of an evoked potential of a specific ex-
perimental manipulators or an electrical current/magnetic
impulse applied using a specialized technique). Their roll
is to generate the brain’s response to specific external
manipulators. Next, θ gathers the information about the
model parameters. On top of that, the function f(•) ∈ Rn

maps the relations between all these variables.

Furthermore, y(t) ∈ Rp represents the measured output,
which in this case is the EEG recordings. Additionally, the
function h(•) ∈ Rp describes how the neural populations

activity propagates through the surroundings tissues such
as skull, scalp, or the brain itself.

Finally, the dynamical system description includes the
signals w(t) and n(t) which represent the disturbances
of the state, respectively, the measurement noise. These
variables can be stochastic. The first equation of (1) is
called the neuronal model, while the second one is the
observational model.

One way to obtain the neural mass model of a cortical col-
umn is using the convolution-based description of a three
populations Jansen-Rit model which has been introduced
in Jansen and Rit (1995) and will be briefly presented as
part of the following section.

2.1 Jansen-Rit model

In its original form, the cortical column local circuit
(one source) has been described as a interaction of three
populations of neurons. More precise, the main popula-
tion comprised of the pyramidal neurons which receives
either excitatory or inhibitory feedback from two local
interneurons clusters of neurons which are composed of
stellate cells, basket cells or nonpyramidal ones. These get
exclusively excitatory inputs. A schematic description of
the three population neural mass model representig the
cortical column can be seen in Figure 1.

The correspondence with the anatomical structure of the
cortical column, as it has been proposed in [David], can
be approximately inferred as follows: the pyramidal pop-
ulation are located in the infragranular layers (Layer 5
and 6) and the interneurons clusters are tracked down to
supragranular layers (Layers 1, 2 and 3) for the inhibitory
cells, while the excitatory ones to granular layer (Layer 4).

It is worth mentioning that the influence from distant pop-
ulations or neighboring ones is modeled as an excitatory
input. Moreover, it is also well established that the EEG
recordings represent measurements of the the electrical
activity of the the pyramidal population.

Fig. 1. Cortical column description: 3 populations neural
mass model - Jansen Rit model. Figure partially
created with Biorender.com.

2.2 Convolution-based Model

The dynamics of each population is described using the
convolution operation as illustrated in Figure 2. In one
instance, a linear transfer function traces the conversion
of the pre-synaptic information into the post-synaptic one,
while, in a second instance, a static nonlinear function
translates the post-synaptic information into the firing
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rate of the population. These conversions are based upon
two operators which are detailed next:

(1) Pulse-to-wave operator: its goal is to convert the
average density of pre-synaptic input (average incom-
ing firing rate), m(t), entering the population, into
the average post-synaptic potential (PSP), v(t). This
transformation is ensured by the linear convolution
operation, as follows:

v(t) = h(t) ∗m(t)

=

∫ ∞

0

h(t− τ)m(τ)dτ
(2)

where h(t) is called a synaptic kernel and describes
the dynamic of the synapses and dendritic trees.
It is modeled as a linear, time-invariant and causal
weighting function given by the equation:

h(t) = Hκte−κt (3)

where the two parameters that describe the convo-
lution kernel are H, which represents the maximal

amplitude of the PSP signal, and κ =
1

τ
, which is

the inverse of a time constant τ that sums the time
rate constants of passive membrane and additional
spatially distributed delays in the dendritic tree.
Furthermore, it is worth noticing that the synaptic

contacts can be either inhibitory, or excitatory, which
means that, based on the related input signal, it
will lead to either inhibitory postsynaptic potential
(IPSP), or excitatory postsynaptic potential (EPSP).
Briefly, EPSPs will make a neuron more likely to
fire, while IPSPs will make it less so. To that end,
it is useful to differentiate between the inhibitory and
excitatory synaptic kernels of the neuronal popula-
tions. Consequently, the former will have associated
the letter (i), while the latter will include (e) as
a subscript for all the related notations. Thus, the
weighting functions will become hi(t), he(t), and their
parameters will be consider as Hi, τi, κi, He, τe, κe.

