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Abstract: Aiming at the difficulty of embedding new samples added and the loss question of information 

when using Laplacian Eigenmaps (LE) for process monitoring, a fault detection method based on 

Incremental Laplacian Eigenmaps and Normal Space (ILENS) is developed. After feature extraction of the 
training data using Laplacian Eigenmaps, the local projection matrix is constructed from the local 

information for embedding new samples. It ensures that normal samples can be embedded in the manifold 

of the training data in the feature space and that most fault samples can be separated from normal samples. 

Then Normal Space of the manifold is constructed based on the local information of the samples. In the 

Normal Space, a small number of fault samples falling into the low-dimensional manifold can be separated 

from normal samples. The ILENS method was compared with PCA, KPCA, FD-KNN, and RP-KNN 

through a numerical simulation process and a turbocharged spark-ignited engine system simulation process. 

The results show that ILENS possesses a higher fault detection rate compared to other classical methods. 
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1. INTRODUCTION 

Currently, industrial production is growing in complexity and 
scale. Safety has become the focus of attention in the 

production process so fault detection technology based on 

process monitoring has been developed rapidly. Fault 

detection is strongly linked to modeling. In the field of 

modeling, successful performance has been achieved in many 

applications. Abramov et al. proposed the new opportunities 

model to monitor, analyze, and forecast COVID-19 (Abramov 

et al., 2023). Yurtkan et al. proposed a novel approach for 

predicting student success by using conventional feed-forward 

neural networks (Yurtkan et al., 2023). Zheng et al. proposed 

an improved extraction approach applied to the line structured 
light stripe center extraction process (Zheng et al., 2023). In 

the field of process monitoring, principal components analysis 

(PCA) and partial least squares (PLS) have been widely 

researched and developed as classical methods (Cao et al., 

2003; Deng et al., 2016; Henseler et al., 2016). 

PCA and PLS are suitable for processing data with a linear 

manifold structure but have limitations when the data exhibit 

nonlinearities, which real process data usually exhibit. The 

classical solutions for this problem are Kernel Principal 

Components Analysis (KPCA) (Lee et al., 2004), Kernel 

Partial Least Squares (KPLS) (Rosipal et al., 2001), Local 
Outlier Factor (LOF) (Breunig et al., 2000), fault detection-k-

nearest neighbor rule (FD-KNN) (He et al., 2007), and so on. 

KPCA and KPLS resolve nonlinear problems by projecting the 

data from the original space to a high-dimensional space 
through nonlinear mapping, then processing the data in the 

high-dimensional feature space. KPCA and KPLS have been 

widely studied and applied in the fault diagnosis of nonlinear 

processes (Fazai et al., 2019; Said et al., 2020; Navi et al., 

2015; Sun et al., 2020). The kernel methods do not take into 

account the manifold structure of the data, which does not 

necessarily satisfy the Gaussian distribution in the feature 

space, leading to poor detection. LOF calculates the outlier 

factor for each sample point based on the data densities. It uses 

the outlier factor to identify the degree of outliers in the data, 

thus enabling the detection of faults. FD-KNN performs fault 

detection utilizing a statistic 2D  constructed from sample 

nearest neighbor information. Both LOF and FD-KNN 

determine whether a sample is a fault point by the outlier 
degree of the sample, without considering whether the 

structure of the process data presents nonlinearity, therefore 

works well when monitoring nonlinear processes. LOF and 

FD-KNN perform well in many applications in the process 

monitoring domain (Guo et al., 2018; Kim et al., 2022), 

however, the methods do not involve dimensionality reduction 

and therefore will incur high computational costs when the 

dataset dimensionality is too high. In this regard, ZHOU et al. 

improved it by applying Random Projections to the FD-KNN 

method and proposed fault detection using Random 

Projections and k-Nearest Neighbor Rule (RP-KNN) (Zhou et 
al., 2014). RP-KNN first maps the data to low dimensions by 
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Random Projections, then performs fault detection based on 

the FD-KNN method, which effectively reduces the 

computational cost, but at the same time loses some accuracy. 

