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Abstract: We propose two methods for testing the delay-independent stability of discrete-time
systems with unknown delay. Both have LMI form. The first method is based on a polynomial
Lyapunov equation that is equivalent to the stability of a parametric matrix. The second method
tests the strict positivity of a bivariate matrix polynomial. Both methods are shown to give better
results than previous methods. Also, we extend the polynomial Lyapunov function approach to
finding a delay-independent stabilizing static output feedback, using an iterative algorithm in
which each iteration consists of solving LMIs. The behavior of the algorithm is illustrated with

extensive results.
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1. THE PROBLEM

Discrete-time systems with unknown delay have drawn re-
newed attention as, besides their applications in modeling
by discretization of spatially distributed systems, they are
appropriate in the study of networked systems that are
genuinely digital and of increasing importance.

We consider the discrete-time system
x(k+1) = Ax(k) + Agz(k — 1) + Bu(k), (1)
y(k) = Cx(k) + Cqz(k — 1)

with given matrices A, Ag € R"*" B € R**™ (C,Cy €
RP*™ The delay 7 has an unknown positive integer value.
We aim to solve two problems.

1. Determine if the system (1) is delay-independent stable,
i.e. stable Vr € Z+.

2. Find the static output feedback u(k) = Fy(k) such that
the closed loop system

w(k+1) = Az(k) + Agz(k — 1), (2)

where
A=A+ BFC, Agq=A;+ BFCy, (3)

is delay-independent stable.

Simple sufficient delay-independent stability conditions
were given by Mori et al. (1982), Kaszkurewicz and Bhaya
(1993). Chen and Latchman (1995) proposed frequency
tests based on the computation of the spectral radius of
a frequency dependent matrix. The stability tests that
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appear to work best have LMI form and were proposed
by Mahmoud (2000) (the test is equivalent to the Riccati
equations of Verriest and Ivanov (1995)) and Fridman
and Shaked (2005). We propose LMIs for testing delay-
independent stability, using a polynomial Lyapunov func-
tion approach, showing that the approach of Mahmoud
(2000) (which appears to give the same numerical results
as that of Fridman and Shaked (2005)) cannot give better
results even if the degree of the polynomial is zero.

The stabilization problem has been less studied in itself,
but rather as a part of other control problems. The par-
ticular case of static output feedback (SOF) stabilization
appears in He et al. (2008) and few other papers, in
the context of time-varying delay, with bounded delays.
The delay-independent SOF stabilization method pro-
posed here is significantly simpler and can be used as a
first attempt in the stabilization of systems with time-
varying delays. In case of failure, one can try more specific
and costlier methods.

The paper is structured as follows. Section 2 presents
our polynomial Lyapunov function approach to delay-
independent stability testing, together with a method
based on sum-of-squares polynomials in two variables.
Both tests have LMI form. Comparison between them
and with previous methods are also given. Section 3 is
dedicated to SOF stabilization and section 4 presents
experimental results obtained by extensive runs.

2. DELAY-INDEPENDENT STABILITY TESTS

The system (1) is delay-independent stable if and only if
det(2 — A—2"TAg) #0, V|z|>1, ¥reZt. (4)

Since this condition must hold for all values 7 € Z%, we
introduce a new independent variable ( = z77. This idea
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was first proposed by Kamen (1980). Then, condition (4)
is equivalent to

det(zI— A—CA) #0, V2| =1, V(<1 (5)

Otherwise said, the matrix G(¢) = A+ (A4 must be Schur
for all |¢] < 1.

2.1 Polynomial Lyapunov function approach

Since the spectral radius of G(¢) is maximum for |(| = 1,
condition (5) is equivalent, as shown by Bliman (2004), to
the existence of a polynomial Lyapunov function P({) > 0
such that

P(¢) = G(OTP(OG() = 0, ¥[¢| = 1. (6)
Denoting
_ P(C) (AT + AZCHPECT
FO= 1Pt a0 Pl -
this is equivalent to
R(C) =0, V[¢|=1. (8)

In general, the degree of P({) cannot be determined
beforehand. For a practical test we bound the degree of
P(¢) and thus obtain a sufficient stability condition.

Test 1 (PLF(k)—polynomial Lyapunov function of degree
k). Taking

P(()=Py+ Y (RC'+PI¢Y, 9)

i=1

the inequality (8) is a positivity condition on the trigono-
metric polynomial R(¢), whose matrix coefficients depend
linearly on those of P(¢). Hence (8) can be expressed as an
LMI. Denoting R; € R?"*?" 4§ =0 : k + 1, the coefficients
of the polynomial from (7), it results that (P.41 = 0,
Py =P

P, ATP + AT P,

L — K3
Ri= PA; + P_1 Ay P

(10)

The inequality (8) holds if and only if (see Dumitrescu
(2007)) there exists a symmetric positive definite matrix
Q € R2(+2)nx2(s+2)n oplit in blocks of size 2n x 2n by
Q = [Qié]i,l:o:kﬂrla SUCh that

Kk+1

R; = Z Qeo—;- (11)
=i

We say that PLF (k) holds if such a matrix @ can be found
and hence the system is stable. It is clear that if PLF (k)
holds for some kg, then it holds for all K > kg. |

Ezample. If k = 0, then P(¢) = Py and the test amounts
to finding @ € R*™*4" Q) = [Qi¢)i,e=0:1 = 0, such that

T
Qoo+ Qu = P A P )
PA P
0 0 (12)
QIO = POAd 0:| .