Finally, one can notice that the Laplace transform
of the equation (2) leads to transfer function of a
second order system describing the input-output be-
havior between m(t) and v(t), based on the kernel
synaptic description given in the equation (3). There-
fore, the state space representation of the synaptic
connection, in a population sense, is modeled as:

v̇(t) = i(t)
i̇(t) = −κ2v(t)− 2κi(t) +Hκm(t)

(4)

where the state variables, v(t) and i(t), represent the
mean membrane potential of the neuronal population,
and its electrical current. The same distinction in no-
tations, between excitatory and inhibitory, is applied
as well.

(2) Wave-to-pulse operator: its role is to convert the
average membrane potential of the population, into
the average rate of action potentials fired by the
neurons. A static nonlinear sigmoid function will
ensure this conversion:

σ
(
v(t)

)
=

2e0
1 + er(v0−v(t))

(5)

where the parameters e0, r and v0 determine the
shape of the sigmoid function, and they can be es-
timated using anatomically informed data based on
specific intrinsic connections, the number of synapses,
voltage sensitivity of the population, etc. This trans-
formation is assumed to be instantaneous.

Fig. 2. Convolution-based model: it is composed by a
linear transfer function that converse the pre-synaptic
information into the post-synaptic one, and a static
nonlinear function that translates the post-synaptic
information into the firing rate of the population.
Figure partially created with Biorender.com.

2.3 Neural mass model of a cortical column for epileptic
seizure simulation

The neural mass model of the epileptic activity has been
presented in Wendling et al. (2000) and Touboul et al.
(2011). It is derived based on the Jensen-Rit model which
has been introduced in Jansen and Rit (1995), and briefly
described above. The mathematical representation of the
cortical column that mimics an epileptic seizure using a
convolution-based model is given as follows:

v̇1(t) = i1(t)
i̇1(t) = κeHeγ1σ

(
v2(t)− v3(t)

)
− κ2

ev1(t)− 2κei1(t)
v̇2(t) = i2(t)

i̇2(t) = κeHe

[
γ2σ

(
γ1v1(t)

)
+ p(t) + u(t)

]
− κ2

ev2(t)

−2κei2(t)
v̇3(t) = i3(t)
i̇3(t) = κiHiγ4σ

(
γ3v1(t)

)
− κ2

i v3(t)− 2κii3(t)
y(t) = v2(t)− v3(t) + ny(t)

(6)

where xT (t) = [v1(t) i1(t) v2(t) i2(t) v3(t) i3(t)] is the
state vector containing the mean membrane potential,
vi(t), and its electrical current, ii(t), (with the indices
i = {1, 2, 3}) of the neuronal populations used to describe
the neural mass model of the cortical column. The exci-
tatory input, p(t), represents the influence from distant
populations or neighboring ones, while u(t) will be the
control input.

Besides the parameters of the excitatory and inhibitory
synaptic kernels, the model includes a set of intrinsic
connectivity constants, which are γ1 and γ2 (the average
number if the synaptic contacts in the excitatory feedback
loop), γ3 and γ4 (the average number of the synaptic
contacts in the inhibitory feedback loop).

Finally, the output of the system is y(t), which is the
measured local field potential of the cortical column by
the EEG sensor. More precisely, it is a mixture of EPSP
and IPSP signals that describe the electrical activity if the
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pyramidal neuronal population. In addition, the measure-
ment noise introduced by the EEG sensor is modeled as a
stochastic variable, ny(t). One can notice that the equation
(6) is written in the form of the equation (1), and it is based
on the Jansen-Rit neural mass model, where each EPSPs
and IPSPs are given using the equations (4) and (5).