Process data is usually located on a manifold with nonlinear 

feature. Traditional methods such as KPCA, LOF, FD-kNN, 

etc., although they can effectively deal with nonlinear data, 

ignore the manifold structure that exists within the data. To 

extract the features of the manifold structure present within the 

data, the Manifold Learning method can be used. Manifold 

Learning aims at discovering the intrinsic manifold structure 
of nonlinear high-dimensional data and extracting the low-

dimensional manifold of the data. The classical methods in this 

field are Isometric Mapping (ISOMAP) (Tenenbaum et al., 

2000), Locally Linear Embedding (LLE) (Roweis et al., 2000), 

Local Tangent Space Alignment (LTSA) (Zhang et al., 2004), 

Laplacian Eigenmaps (LE) (Belkin et al., 2003), and so on. 

Among them, LE has been studied most intensively and 

extensively (Li et al., 2019; Donoho et al., 2003; He et al., 

2003; Jiang et al., 2017). LE possesses an advantage that other 

methods do not have, which is ideal robustness when outliers 

are present. LE constructs relationships between data in a 
localized perspective and reconstructs the local features by 

constructing a relationship graph, thus reflecting the inherent 

manifold structure of the data. However, LE has two defects 

for fault detection in process monitoring. The first one is that 

there is no projection matrix in the process of feature 

extraction by LE because of nonlinear mapping, and no way to 

directly embed the new samples to feature space. When a new 

sample is added, it needs to be incorporated into the training 

data and reprocessed, which will undoubtedly greatly increase 

the computational cost and workload. Additionally, when the 

new samples are outliers, it is not reasonable to use LE for 

feature extraction directly after merging new samples into the 
training data. Another defect is that there exists only one 

manifold feature space after LE processing, therefore some 

information must be lost after feature extraction, which will 

affect the accuracy of process monitoring. 

Aiming at the difficulty of embedding new samples added by 

LE and the loss question of information of LE, a fault detection 

method based on Incrementable Laplacian Eigenmaps and 

Normal Space is developed in this paper. First, the low-

dimensional manifold structure of the data is extracted by LE. 

Then the local projection matrix is constructed with the local 

information of the new sample to realize the embedding of it. 
After that, the local information of the sample is used to 

construct the Normal Space as a complement to the manifold 

feature space. The manifold feature space is monitored using 

the 
2D  statistic and the Normal Space is monitored using the 

Squared Prediction Error (SPE). 

The paper is organized as follows. A review of Laplacian 

Eigenmaps is given in Section 1. In Section 2, the ILENS 

strategy is presented and analyzed. In Section 3, the superiority 

of using ILENS for process monitoring is illustrated by two 

examples, a numerical simulation process and a turbocharged 

spark-ignited engine system simulation process. Finally, we 

present our conclusions in Section 4. 

2. LAPLACIAN EIGENMAPS 

Laplacian Eigenmaps is a graph-based manifold learning 

method that constructs relationships between data from a local 

perspective. The method reconstructs the local structural 

features of the data in a low-dimensional space by expressing 

the adjacency graph between the data through the constructed 

adjacency matrix 
n nW  . For the original data 

1 2( , , ) ,T m

n iX = x x x x , denote the embedding result of 

X  after LE processing as 
1 2( , , ) ,T d

n iY = y y y y . 

Laplacian Eigenmaps expects points in the adjacency graph 
that are connected to each other to be as close as possible in 

the space after feature extraction. Therefore, the objective 

function of the optimization as 

2

,

1
min , . .

2

T

i j ij

i j

W s t Y DY I− = y y                                    (1) 

where I  is the unit matrix. The adjacency matrix W  reflects 

the degree of similarity between the samples, and it is 

constructed in two steps:  

a) Construct the undirected graph G  by connecting each 

sample to its k  nearest samples;  

 

Fig. 1. Connect 
ix  with its k  nearest neighbors. 

b) Determine the weights between the samples in G . If there 

is an edge between point ix  and point 
jx , put the weights 

between them as 

2

i j

ijW e 

−
−

=

x x

                                                                       (2) 

where parameter    is a constant. Otherwise, put 0ijW = . 