Comparison. The test from (Mahmoud, 2000, Rem.1) says
that the system (1) is stable if there exist X, W > 0 such
that the following LMI holds
X-A"XA-W ATXA,
ATX A W — ALY X A,
Theorem 1. If (13) holds, then the test PLF(0) holds. W

= 0. (13)

Proof. By using Schur complements, the LMI (13) is
equivalent to

X-w o0 ATX
0o w Alx|=o. (14)
XA XA, X

Solitti _[vy?T . .
plitting Qo2 = [Y 7 ], the matrix @ satisfying (12)
has the form
Py-V ATPy—-YT 0 AP,
PA-Y Po—Z 0 0
0 0 v y?
PyAy 0 Y Z

Q= >~ 0. (15)

If (14) holds, by taking V =0,Y =0, Ph =X, Z =W, it
results (after eliminating the third block row and column)
that (15) is a permuted version of (14). Since the matrix
from (14) is strictly positive definite, one can find small
perturbations V' > 0 and Y such that (15) holds. |

We conclude that the tests PLF(x) are more comprehen-
sive than the test of Mahmoud (2000).

2.2 Bivariate sum-of-squares approach

Dividing by z in (4), the condition still holds. Denoting
27t = 21, 27771 = 25, condition (4) becomes equivalent
to

det(I — Azy — Agze) #0, V|z1| <1, V|zg| <1. (16)

Denote H(z1,22) = I — Azy — Agza. Using the DeCarlo-
Strintzis stability test for multivariate systems, see Strintzis
(1977), condition (16) holds if and only if i) det H(z1,1) #
0 for |z1] < 1, ii) det H(1,22) # 0 for |zo| < 1, iii)
det H(z1,22) # 0 for all |z1] = 1, |z2| = 1. Transforming i)
and ii) into spectral radius conditions and iii) into checking
the positivity of

Ri(z1,22) = H(z1,22)H (21 ', 25 )7
=1+ AAT —+ AdAg — Az — ATzl_l — Agzo
— AT AAT 225 + AgAT 2 2y (17)
we obtain the following stability test (see a similar treat-

ment of the 2-D Fornasini-Marchesini model in Dumitrescu
(2008)).

Test 2 (BSOS—Dbivariate sum-of-squares) The system (1)
is delay-independent stable if p[(I — A)"1A4] < 1, p[(I —
Aq)7rA] < 1 and there exists positive definite Q@ €
RA>4n “split as Q = [Qie)i.e=0:3, such that

4
I+ AAT + AgAT = 3" Qi
1=1
—A = Q1o+ Q32

(18)
—Ag = Q2+ Q31
AgAT = Qn
0= Q30
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Table 1. Number of systems found stable by
the studied stability tests

n | Mahmoud (2000) PLF(0) PLF(1) BSOS
2 714 714 734 734
3 637 637 671 671
4 670 670 724 724
5 681 681 731 731
6 702 702 753 753

2.8 Experimental comparison

We have implemented the stability tests described above
using the CVX library by Grant and Boyd (2008). For
extensive testing, we have generated random systems by
giving to A and Ay values of the form ul', where u is a
scalar uniformly distributed in [0, 1] and I' is a matrix
whose elements are normally distributed with zero mean
and unit variance. Table 1 reports the number of systems
found stable by each method, in 1000 systems with n going
from 2 to 6. The test of Mahmoud (2000) and PLF(0) have
given the same results for each system; also the test of
(Fridman and Shaked, 2005, Cor.1) had exactly the same
behavior (this test has also LMI form, but we were unable
to find a theoretical relation with Mahmoud (2000) and
PLF(0)). Similarly, the tests PLF(1) and BSOS produced
identical results; these tests always held when PLF(0) held.
Of course, we cannot affirm that PLF(1) and BSOS have
classified as stable all stable systems, but it is likely that
these tests are practically near-necessary.

3. STABILIZATION VIA POLYNOMIAL LYAPUNOV
EQUATION

When we seek a stabilizing static output feedback F', the
matrix equalities (10) and (18) become nonlinear due to
the dependence (3) on F' of the system matrices. Hence,
one cannot use directly the LMIs that give the tests
PLF(x) and BSOS. However, the polynomial Lyapunov
approach can be used for finding a stabilizing F. Using
again the Schur complement, relation (8) is equivalent to

P) AT+ Af¢! _
POU(C) = 1.

To simplify the problem, we approximate it by taking U(()
as a symmetric polynomial of the same degree as P(¢). For
illustration and since it is enough for practical purposes,
we take U(¢) = Uy + Uy + UL (™1, ie. a polynomial of
degree 1.