2.4 Linearized neural mass model of a cortical column for
epileptic seizure

In order to develop the H∞ controller and the Extended
Kalman Filter estimator, one needs the linearized system
of the nonlinear representation given in the equation (6),
around an equilibrium. To that end, the matrices A, B
and C that fully describe the state space representation of
the linear system, can be obtained as:

ẋ(t) =
∂f

∂x

(
x(t), u(t), θ

)∣∣∣∣∣
(xe,ue)

(
x(t)− xe

)
+

+
∂f

∂u

(
x(t), u(t), θ

)∣∣∣∣∣
(xe,ue)

(
u(t)− ue

)
y(t) =

∂h

∂x

(
x(t)

)∣∣∣∣∣
xe

(
x(t)− xe

)
(7)

where xe and ue are the values of the state and input
at equilibrium. From the equation (7), it is clear that the
linearized system parameters around the equilibrium point
are:

A =
∂f

∂x

(
x(t), u(t), θ

)∣∣∣∣∣
(xe,ue)

B =
∂f

∂u

(
x(t), u(t), θ

)∣∣∣∣∣
(xe,ue)

C =
∂h

∂x

(
x(t)

)∣∣∣∣∣
xe

(8)

It is worth noticing that the nonlinear part of the math-
ematical model describing the cortical column is the sig-
moid function given in the equation (5). Therefore, to ob-
tain the linearized system it is sufficient to get the first or-
der Taylor approximation of the sigmoid function, around
v0, (being the PSP when 50% firing rate is achieved):

σ(v) ≈ σ(v0) +
∂σ(v)

∂v

∣∣∣
v=v0

(
v − v0

)
(9)

where the derivative of σ(v) with respect to v around the
equilibrium is:

∂σ(v)

∂v

∣∣∣
v=v0

=

[
2e0r

1 + er(v0−v)

(
1− 1

1 + er(v0−v)

)]∣∣∣∣∣
v=v0

=

[
2e0re

r(v0−v)

(1 + er(v0−v))2

]∣∣∣∣∣
v=v0

=
e0r

2
(10)

Finally, by combining the equation (10) and (9), the sig-
moid function linearized around v = v0 can be considered
as:

∆σ(v(t)) = δ∆v(t) (11)

where the parameter δ =
e0r

2
represents a constant

gain and ∆σ(v(t)) and ∆v(t) are variations around the
equilibrium point.

The linearized representation of the cortical column de-
scribed by the neural mass model in the equation (6),
having the hidden state, x(t), external input, u(t) and
measured output, y(t), is given by the following matrices:

A =


0 1 0 0 0 0

−κ2
e −2κe κeHeγ1δ 0 −κeHeγ1δ 0

0 0 0 1 0 0
κeHeγ2δγ1 0 −κ2

e −2κe 0 0
0 0 0 0 0 1

κiHiγ4δγ3 0 0 0 −κ2
i −2κi


B = [0 0 0 κeHe 0 0]

T

C = [0 0 1 0 −1 0]
(12)

3. H∞ CONTROLLER DESIGN

The control application of suppressing the activity of a
cortical column is a sensitive one that requires a careful
consideration regarding the internal stability of the system
as well, the performances of the control solution, and their
robustness against the uncertainties. These are some of the
reasons for which one might choose a H∞ controller as a
proposed solution for this control problem.

A brief description of the control problem in terms of
block diagram can be depicted in Figure 3. It represents
a classical feedback loop scheme, where P is the cortical
column model given in the equation (6), We and We are
the performance specifications of the control application,
and K∞ is the controller which is obtained using H∞
tools. In addition, the relevant signals of the feedback
loop are grouped as: external signals (reference signal, r,
excitatory input, p and measurement noise, n), internal
signals (tracking error, ε, control input, u, and system
output, y) and controlled signals (z1 and z2). In particular,
in this application, since one aims to suppress the activity
of the cortical column, it means that the reference signal
is considered null (r = 0).