Another optional simplification is that if points ix  and 
jx  are 

connected, then 1ijW = , otherwise, put 0ijW = . 

Simplified objective function gives 

2

,

1
( )

2

T

i j ij

i j

W trace Y LY− = y y                                         (3) 

where 
n nL   is the Laplacian matrix and calculated by 

L D W= −                                                                             (4) 

where matrix 
n nD   is the diagonal weight matrix and each 

of its entries is defined as 

1

n

ii ijj
D W

=
=                                                                       (5) 

 



Control Engineering and Applied Informatics                                                                                                                               85 

the optimization problem for the Laplacian Eigenmaps 

becomes 

min ( ), . .T Ttrace Y LY s t Y DY I=                                            (6) 

The constraint TY DY I=  removes an arbitrary scaling factor 

in the embedding. The optimization problem is solved using 

the Lagrange multiplier method: 

( ) ( ) [ ( ]T Tf Y tr Y LY tr Y DY I= +  − ）                                   (7) 

( )
=0T Tf Y

LY L Y D Y DY
Y


= + +  + 


                                 (8) 

from the above get LY DY= − , which becomes a 

generalized eigenvalue problem. Therefore, choose the matrix 
n dY   of eigenvectors corresponding to the lowest d  non-

zero eigenvalues as the output after dimensionality reduction. 

3. ILENS FAULT DETECTION METHOD 

3.1 Out-of-sample problem 

The Out-of-sample problem often arises when applying LE to 
real-world data. There is no projection matrix between the 

original data and their low-dimensional embedding when 

processing datasets by LE, thus new samples cannot be added 

directly (Chen et al., 2010). After a new sample is added, to 

obtain its low-dimensional embedding, the new sample needs 

to be merged into the training samples and then reduce 

dimensionality again. The approach undoubtedly increases the 

computational cost, and when the new sample is an outlier 

since not on the manifold structure, it is not reasonable to 

embed it by LE even after merging it into the training samples. 

To address the out-of-sample problem, this paper proposes an 
Incrementable Laplacian Eigenmaps (ILE), the main idea is to 

find an approximate local transformation of the neighborhood 

of newx  from the original space to the low-dimensional feature 

space, and then apply this transformation to newx  in order to 

realize its embedding. Denote the neighborhood of newx  as 

i

k m

NX   and the data corresponding to iNX  in the low-

dimensional feature space as 
i

k d

NY  . The next step is to 

find the approximate transformation of iNX  to iNY . Although 

the overall process is a nonlinear transformation process when 

feature extraction is performed on the sample set by LE, for 

localization, it can be approximated as a linear transformation. 

It is assumed that the local space where iNX  is located can be 

approximately equal to iNY  after linear projection and 

similarity transformation. Denote iNX  after this approximate 

transformation as  

i i'=N NY X TSR+b                                                                     (9) 

where 
m dT   is the local projection matrix, d dS   is 

the scaling matrix, 
d dR   is the rotation matrix, and 

db  is the vector representing the displacement. The 'NiY  

can be approximately equal to iNY . This process can be 

specifically divided into four steps as shown in Fig. 2. 

Elaborate on each step below. 

 

Fig. 2. Schematic diagram of an approximate transformation 

of a local space. 

The first step is projection. Since we consider the localized 

transformation as a linear projection, the local projection 

matrix T  can be obtained by the PCA method. Compute the 

covariance matrix for the neighborhood 
iNX  through 

1

1

T

Ni NiC X X
n

=
−

                                                                (10) 

the eigenvalue decomposition of the covariance matrix is then 

performed: 
i i iC =p p . The eigenvalues 

1 2, , , m    

arranged from largest to smallest and the 

1 2( , , , )m m mP  = p p p  consisting of the corresponding 

eigenvectors is obtained. Then split the matrix P  according to 

the LE target space dimension d  : 