Even so, (19) is not a convex problem, but can be solved by
a simple relaxation technique. Assume that P(({) is given,
i.e. Py and P; are known. Then, using a parameterization
similar to (12), we can find the polynomial U(¢) that best
approximates (19) by solving

min ||PoUo+P U +PLU—1 PoUy + PLUy PiUi||p (20)

P, A+ BFC)"
A+§FC’ ( +Uo ) ] = Qoo + Q11
Py 0|
Ag+BFCy; Ui | — Q1o

Qoo Q1
ng Qiﬂ =0

s.t.

This is an LMI in the variables F', Uy, U; and ). The
criterion is the Frobenius norm of the concatenated co-
efficients of the matrix polynomial P({)U(¢) — I, which
ideally should be zero. Note that if Uy and U; are given,
then the best approximation P({) can be found by solving
the LMI (20).

Based on (20), we propose the following algorithm, named
SOF_PLF(x) (Static Output Feedback based on Polyno-
mial Lyapunov Function of degree k), with x < 1. If Kk = 0,
then P, and U are forced to zero in (20).

Algorithm SOF_PLF (k).

1. Choose Py > 0, for example randomly. Take P, = 0.
Choose a tolerance ¢ and a maximum number of iterations

N.

2. With the current Py and P; fixed, solve (20) for Uy and
U;.

3. With the current Uy and U fixed, solve (20) for Py and
P.

4. If the criterion is less than ¢, stop.
5. Repeat steps 2-4 at most N times.
6. Check if the system (2) is stable for the obtained F'.

The algorithm converges, since the criterion decreases
after each iteration. However, it is not guaranteed that
P(Q)U(C) = I. So, there is no guarantee that a stabilizing
feedback is obtained, hence the need of step 6. In case
of failure, the algorithm can be repeated with a different
initialization.

4. EXPERIMENTAL RESULTS

We report here the results obtained with the algorithm
proposed in the previous section on two examples. We have
taken € = 1073, N = 20. The initialization was Py = I'T7T,
with I' a n X n matrix with normally distributed random
elements. Each example was run with 10000 different
initializations.

Ezample 1. The system is (He et al. (2008))

0.9 0.5 0.3 0 1
A=1981 | Ad[O.SO.S]’ 3[0.5}’
(21)
oo |11 o - [10
o1 YET 11"

Since m = 1, p = 2, the feedback matrix is F' = [fy f1]. The
two elements of F' found by the algorithm SOF_PLF(k)
are represented in Figure 1. It is visible that the ”area”
of solutions found by SOF_PLF(1) is larger and includes
that given by SOF_PLF(0). This appears to be a relatively
easy problem, since a stabilizing feedback was found for
about 81.4% of initializations for SOF_PLF(0) and 80%
of initializations for SOF_PLF(1). We may assume that
there are systems for which SOF_PLF(1) is able to find a
solution, while SOF_PLF(0) is not.

We note that in He et al. (2008) the matrix F =
[-0.3170 — 0.1519] was designed in a variable delay case;
stability is reported for delays less than 12; in fact, even
with this feedback matrix, the system is delay-independent
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Fig. 1. Stabilizing feedback matrices found for Example 1,
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Fig. 2. Stabilizing feedback matrices found for Example 2,

stable. The position of this F' in Figure 1 is at the right
extremity of the ”good” area.

Example 2. The system is

0.8 0 —01 0 1
A=100509] 4= _02 0.1}’ 3[1]7
(22)
c_[10] 4 _foo
|01 FET |00

So, in this case, the feedback affects only the matrix A.
The obtained solutions are represented in Figure 2. Both
SOF_PLF(0) and SOF_PLF(1) give a solution only for
about 5.7% of the initializations. Again, SOF_PLF(1) give
solutions covering a larger area than SOF_PLF(0).

5. CONCLUSIONS

We have proposed a polynomial Lyapunov function ap-
proach for testing the stability of a discrete-time system
with unknown delay (test PLF(k)) and extended it for
computing a stabilizing static output feedback (algorithm
SOF_PLF(k)). Experimental tests have shown that, in-
creasing the order x of the polynomial Lyapunov function
from 0 (constant matrix) to 1 (true trigonometric poly-
nomial with matrix coefficients), the results are clearly
better, in the sense that i) more stable systems are found

L L L L L L L
-11 -1 -0.9 -0.7 -0.6 -05 -0.4 -0.3

fn.‘a
Jfo

by SOF_PLF(0) (left) and SOF_PLF(1) (right).

f1

L L L L L
-1 -0.8 -0.6 -0.4 -0.2

N 2f(]
by SOF_PLF(0) (left) and SOF_PLF(1) (right).

by PLF(1) than by PLF(0) and ii) for a given system, more
stabilizing feedback matrices are found by SOF_PLF(1)
than by SOF_PLF(0). We have also shown that the test
PLF(0) (which is more conservative than PLF(k), for
k > 0) is less conservative than the test proposed by
Mahmoud (2000).
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