Fig. 3. Block diagram: Control problem formulation -
classical feedback loop

To design the H∞ controller, one needs the linearized
model of the cortical column, which has been obtained
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above. In addition, the model uncertainties are considered
as additive ones and included into the equation as follows:

ẋ(t) = Ax(t) +Bu(t) +Bp(t) +Bσwσ(t)
y(t) = Cx(t) + n(t)

(13)

where besides the system state, x(t), the control input,
u(t), the external disturbance (excitatory input), p(t),
system output, y(t), measurement noise, n(t), and the
related matrices that describe the linear system, A, B, C,
there is also the additive model uncertainties given by
wT

σ (t) = [wσ1 wσ2 wσ3], together with the associated

matrix, Bσ =


0 0 0

Heκeγ1 0 0
0 0 0
0 Heκeγ2 0
0 0 0
0 0 Hiκiγ4

.
One can notice that the excitatory signal, p(t) and the
additive model uncertainties, wσ(t), can be grouped to-

gether as w(t) =

[
p
wσ

]
(t), having associated the matrix

B1 = [B Bσ]. This will lead to the equation:

ẋ(t) = Ax(t) +B1w(t) +Bu(t)
y(t) = Cx(t) + n(t)

(14)

Furthermore, the performance specifications have to be
considered as well. To that end, two frequency dependent
templates will be proposed. On the one hand, the tracking
error transfer function will be shaped by the choice of
We(jω), and on the other hand, the transfer function
related to control input u(t) is shaped by the choice of
Wu(jω) according to:

[
z1
z2

]
=

[
We(jω) 0

0 Wu(jω)

] [
ϵ
u

]
∀ω ∈ [0,∞) (15)

The performance specifications can be summarized by the
following state space representation (with internal states
xe(t) and xu(t) corresponding to transfers We(s) and
Wu(s) respectively):

˙[
xe

xu

]
(t) =

[
Ae 0
0 Au

] [
xe

xu

]
(t) +

[
Be 0
0 Bu

] [
ε
u

]
(t)[

z1
z2

]
(t) =

[
Ce 0
0 Cu

] [
xe

xu

]
(t) +

[
De 0
0 Du

] [
ε
u

]
(t)

(16)

In Figure 4 the lower Linear Fractional Transform (LFT)
representation of the control problem illustrated in Figure
3 is given. In particular, the all templates for performance
specifications are gathered in W as described in the equa-
tion (15), while the signals are grouped in the following
categories: first, all the external signals, r(t), w(t), n(t), in
one group, second, the controlled variables, ε(t), u(t), that
become z1(t), z2(t) after the weights are applied, third,
the control input variables, u(t), and finally, the measured
variable, y(t).

To design the H∞ error feedback controller, the equations
(14) and (16) are combined to get:

Fig. 4. Block diagram: Lower Linear Fractional Transform
(LFT) of the H∞ control problem formulation

˙̃x(t) = Ãx̃(t) + B̃1w̃(t) + B̃2u(t)

z(t) = C̃1x̃(t) + D̃11w̃(t) + D̃12u(t)

ε(t) = C̃2x̃(t) + D̃21w̃(t)

(17)

where the following matrix partitions are allowed:

Ã =

[
A 0 0

−BeC Ae 0
0 0 Au

]
B̃1 =

[
0 B1 0
Be 0 −Be

0 0 0

]
B̃2 =

[
B
0
Bu

]
C̃1 =

[
−DeC Ce 0

0 0 Cu

]
D̃11 =

[
De 0 −De

0 0 0

]
D̃12 =

[
0
Du

]
C̃2 = [−C 0 0] D̃21 = [1 0] D̃22 = 0

and the corresponding vectors are defined as below.

x̃(t) =

[
x
xe

xu

]
(t) w̃(t) =

[
r
w
n

]
(t) z(t) =

[
z1
z2

]
(t) (18)

Finally, a stabilizing controller is computed, if possible:

u(t) = K∞(xK(t), ε(t), t) (19)

which is a solution of the optimization problem

min
u(t)

∣∣∣∣∣
∣∣∣∣∣
[

WeS WePS
WuKS WuT

] ∣∣∣∣∣
∣∣∣∣∣
∞

< γ (20)

where γ > 0 is a given attenuation level, while S, KS, PS
and T are the main classical sensitivity transfer functions.
It is worth noticing that the choice of the templates
We(jω) and Wu(jω) (in RH∞) actually shapes these
sensitivity transfer functions.