( , )m m m d m qP T O  =                                                             (11) 

where d q m+ =  . After obtaining the local projection matrix 

T , the first step of the transformation of 
NiX  can be realized 

by 

1

Ni NiX X T=                                                                         (12) 

The second step is scaling. The scaling matrix S  is 

constructed using the range of 1

NiX  and 
NiY  in each principal 

axis direction by 

1 2

1 2

( , )
' ' '

d

d

rr r
S diag

r r r
=                                                       (13) 

where 
ir  is the range of 

NiY  in the direction of the thi  

principal axis, and 'ir  is the range of 1

NiX  in the direction of 

its 
thi  principal axis. After obtaining the scaling matrix S , the 

second step of transformation can be applied to 
iNX  through 

2 1

Ni NiX X S=                                                                         (14) 

The third step is rotation, which requires the construction of a 

rotation matrix R . Start by constructing 
1 2( , , )dV = v v v  
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with unit vectors in each principal axis direction of 
NiY . where 

iv  is the unit vector in the direction of the thi  principal axis of 

NiY . The 2

NiX  has been processed using PCA, thus each 

principal axis direction of 2

NiX  is the direction of the 

coordinate axis. If wish to rotate 2

NiX  so that the directions of 

its principal axes coincide with the directions of the principal 

axes of 
NiY , then it is sufficient to multiply 2

NiX  by the inverse 

matrix of V . It can be seen that the rotation matrix 1R V −= . 

The third step of the transformation of the matrix 
iNX  can be 

performed by 

3 2=Ni NiX X R                                                                           (15) 

The last step is translation, and construct the translation b  

below. Use the center coordinates 
Xc  of 3

NiX  and the center 

coordinates 
Yc  of 

NiY  for the construction of the displacement 

X Y= −b c c                                                                          (16) 

once the displacement b  is obtained, the fourth step of the 

transformation of 
iNX  can be performed by 

3'Ni NiY X= +b                                                                      (17) 

At this point, an approximate transformation of the 

neighborhood 
iNX  of 

newx  from the original space to the low-

dimensional feature space is obtained. By applying this 

approximate transformation to 
newx , the embedding result 

newy  of 
newx  in the feature space can then be obtained by 

new newTSR= +y x b                                                              (18) 

The embedding effect depends on k , the number of samples 

in the neighborhood. The following search for the optimal 

value of k . Use the LE method for the entire dataset X  to 

obtain a low-dimensional representation Y , then divide X  

into two parts:  = ,train newX X X . And do the same put 

 ,train newY Y Y= . The low dimensional embedding 'newY  of 

newX  is calculated by Eq. (18). Now denote the embedding 

error based on the root mean square error (RMSE) between the 

actual dataset 
newY  and the estimated dataset 'newY  : 

( )
2

1
'

n i i

new newi
Y Y

RMSE
n

=
−

=


                                           (19) 

where i

newY  denotes the thi  sample in 
newY . The RMSE can 

reflect the magnitude of error between the estimated dataset 

'newY  obtained by the above embedding method and the actual 

dataset 
newY , and the smaller the RMSE value, the better the 

effect of the new sample embedding. 

Fig. 3 shows the 3-D S-curve data widely used in manifold 

learning (Saul et al., 2003). The expression for the dataset is 

1

2

3

sin( )

(0,5)

sign( )[cos( ) 1]

U



 

=


 = −

x

x

x

                                                  (20) 

 

Fig. 3. The 3-D S-curve data original spatial scatter plot. 

 

Fig. 4. RMSE diagram of 3-D S-curve training data. 

where the latent variables   satisfy ( 1.5 ,1.5 )U  − , 

sign is a symbolic function that returns +1 when 0  , 0 

when 0 = , and -1 when 0  . Calculate the RMSE for 

different values of the parameter k  using the training set. The 

results are shown in Fig. 4, the optimal value of k  is 13 for 

this dataset. From Fig. 4, the RMSE is very small and the 

embedding error is close to zero when the value of k  is in the 

right range, thus it can show that the proposed Incrementable 

Laplacian Eigenmaps method has an excellent performance 

when embedding new samples. 

 

Fig. 5. The manifold feature space of 3-D S-curve data. 
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Perform feature extraction on the 3-D S-curve data by LE and 

embed the validation data and fault data in manifold feature 

space by Eq. (18). The obtained results are shown in Fig. 5, all 

the validation data can be correctly embedded into the feature 

extracted low-dimensional manifold, but for a few fault data, 

they are also incorrectly mixed into the normal samples, 

leading to missed reports during fault detection. 

3.2 Normal Space 

Since only one manifold feature space exists after the LE 

method processes the dataset, some information may be lost, 
and as can be seen from Fig. 5, a small number of fault samples 

fall into the normal samples after feature extraction. For this 

reason, this paper proposes the Normal Space, making it 

complementary to the manifold features space. After obtaining 

the local projection matrix T  and the residual projection 

matrix O  of the local space of the sample through Eq. (11), 

the O  can be used to construct the Normal Space. The specific 

steps are as follows: 

1) For a sample 
ix , we find its k  nearest neighbor 

composition 
NiX , and obtain the local projection matrix T  

and residual projection matrix O  of 
NiX  by Eq. (11). 

2) Compute the residual projection q

i z  and k q

NiZ   of 

the sample 
ix  with 

NiX  in local space: 

i iO=z x                                                                              (21) 

Ni NiZ X O=                                                                         (22) 

3) Calculate the difference between 
ix  and the mean of 

NiX  , 

and use this difference vector q

i h  as the mapping of the 

sample 
ix  in Normal Space by the expression 

1

1 k

i i j

jk =

= − h z l                                                                  (23) 

where 
jl  is the thj  sample of the data set 

NiZ . If the original 

data is 3-dimensional, the ih  can be regarded as the distance 

from the sample to the local manifold, as shown in Fig. 6. 

 

Fig. 6. Localized manifold. 

Construct the Normal Space of the 3-D S-curve data by Eq. 

(23), as shown in Fig. 7, in which all the fault samples can be 
separated from the normal samples. After constructing the 

Normal Space, selecting the appropriate statistics is especially 

important, so it is necessary to analyze the characteristics of 

the distribution of data in the Normal Space. Plot the normality 

test of normal space. 

The statistic is determined by the type of distribution of the 

data. If the data do not obey a normal distribution, it is 

necessary to use data fitting methods to obtain the distribution 

obeyed by the samples in normal space, to determine the 

appropriate statistics. 

 

Fig. 7. 3-D S-curve data normal space. 

Fig. 8 is the normality test diagram of the Normal Space of 3-

D S-curve data. From the figure, it can be seen that the samples 

approximately obey a normal distribution in the Normal Space. 

 

Fig. 8. Normality test of 3-D S-curve data in normal space. 

Therefore, in this space, the samples can be monitored by SPE 

statistics. The SPE statistic is calculated as 

2
=i iSPE h                                                                         (24) 

3.3 ILENS 

Obtain the manifold feature space and Normal Space of the 

training data by the ILE and Eq. (23). For the new samples, 

embedding is done by Eq. (18). In the manifold feature space, 

Use the 2D  statistic for monitoring, which is constructed by 

the equation 

2 2

,

1

1
=

t

i i j

j

D
t =

d                                                                       (25) 

where t  is the number of neighbors, 2

,i jd  denotes squared 

Euclidean distance from sample 
ix  to its thj  nearest 

neighbor. In the Normal Space, the SPE statistic is used for 

monitoring.  

The specific monitoring steps of the ILENS method are as 

follows: 

1) Model building 
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a) For the training samples, construct the undirected graph G  

by connecting each sample to its k  nearest samples and 

determine the weights of the edges. If sample 
ix  and sample 

jx  are connected, then set the weights 
ijW  by Eq. (2). 