By using a Riccati based approach (one can check Doyle
et al. (2016) for more details), a solution to the problem
formulated in the equation (20) in the form of the equation
(19) can be computed. This solution ensures the internal
stability of the system as well as the performance specifi-
cation and the robustness against the model uncertainties
and measurement noise.

4. STATE OBSERVER DESIGN

The goal of this section is to estimate the hidden state
of a cortical column modeled as a neural mass model
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for an epileptic seizure, which is described by the vector
xT (t) = [v1(t), i1(t), v2(t), i2(t), v3(t), i3(t)], based on the
available mathematical model derived earlier and the noisy
measurement of an EEG sensor, y(t). To that end, an
Extended Kalman Filter (EKF) is designed.

The EKF observer is an auxiliary system of the form:

˙̂x(t) = f
(
x̂(t), u(t)

)
+K

(
y(t)− ŷ(t)

)
ŷ(t) = Cx̂

(21)

where x̂(t) and ŷ(t) represent the estimated state and
output, respectively. The dynamics of this auxiliary system
is given by the nonlinear model, f(•), which is a chosen
following the equation . It is also worth noticing that
the known input, u(t), will be considered as zero in
this context. Moreover, the excitation signal, p(t), will
be modeled as the process disturbance, which can be
clearly seen that it is an additive one. The estimated
output, ŷ(t), is a linear combination of the estimator’s
state components.

The observer is driven by a correction term which is based
on the error between the measured and estimated outputs,
y(t)− ŷ(t), while the matrix K is the observer gain.

The estimation problem described hereby comes down to
find K such that auxiliary system given in the equation
(21) is stable and its state, x̂(t) converges to the system
state, x(t). To that end, in the EKF estimator, one can
compute the observer gain, K, as the classical Kalman
filter problem, namely:

K(t) = P (t)CTR−1 (22)

where P (t) is a solution of the continuous-time Riccati
differential equation:

P (t) = AP (t) + P (t)AT − P (t)CTR−1CP (t) +Q (23)

with A and C being the matrices of the linearized system
obtained in the equation (12), while Q and R are the state
noise and measured output noise covariance matrices, cor-
respondent to the excitatory signal, p(t), and measurement
noise, n(t). This equation allows to leverage the available
information about the model accuracy and measurement
noise. However, for the proposed solution one can use
the static solution of the equation (23), which leads to a
simpler implementation of the EKF observer, the so-called
continuous-time algebraic Riccati equation (CARE) (one
can find more details in Besancon (2007)):

0 = AP + PAT − PCTR−1CP +Q (24)

5. SIMULATION RESULTS

In the following section, the simulation results for both, the
H∞ robust controller and the EKF observer applied to the
neural mass model of an epileptic seizure are provided.

The simulation scenario under which the both methods are
tested starts from nonlinear description of the neural mass
model of the cortical column given in the equation (6).

The standard numerical values of the parameters underling
the model proposed in Wendling et al. (2000) (which are
adapted from Jansen et al. (1993) and Jansen and Rit
(1995)) are summarized in Table 1. It is worth mentioning
that, if one is interested to simulate an epileptic behaviour
of a cortical column, then a group of hyper-excitatory
parameters ought to be chosen such for the neural mass
model. In particular, for the current simulation scenario
the value of the average synaptic excitatory gain, He, has
been set to 7.00 mV .