Otherwise, put 0ijW = ; 

b) Compute eigenvalues and eigenvectors for the generalized 

eigenvector problem L D=f f  , where D  is the diagonal 

weight matrix, constructed by Eq. (5), and L D W= −  is the 

Laplacian matrix. Then choose the eigenvectors corresponding 

to the lowest d  non-zero eigenvalues as the output in 

manifold feature space; 

c) Calculate the mapping of the training samples in Normal 

Space by Eq. (21) to Eq. (23); 

d) Calculate the 2D  statistics and the SPE statistics of the 

training samples by Eq. (25) and Eq. (24), respectively; 

e) Based on confidence  , the control limits 2D
 and SPE  

of 2

iD  and 
iSPE  are calculated using kernel density 

estimation, respectively. 

2) Fault detection 

a) For a new sample 
newx , project it into the manifold feature 

space by Eq. (18) and the Normal Space by Eq. (21) to Eq. 

(23). 

b) Calculate the 2

newD  statistics and the 
newSPE  statistics for 

newx  by Eq. (25) and Eq. (24), respectively; 

c) If 2 2

newD D  and 
newSPE SPE , then 

newx  is categorized 

as a normal sample, otherwise it is a fault sample. 

4. EXAMPLE EXPERIMENT 

In this section, through two examples, a nonlinear numerical 
simulation process and a turbocharged spark-ignited engine 

system simulation process to verify the effectiveness of the 

ILENS. And compared the ILENS method with PCA, KPCA, 

FD-KNN, and RP-KNN methods. 

4.1 Numerical simulation process. 

The numerical simulation process is shown in equation (26), 

which has six monitored variables 

( )

( )

1 1

2 2

3 3

4 4

5 5

6 6

cos

20

sin

5

0.5

3

u u e

w e

u u e

w e

u w e

w e

= +


= +
 = +


= +
 = + +


= +

x

x

x

x

x

x

                                                            (26) 

where u  and v  are the latent variables, satisfy 

( )1.5 ,4.5u U    and ( )0,1w U  respectively ，  e  are 

noise variables with standard deviation of 0.01. According to 

Eq. (26), 2000 normal samples are generated as training data 
for modeling, and 100 normal samples are generated for 

validation. Generate 10 fault samples at different locations 

near the manifold structure for detection by setting the values 

of monitoring variables, where faults 2, 3, and 4 are weak 

faults closer to the manifold structure of training data. The 

distribution of the generated samples in the first three-

dimensional is shown in Fig. 9. 

 

Fig. 9. Raw data scatter plot in the first three dimensions. 

PCA, FD-KNN, RP-KNN, KPCA, and ILENS methods were 

used for fault detection in the process, respectively. PCA and 

KPCA choose the number of principal component subspaces 

(PCs) as 3 according to the cumulative contribution rate of 

85%. The KPCA bandwidth =0.001 . The number of nearest 

neighbors k  of FD-KNN and RP-KNN is 8 and the parameter 

L  of RP-KNN is 2. The dimension of the manifold feature 

space of ILENS is 2 and the dimension of the Normal Space is 

chosen to be 4, other parameters are set to 5 = , 13k = , and 

8t = . The confidence limits of the above five methods were 

set to 97%. Fig. 10 to 14 shows the detection diagrams of the 

five methods. 

The detection results of PCA are shown in Fig. 10. The PCA 

method is unfavorable for the detection of nonlinear data. The 
2T  statistic has four faults that are not detected, and the SPE 

statistic is not detected at all. Fig. 11 shows the fault detection 

diagram of the KPCA method. KPCA has a better effect on 

fault detection for nonlinear data, but it still fails to separate 

faults that deviate from the manifold structure to a lesser extent 

from the normal samples after mapping the original data into a 

high dimensional space using the kernel function. Therefore, 

again, not all faults are detected. The detection diagram of FD-

KNN is shown in Fig. 12, FD-KNN has a better effect on the 

nonlinear data processing, and most of the faults can be 

successfully detected, but faults 2, 3, and 4 are not detected. 
This is mainly due to the proximity of these three faults to the 

manifold structure, so the 2D  statistic is not able to detect 

these three weak faults effectively. RP-KNN suffers from the 
same problem as FD-KNN leading to unsuccessful detection 

of faults 2, 3, and 4. Moreover, the random projection matrix 

of RP-KNN has uncertainty, which incorrectly projects faults 

8 and 9 into normal samples, and thus faults 8 and 9 are also 

missed. 

Fig. 14 shows the fault detection diagram of the ILENS 

method, all faults can be effectively detected. The weak faults 

2, 3, and 4 are still very well detected. Although these faults 

are close to the normal samples, they are still some distance 

away from the manifold structure in which the sample set is 
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located. Therefore, in the Normal Space, these faults can be 

separated from the normal samples and detected by the SPE 

statistic. 

 

Fig. 10. Detection diagrams of the PCA. 

 

Fig. 11. Detection diagrams of the KPCA. 

 

Fig. 12. Detection diagrams of the FD-KNN. 

 

Fig. 13. Detection diagrams of the RP-KNN. 

 

Fig. 14. Detection diagrams of the ILENS. 

4.2 TCSI simulation process 

The realistic simulation testbed of a turbocharged spark-

ignited engine system (TCSI) is an open-source analog 

simulation system designed and developed by NG et al. 

through Matlab/Simulink (Ng et al., 2020). The user interacts 

with the test stand through a graphical interface, where the 

engine can be simulated using four industry-standard driving 

cycle procedures, including the Worldwide Harmonized Light 

Vehicle Test Procedure (WLTP), the New European Driving 

Cycle (NEDC), the Extra-Urban Driving Cycle (EUDC), and 
the U.S. Environmental Protection Agency Federal Test 

Procedure (FTP-75). The simulation system also enables the 

user to induce multiple faults and better understand the impact 

of faults on engine performance. Researchers can generate 

relevant data through this simulation system to develop and 

compare current and future fault diagnosis methods. The 

simulation system is stable and has been used in several fields 

for research (Stoumpos et al., 2022; Duan et al., 2023). 

There are 9 variables in the TCSI simulation process, this 

paper selects all 9 variables as monitoring variables, and the 

relevant information of the variables is shown in Table 1. 

Table 1. Process Variables. 

No. Variables 

1 Compressor temperature (K) 

2 Compressor pressure (Pa) 

3 Intercooler temperature (K) 

4 Intercooler pressure (Pa) 

5 Intake manifold temperature (K) 
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6 Intake manifold pressure (Pa) 

7 Air filter mass flow (kg/s) 

8 Engine torque (N·m) 

9 Exhaust manifold pressure (Pa) 

The TCSI simulation system was run to obtain a normal batch 
of data for modeling, and the WLTP program was selected for 

the simulation test. The simulation process was 1800 seconds 

with a sampling interval of 1.0 seconds, and all remaining 

parameters used the system defaults. 

By TCSI simulation system 7 faults are generated for detection 

and Table 2 shows the information description of the faults. 

Performed fault detection of the TCSI simulation process by 

PCA, KPCA, FD-KNN, RP-KNN, and ILENS methods. Both 

PCA and KPCA choose the number of PCS as 1 according to 

the cumulative contribution rate of 85%. The KPCA 

bandwidth =0.0002 . Both FD-KNN and RP-KNN set the 

number of nearest neighbors 5k = , and the parameter L  of 

RP is set to 2. The dimension of the manifold feature space of 

ILENS is chosen to be 2 from the manifold characteristics, and 

the dimension of the Normal Space is chosen to be 7, other 

parameters of the ILENS are set to 32 = , 17k = , and 5t =

. Table 3 shows the fault detection results of the TCSI 

simulation process by PCA, KPCA, FD-KNN, RP-KNN, and 

ILENS methods. 

Table 2. Fault information description. 

Fault Description Faults setting 

FPaf Loss of pressure in the air filter 20-kPa pressure drop 
FWaf Air leakage between the air filter and the compressor 20% of flow through leakage 

FWc Air leakage between the compressor and the intercooler 20% of flow through leakage 

FWic Air leakage between the intercooler and the throttle 20% of flow through leakage 

FWth Air leakage after the throttle in the intake manifold 20% of flow through leakage 

FXth Throttle position actuator error Fault leading to 20% flow error 

FYTic Intercooler temperature sensor fault 20-K offset 

Table 3. Fault detection rate (%). 