Table 1. Parameters description and numerical
values of the neural mass model of a cortical
column (nominal case) adapted from Wendling

et al. (2000)

Param. Value Interpretation

He 3.25 mV Average synaptic gain (excitatory)
Hi 22.00 mV Average synaptic gain (inhibitory)

τe 0.01 s Membrane average time constant and
dendritic tree average time delays (ex-
citatory)

τi 0.02 s Membrane average time constant and
dendritic tree average time delays (in-
hibitory)

γ1 135 Average number of synaptic contacts
in the excitatory feedback loop

γ2 108 Average number of synaptic contacts
in the excitatory feedback loop

γ3 33.75 Average number of synaptic contacts
in the inhibitory feedback loop

γ4 33.75 Average number of synaptic contacts
in the inhibitory feedback loop

e0 2.5 s−1 Nonlinear sigmoid function parameter
v0 6 mV Nonlinear sigmoid function parameter
r 0.56 mV −1 Nonlinear sigmoid function parameter

5.1 H∞ robust controller simulation results

Based on the H∞ controller design presented in section 3,
the results obtained are illustrated hereby, as follows:

First, one can notice that the performance specifications
of the control problem have to be set. More specifically,
the templates We(jω) and Wu(jω) from the equation (15)
are chosen as illustrated in Figure 5 and 6. In particular,
We has the shape of a low pass filter, for which its
parameters are specified such that the error signal, ε(t),
has to rest under the value of 0.1 in magnitude (20 dB)
given the frequency range of [0, 44] rad/sec. In addition,
the maximum value of the closed loop sensitivity function
has to be less than 6dB to ensure an acceptable robustness
regarding the stability margin of the closed loop system,
taking into account that model uncertainties have been
modeled as additive ones.

Next, the template Wu(jω) has been shaped as a high pass
filter. In this case, its role is, mainly, to ensure that the
control input will not be larger than a certain value, so as
not to damage the neural tissue.

Its shape can be modified, if necessary, depending on
additional requirements concerning the control input con-
straints or other closed loop transfers related to this tem-
plate.

Next, one can notice that the linearized system obtained
in the equation (7), having the corresponded matrices
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Fig. 6. H∞ controller design: Performance specification for
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given by the equation (12), under the parameters described
above is both controllable and observable.

Furthermore, by solving the optimization problem given in
the equation (17), one will get an H∞ controller as in the
equation (19) for an attenuation level, γ = 0.9953. This
imply that the obtained controller will indeed ensure the
stability of the system for which it was designed as well
as the performance specifications described by the chosen
templates. This, of course, can also be seen in Figure 7,
8, 9 and 10 where all the closed loop sensitivity functions,
namely, S(jω), PS(jω), KS(jω) and T (jω) are bounded
by the We(jω) respectively the Wu(jω).
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Finally, the obtained H∞ controller is tested using the
nonlinear model of the cortical column. The results of the
simulation are shown Figure 11. It can be seen that for the
first 5 sec the controller is deactivated, and after that it
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Fig. 8. H∞ controller results: Performance specification
template We(jω)

−1 (orange) and closed-loop distur-
bance sensitivity function PS(jω) (blue)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-20

-10

0

10

20

30

40

50

60

M
a
g
n
it
u
d
e
 (

d
B

)

From: dy  To: uC

KS(jw)

1/Wu(jw)

KS(jw) and 1/Wu(jw)

Frequency  (rad/s)

Fig. 9. H∞ controller results: Performance specification
template Wu(jω)

−1 (orange) and closed-loop control
sensitivity function KS(jω) (blue)

10
1

10
2

10
3

10
4

10
5

10
6

-200

-150

-100

-50

0

50

100

M
a
g
n
it
u
d
e
 (

d
B

)

From: du  To: uC

T(jw)

1/Wu(jw)

T(jw) and 1/Wu(jw)

Frequency  (rad/s)

Fig. 10. H∞ controller results: Performance specification
template Wu(jω)

−1 (orange) and closed-loop comple-
mentary function T (jω) (blue)

is switched on. Once that happens, the epileptic activity
is suppressed. One can notice that in the first simulation
the measured output is noise free. Thus, if a measurement
noise is added, the controller still behaves well enough,
managing to achieve its goal, in other words to suppress
the epileptic seizure, as it can be seen in Figure 12.