No. Fault 
PCA KPCA FD-KNN RP-KNN ILENS 

T2 SPE T2 SPE D2 D2 D2 SPE 

1 fPaf 88.72 100 86.21 100 100 99.83 72.76 100 

2 fWaf 11.34 98.44 12.56 98.00 98.39 91.94 60.20 97.55 

3 fWc 36.19 100 36.63 100 100 98.72 69.93 100 

4 fWic 4.61 37.69 5.06 25.35 52.25 48.25 11.45 98.17 

5 fWth 23.18 100 23.51 100 100 100 93.55 100 

6 FXth 3.06 44.30 3.72 39.08 42.13 42.02 11.17 71.04 

7 FYTic 9.84 99.94 10.84 99.94 99.94 99.39 24.68 100 

As shown in Table 3, the ILENS has a high detection rate for 

all faults. Especially for faults 4 and 6, which are the faults 

with small deviations, the detection rate of ILENS is 

significantly higher compared to other methods. For the two 

weak faults, PCA, KPCA, FD-KNN, and RP-KNN are all not 

detected well. PCA is less effective in processing nonlinear 

data and has a lower fault detection rate. Although KPCA can 

extract the nonlinear structure of the data, it is still unable to 

separate the faults from the normal samples after mapping the 

data to a high-dimensional space through the kernel function 
for faults with a small deviation, and thus is not effective in 

detecting faults 4 and 6. The control limits generated by the 

FD-KNN do not separate weak faults from normal samples and 

provide poor detection of weak faults. RP-KNN suffers from 

the same problem in this regard, and due to the randomness of 

the generation of the random projection matrix of RP-KNN, it 

is easy to categorize the fault data into normal data with a low 

detection rate. 

For all 7 faults, ILENS has the high detection rate. For faults 4 

and 6, which have smaller deviations, ILENS has a 

significantly higher detection rate compared to other methods. 
Taking fault 4 as an example, this fault produces violent 

fluctuations between 720 seconds and 1440 seconds, and the 

fault in this period fluctuates more. This phase accounts for 

about 40% of the total time, and the magnitude of the fault 

outside this period is small and difficult to detect, so the 

detection rate of all four traditional detection methods is 

around 40%, which is a low detection rate. 

Fig. 16 shows the distribution of normal data and fault 4 in two 

of the dimensions of the Normal Space. 

 

Fig.15 Fault fWic detection by ILENS 
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Fig.16. Distribution of data in two of the dimensions of the 

Normal Space. 

Normal samples are located in the manifold structure that 

exists within the process data, with values close to zero in all 

dimensions in the Normal Space. In the case of weak faults, 

although the magnitude of the deviation is small, the fault 

samples are farther away from the manifold structure existing 

inside the process data, so the values in each dimension in the 

Normal Space are away from zero, and the faults can be 

effectively detected by the SPE statistic. The detection rate of 

ILENS for fault 4 is shown in Fig. 15, which shows that ILENS 

not only has a good detection effect when the fault fluctuation 

is large but also still has a high detection rate in the stage of 
small fault fluctuation. The total detection rate for fault 4 

reaches 98.78%, which is much higher than the other four 

methods. 

5. CONCLUSIONS 

Aiming at the difficulty of embedding new samples added and 

the loss question of information when using Laplacian 

Eigenmaps for process monitoring, a fault detection method 

based on Incrementable Laplacian Eigenmaps and Normal 

Space (ILENS) is developed.  

Both theoretical analysis and experimental results show that 

the ILENS has a higher detection rate compared with other 
traditional methods when performing fault detection, which is 

of reference significance for fault diagnosis in industrial 

production processes. In the process of industrial production, 

the accuracy of fault detection directly affects the maintenance 

efficiency of the equipment as well as the production of the 

enterprise. As a new fault detection method with good effect, 

the ILENS can be applied to industrial production to detect 

faults in time when they occur and maintain production safety. 
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