5.2 Extended Kalman Filter simulation results

In this section, the results of the estimation problem
are shown. In particular, the state estimates of the EKF
observer are compared against the real ones simulated by
the nonlinear model of the cortical column described by
the equation (6).
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Fig. 11. H∞ controller results: EEG simulated record-
ings without measurement noise included. Controller
switched ON after t = 5 sec. A zoomed graphic of the
results in the interval [4, 6] sec is displayed in top-
right side of the figure
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Fig. 12. H∞ controller results: EEG simulated recordings
with measurement noise included. Controller switched
ON after t = 5 sec. A zoomed graphic of the results
in the interval [4, 6] sec is displayed in top-right side
of the figure

One can notice again that the observability condition is
fulfilled, therefore design of the EKF can be pursued.
As it is mentioned in the equation (21), the auxiliary
system that plays the role of the estimator, incorporates
the nonlinear model of the cortical column described by
the equation (6) and adds a correction term which depends
by the observer gain and the error between the noisy
output of the system and the estimated one. The gain,
in this scenario, is considered as being constant and it
is computed solving the continuous-time algebraic Riccati
equation as given in (24). This equation is composed of
the matrices obtained by linearizing the nonlinear system
of the cortical column, and the state and noise covariance
matrices, Q and R. These matrices are chosen based on the
state disturbances and measurement noise signals. Since
y(t) and p(t) are one dimensional external inputs, it means
that the covariance matrices will be scalars. In particular,
based on the parameters of the simulation, Q = 5 · 106
and R = 10. By choosing these matrices, one can ensure
a trade off between the system output and the available
model.

Based on EKF solution of the estimation problem com-
bining the nonlinear model of the cortical column with
the noisy recordings of an EEG sensor placed on top
of the cortical column, and using the numerical values
described in this section, the state estimates of the unmea-
sured activity of the cortical column can be obtained. In

particular, in Figure 13 the EEG recording, y(t) together
with its estimate, ŷ(t) are shown. In Figure 14, the mean
membrane voltage potential (in population sense), v1(t)
and its estimate, v̂1(t), are illustrated, while in Figure 15,
the other membrane voltage of the excitatory neuronal
population, v2(t) and its estimate, v̂2(t) are given. Finally,
the voltage potential of the inhibitory population, v3(t)
and its estimate, v̂3(t) is depicted.
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Fig. 13. EKF observer results: EEG simulated recordings,
y(t), system output (blue) and observer estimated
output, ŷ(t) (orange)
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Fig. 14. EKF observer results: cortical column simulated
state, v1(t), hidden state (blue) and observer esti-
mated state, v̂1(t) (orange)
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Fig. 15. EKF observer results: cortical column simulated
state, v2(t), hidden state (blue) and observer esti-
mated state, v̂2(t) (orange)

6. CONCLUSIONS

The paper presented the design of a H∞ controller and
an Extended Kalman Filter observer applied to a neural
mass model for EEG recordings of a cortical column.
Both methods were tested, in simulation, on a model of
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Fig. 16. EKF observer results: cortical column simulated
state, v3(t), hidden state (blue) and observer esti-
mated state, v̂3(t) (orange)

an epileptic seizure. The objective of the controller has
been to suppress the activity of the cortical column, while
the observer has been deployed to estimate the hidden,
unmeasured activity of the cortical column. Both methods
have been designed based on the linearized model of the
neural mass model and deployed for the nonlinear one.
The model uncertainties have been considered as additive
ones during the design process. The measurement noise
introduced by the EEG sensors has been accounted as
well. The results obtained in simulation are promising and
motivate the authors to extend this work for real time
EEG recordings.

Finally, as further work, these methods will be considered
for larger networks of cortical columns. Moreover, regard-
ing the model and parameters uncertainties the design
process will be refined. In particular, for the former other
manners to model the uncertainties will be tested, while
for the latter, the H∞ control problem solution will take
them into account as well.

In addition, one might choose a fractional order model
to describe the EEG recordings due to its fractal nature.
Therefore, it will be useful to investigate how these type
of models can be integrated with the H∞ control solution
presented hereby.
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